首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present the results of a new NMR-based procedure for measuring the fast transmembrane exchange of D-[1-13C]glucose in human erythrocytes. The method relies on different rates of exchange between the alpha- and beta-anomers of glucose inside and outside the cells; the rate outside the cells is greatly increased by the addition of mutarotase to the suspension. Theory is developed to describe nuclear-spin transfer in the present system and is used to analyse the data to yield estimates of transmembrane-exchange rate constants and their statistical uncertainties. For a total glucose concentration of 25.5 mmol/l at 40 degrees C the first order efflux rate constants for the alpha- and beta-anomers were 1.20 +/- 0.40 s-1 and 0.71 +/- 0.30 s-1, respectively.  相似文献   

2.
Calcium currents in a fast-twitch skeletal muscle of the rat   总被引:9,自引:5,他引:4       下载免费PDF全文
Slow ionic currents were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Sodium and delayed rectifier potassium currents were blocked pharmacologically. Under these conditions, depolarizing test pulses elicited an early outward current, followed by a transient slow inward current, followed in turn by a late outward current. The early outward current appeared to be a residual delayed rectifier current. The slow inward current was identified as a calcium current on the basis that (a) its magnitude depended on extracellular calcium concentration, (b) it was blocked by the addition of the divalent cations cadmium or nickel, and reduced in magnitude by the addition of manganese or cobalt, and (c) barium was able to replace calcium as an inward current carrier. The threshold potential for inward calcium current was around -20 mV in 10mM extracellular calcium and about -35 mV in 2 mM calcium. Currents were net inward over part of their time course for potentials up to at least +30 mV. At temperatures of 20-26 degrees C, the peak inward current (at approximately 0 mV) was 139 +/- 14 microA/cm2 (mean +/- SD), increasing to 226 +/- 28 microA/cm2 at temperatures of 27-37 degrees C. The late outward current exhibited considerable fiber-to-fiber variability. In some fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it appeared to be the sum of both leak and a slowly activated outward current. The rate of activation of inward calcium current was strongly temperature dependent. For example, in a representative fiber, the time-to-peak inward current for a +10-mV test pulse decreased from approximately 250 ms at 20 degrees C to 100 ms at 30 degrees C. At 37 degrees C, the time-to-peak current was typically approximately 25 ms. The earliest phase of activation was difficult to quantify because the ionic current was partially obscured by nonlinear charge movement. Nonetheless, at physiological temperatures, the rate of calcium channel activation in rat skeletal muscle is about five times faster than activation of calcium channels in frog muscle. This pathway may be an important source of calcium entry in mammalian muscle.  相似文献   

3.
Conformational changes of the human Na(+)/glucose cotransporter (hSGLT1) were studied using voltage-jump methods. The cotransporter was expressed in Xenopus laevis oocytes, and SGLT1 charge movements were measured in the micro- to millisecond time scale using the cut-open oocyte preparation and in the millisecond to second time scale using the two-electrode voltage clamp method. Simultaneous charge and fluorescence changes were studied using tetramethylrhodamine-6-maleimide-labeled hSGLT1 Q457C. In 100 mM external [Na(+)], depolarizing voltage steps evoked a charge movement that rose initially to a peak (with time constant tau = 0.17 ms) before decaying to steady state with two time constants (tau = 2-30 and 25-150 ms). The time to peak (0.9 ms) decreased with [Na(+)], and was not observed in 0 mM [Na(+)]. In absence of Na(+), charge movement decayed monotonically to steady state with three time constants (0.2, 2, and 150 ms). Charge movement was accompanied by fluorescence changes with similar time courses, indicating that global conformational changes monitored by charge movement are reflected by local environmental changes at or near Q457C. Our results indicate that the major voltage-dependent step of the Na(+)/glucose transport cycle is the return of the empty carrier from inward to outward facing conformations. Finally, we observed subtle differences between time constants for charge movement and for optical changes, suggesting that optical recordings can be used to monitor local conformational changes that underlie the global conformational changes of cotransporters.  相似文献   

4.
A quenched-flow apparatus is described and applied to measurements of the hydrolysis of 2,4-dinitrophenyl acetate by sodium hydroxide and the entry of D-[U-14C]glucose into human red blood cells at 37 degrees C. Glucose influx into red cells was a saturable process obeying Michaelis-Menten kinetics with a Km for glucose of 6.6 +/- 0.61 mM and a maximum rate for glucose entry under "zero trans" conditions of 20.7 +/- 0.76 mmol (L cell water)-1 s-1. The technique used requires only readily available laboratory equipment and should be easily adaptable to the study of other rapid transport processes.  相似文献   

5.
Facilitated Transport of Glucose from Blood into Peripheral Nerve   总被引:1,自引:1,他引:0  
D-Glucose is the major substrate for energy metabolism in peripheral nerve. The mechanism of transfer of glucose across the blood-nerve barrier is unclarified. In this study an in situ perfusion technique was utilized, in anesthetized rats, to examine monosaccharide transport from blood into peripheral nerve. Unidirectional influxes of D-[14C]glucose, L-[14C]glucose, and [14C]3-O-methyl-D-glucose across capillaries of the tibial nerve were measured at different perfusate concentrations of unlabelled D-glucose. The permeability-surface area product (PA) for D-[14C]glucose and [14C]3-O-methyl-D-glucose decreased, whereas the PA for L-[14C]glucose remained constant, as the perfusate concentration of D-glucose was increased. In the presence of no added unlabelled D-glucose in the perfusate, the PA for L-[14C]glucose equaled one-fifth the PA for D-[14C]glucose. These results demonstrate self-saturation, competitive inhibition, and stereospecificity of glucose transfer, and for the first time show a unidirectional facilitated transport mechanism for D-monosaccharides at capillaries of mammalian peripheral nerve. The data were fit to a model for facilitated transport and passive diffusion. The half-saturation constant and maximal rate of transport for the saturable component of D-glucose influx equaled 23 +/- 11 mumol X ml-1 and 6.6 +/- 3.2 X 10(-3) mumol X s-1 X g-1, respectively. The constant of nonsaturable glucose influx equaled 0.5 +/- 0.1 X 10(-4) s-1. At normal plasma glucose concentrations, the saturable component comprises about 80% of total D-glucose influx into nerve.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Summary The choline carrier of human erythrocyte membranes exists in distinguishable outward-facing and inward-facing conformations, and previous studies demonstrated that only the latter reacts with N-ethylmaleimide, producing an irreversible inhibition of transport. We now report experiments to determine the individual reaction rates for the two inward-facing forms: the free carrier and the complex. The pseudo-first-order rate constant for the complex with a substrate analog, di-n-butylaminoethanol, is found to be nearlydouble that for the free carrier, showing that the carrier conformation is altered following addition of a ligand (with 1mm N-ethylmaleimide at pH 6.8, 37°C, the constants are 0.57±0.05 min–1 and 0.33±0.02 min–1, respectively). Hence three different conformational states have been distinguished by experiment: (1) the inward-facing free carrier; (2) the inward-facing complex; and (3) the outward-facing carrier.  相似文献   

7.
The kinetics of Na(+)-Ca2+ exchange current after a cytoplasmic Ca2+ concentration jump (achieved by photolysis of DM-nitrophen) was measured in excised giant membrane patches from guinea pig or rat heart. Increasing the cytoplasmic Ca2+ concentration from 0.5 microM in the presence of 100 mM extracellular Na+ elicits an inward current that rises with a time constant tau 1 < 50 microseconds and decays to a plateau with a time constant tau 2 = 0.65 +/- 0.18 ms (n = 101) at 21 degrees C. These current signals are suppressed by Ni2+ and dichlorobenzamil. No stationary current, but a transient inward current that rises with tau 1 < 50 microseconds and decays with tau 2 = 0.28 +/- 0.06 ms (n = 53, T = 21 degrees C) is observed if the Ca2+ concentration jump is performed under conditions that promote Ca(2+)-Ca2+ exchange (i.e., no extracellular Na+, 5 mM extracellular Ca2+). The transient and stationary inward current is not observed in the absence of extracellular Ca2+ and Na+. The application of alpha-chymotrypsin reveals the influence of the cytoplasmic regulatory Ca2+ binding site on Ca(2+)-Ca2+ and forward Na(+)-Ca2+ exchange and shows that this site regulates both the transient and stationary current. The temperature dependence of the stationary current exhibits an activation energy of 70 kj/mol for temperatures between 21 degrees C and 38 degrees C, and 138 kj/mol between 10 degrees C and 21 degrees C. For the decay time constant an activation energy of 70 kj/mol is observed in the Na(+)-Ca2+ and the Ca(2+)-Ca2+ exchange mode between 13 degrees C and 35 degrees C. The data indicate that partial reactions of the Na(+)-Ca2+ exchanger associated with Ca2+ binding and translocation are very fast at 35 degrees C, with relaxation time constants of about 6700 s-1 in the forward Na(+)-Ca2+ exchange and about 12,500 s-1 in the Ca(2+)-Ca2+ exchange mode and that net negative charge is moved during Ca2+ translocation. According to model calculations, the turnover number, however, has to be at least 2-4 times smaller than the decay rate of the transient current, and Na+ inward translocation appears to be slower than Ca2+ outward movement.  相似文献   

8.
The high affinity sodium/glucose cotransporter (SGLT1) couples transport of Na+ and glucose. Previous studies established that mutant Q457C human SGLT1 retains full activity, and sugar translocation is abolished in mutant Q457R or in mutant Q457C after reaction with methanethiosulfonate derivatives, but Na+ and sugar binding remain intact. To explore the mechanism by which modulation of Q457 abolishes transport, Q457C and Q457R of rabbit SGLT1 were studied using chemical modification and the two-electrode voltage-clamp technique. Compared to wild-type SGLT1, Q457C exhibits ∼20-fold reduction in phloridzin affinity and preferential occupancy of an inward-facing state. Alkylation of Q457C by [(2-trimethylammonium) ethyl] methanethiosulphonate bromide, (MTSET), reverses these changes while blocking transport. Analysis of pre-steady-state currents in the absence of sugar yields three decay constants for each of Q457C, Q457C-MTSET and Q457R. Comparison of Q457C-MTSET and Q457R with Q457C and wild-type, reveals that inhibition of transport is accompanied by a decrease in magnitude and voltage-independence of the slow decay constant at negative potentials. But fast and medium decays remain unchanged. Computer simulation of transient currents suggests that introduction of positive charge at position 457 leads to a predominant outward rather than inward-facing conformational state. Taken together, the results suggest that glutamine 457, in addition to being involved in sugar binding, is a residue that is sensitive to conformational changes of the carrier.  相似文献   

9.
We studied unidirectional [14C]HCO3- efflux from human resealed red cell ghosts with 1 mM acetazolamide under self-exchange conditions at pH = pH(i = o) 7.4-9.0 and 0-38 degrees C by means of the Millipore- Swinnex and continuous flow tube filtering techniques. 14CO2 loss from cells to efflux medium and further to the atmosphere was insignificant. [14C]HCO3- efflux was determined at pH 7.8, 38 degrees C under symmetric variation of the HCO3- concentrations (C(i = o)), and asymmetric conditions: C(i) varied, C(o) constant, or C(o) varied, C(i) constant. MM-fit, Jeff = Jmaxeff x C x (C + K1/2)-1, used to describe the concentration dependence of Jeff,o when only C(o) varied, yields at C(i) = 50 mM: K1/2o = 3.8 mMJ, Jmaxeff.o = 20 nmol cm-2 s-1; at C(i) = 165 mM: K1/2o = 10 mM, Jmaxeff.o = 32 nmol cm-2 s-1. When C(i) varied, noncompetitive self inhibition by HCO3- binding (inhibitor constant K1) to an intracellular site was included (MS-fit). Under conditions of (a) symmetry: C(i = o) = 9-600 mM, K1/2s = 173 mM, K1 = 172 mM, and Jmaxeff,s = 120 nmol cm-2 s-1, (b) asymmetry: C(o) = 50 mM, K1/2i = 116 mM, K1 = 136 mM, and Jmaxeff,i = 92 nmol cm-2 s-1. All flux parameters accord with the ping-pong model for anion exchange. The data for C(i) < 200 mM also fit well to the MM equation, but K1/2 and Jmaxeff are different from the MS-fit and are inconsistent with the ping-pong model. Thus, self-inhibition (MS-fit) must be included even at low concentrations. As at 0 degree C, the system is asymmetric: 8-10 times more unloaded transport sites face inward than outward when C(i = o). Jeff,s was not mono-exponentially dependent on temperature at 0-38 degrees C, indicating that the transmembrane anion transport is controlled by several rate constants with different temperature dependencies. Jeff,s was not significantly affected by increasing pH(i = o) from 7.4 to 7.8, but it decreased by 50% when pH was raised to 9.0.  相似文献   

10.
Simulation shows that the four-state mobile carrier model for sugar transport in which the asymmetry arises from unequal rate constants of inward and outward translation of the free-carrier and carrier-sugar complex, does not fit with the observed data for pre-steady-state uptake recently obtained by A.G. Lowe and A.R. Walmsley [1987) Biochim. Biophys. Acta 903, 547-550). The main reason for this discrepancy is that pre-steady-state fluxes are determined mainly by the dissociation constants Ks of glucose and maltose for the external sites, rather than the Km (zero-transoi) of glucose and the Ki of maltose. The data are also inconsistent with other forms of asymmetric carrier but are fairly consistent with a symmetrical carrier with high-affinity sites for D-glucose or with a fixed site carrier model.  相似文献   

11.
This study examines the conformations of the Na(+)/glucose cotransporter (SGLT1) during sugar transport using charge and fluorescence measurements on the human SGLT1 mutant G507C expressed in Xenopus oocytes. The mutant exhibited similar steady-state and presteady-state kinetics as wild-type SGLT1, and labeling of Cys507 by tetramethylrhodamine-6-maleimide had no effect on kinetics. Our strategy was to record changes in charge and fluorescence in response to rapid jumps in membrane potential in the presence and absence of sugar or the competitive inhibitor phlorizin. In Na(+) buffer, step jumps in membrane voltage elicited presteady-state currents (charge movements) that decay to the steady state with time constants tau(med) (3-20 ms, medium) and tau(slow) (15-70 ms, slow). Concurrently, SGLT1 rhodamine fluorescence intensity increased with depolarizing and decreased with hyperpolarizing voltages (DeltaF). The charge vs. voltage (Q-V) and fluorescence vs. voltage (DeltaF-V) relations (for medium and slow components) obeyed Boltzmann relations with similar parameters: zdelta (apparent valence of voltage sensor) approximately 1; and V(0.5) (midpoint voltage) between -15 and -40 mV. Sugar induced an inward current (Na(+)/glucose cotransport), and reduced maximal charge (Q(max)) and fluorescence (DeltaF(max)) with half-maximal concentrations (K(0.5)) of 1 mM. Increasing [alphaMDG](o) also shifted the V(0.5) for Q and DeltaF to more positive values, with K(0.5)'s approximately 1 mM. The major difference between Q and DeltaF was that at saturating [alphaMDG](o), the presteady-state current (and Q(max)) was totally abolished, whereas DeltaF(max) was only reduced 50%. Phlorizin reduced both Q(max) and DeltaF(max) (K(i) approximately 0.4 microM), with no changes in V(0.5)'s or relaxation time constants. Simulations using an eight-state kinetic model indicate that external sugar increases the occupancy probability of inward-facing conformations at the expense of outward-facing conformations. The simulations predict, and we have observed experimentally, that presteady-state currents are blocked by saturating sugar, but not the changes in fluorescence. Thus we have isolated an electroneutral conformational change that has not been previously described. This rate-limiting step at maximal inward Na(+)/sugar cotransport (saturating voltage and external Na(+) and sugar concentrations) is the slow release of Na(+) from the internal surface of SGLT1. The high affinity blocker phlorizin locks the cotransporter in an inactive conformation.  相似文献   

12.
Summary Under zero-trans conditions, the facilitated transport of choline across the erythrocyte membrane is limited by the rate of reorientation of the free carrier; as a result the pH dependence of this step can be investigated, independent of other steps in transport. It is found that as the pH declines (between 8.0 and 6.0) the rate of inward movement of the free carrier rises and the rate of outward movements falls, so that the partition of the free carrier increasingly favors the inward-facing form. When the pH of the cell interior and of the medium are varied independently, the partition responds to the internal but not the external pH. The membrane potential, which varies somewhat as the pH is altered, has no effect on the carrier partition. The analysis of the results indicates that the carrier mobility is dependent on an ionizing group of pK a 6.8, which is exposed on the cytoplasmic surface of the membrane in the inward-facing carrier; in the out-ward-facing carrier the ionizing group appears to be masked, in that its pK a is shifted downward by more than one unit. The observations can be explained by assuming that an ionizing group is located in the wall of a gated channel connecting the substrate site with the cytoplasmic face of the cell membrane.  相似文献   

13.
Samples of 1 M KCl solution and 10 samples of intact frog striated muscle were studied at 4-7 degrees C and/or at 21-22 degrees C. Field inhomogeneity was minimized by using small sample volumes and by using a superconducting magnet designed specifically to provide highly homogeneous fields. In the present experiments, magnetic field inhomogeneity was measured to contribute less than 15% to the free induction decay observed for intracellular 39K. The signal-to-noise ratio of the measurements was enhanced by means of extensive time-averaging. The rates of nuclear relaxation for 39K in aqueous solution were 22 +/- 3 (mean +/- 95% confidence limits) s-1 at 4-7 degrees C and 15 +/- 2 s-1 at 21-22 degrees C. For intracellular 39K, (1/T2) was measured to be 327 +/- 22 s-1 and 229 +/- 10 s-1 at the lower and higher temperatures, respectively. The corresponding values for (1/T1) in the same muscle samples were 198 +/- 31 s-1 and 79 +/- 15 s-1 at 4-7 degrees C and at 21-22 degrees C, respectively. These results for 39K are similar to those previously obtained for intracellular 23Na. Since less than 1% of the intracellular 23Na has been estimated to be immobilized, fractional immobilization of intracellular 39K is also likely to be insubstantial.  相似文献   

14.
Kinetic study of the reaction between vitamin E radical and vitamin C has been performed. The rates of reaction of vitamin C (ascorbic acid 1, 6-0-stearyl ascorbic acid 2, and 2,6-O-dipalmitoyl ascorbic acid 3) with vitamin E radical (5,7-diisopropyl-tocopheroxyl) in benzene-ethanol (2:1, v/v) solution have been determined spectrophotometrically, using stopped-flow technique. The second-order rate constants obtained are 549 +/- 30 M-1s-1 for 1, 626 +/- 53 M-1s-1 for 2, and 4.84 +/- 1.41 M-1s-1 for 3 at 25.0 degrees C. The result shows that the ascorbic acid ester 2 having a long-alkyl-chain at 6-position is 1.14 times as reactive as the ascorbic acid 1, whereas the ascorbic acid ester 3 substituted at 2-position is only 0.01 times as reactive as the ascorbic acid 1.  相似文献   

15.
Urea equilibrium exchange fluxes were measured in human red cells under conditions which recruit the anion transporter into an outward-facing or an inward-facing state (with respect to the anion transport site). Regardless of these conditions, urea transport always occurred at the same rate: 41 +/- 2 mol.(kg cell solids.min)-1 with 1.5 M urea at 0 degrees C. These data suggest that the pathway on the band-3 protein which mediates anion transport is kinetically uncoupled from urea transport and is probably not involved in the transport of urea across the red cell membrane.  相似文献   

16.
A quantitative fluorescence assay has been developed to measure Cl flux across liposomal membranes for use in chloride transporter reconstitution studies. A Cl-sensitive fluorophore [6-methoxy-N-(3-sulfopropyl)quinolinium; SPQ] was entrapped into phospholipid/cholesterol liposomes formed by bath sonication, high-pressure extrusion, and detergent dialysis. Liposomes containing entrapped SPQ were separated from external SPQ by passage down a Sephadex G25 column. There was less than 10% leakage of SPQ from liposomes in 8 h at 4 degrees C and in 2 h at 23 degrees C. Cl influx (JCl in millimolar per second or nanomoles per second per centimeter squared) was determined from the time course of SPQ fluorescence, measured by cuvette or stopped-flow fluorometry, in response to inward Cl gradients. In 90% phosphatidylcholine (10% cholesterol liposomes at 23 degrees C, JCl in response to a 50 mM inward Cl gradient was 0.06 +/- 0.01 mM.s-1 (SD, n = 3) in the absence and 0.27 +/- 0.02 mM.s-1 in the presence of a K/valinomycin voltage clamp (0 mV), showing that the basal Cl "leak" is conductive; JCl increased (1.7 +/- 0.1)-fold in the presence of a 60-mV inside-positive diffusion potential. Accuracy of chloride influx rates determined by the SPQ method was confirmed by measurement of 36Cl uptake. In liposomes voltage-clamped to 0 mV, JCl was linear with external [Cl] (0-100 mM), independent of pH gradients, and strongly dependent on temperature (activation energy 18 +/- 1 kcal/mol, 12-42 degrees C) as predicted for channel-independent Cl diffusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The use of resealed red blood cell membranes (ghosts) allows the study of the transport of a compound in a nonmetabolizing system with a biological membrane. Transmembrane movements of anandamide (N-arachidonoylethanolamine, arachidonoylethanolamide) have been studied by exchange efflux experiments at 0 degrees C and pH 7.3 with albumin-free and albumin-filled human red blood cell ghosts. The efflux kinetics is biexponential and is analyzed in terms of compartment models. The distribution of anandamide on the membrane inner to outer leaflet pools is determined to be 0.275 +/- 0.023, and the rate constant of unidirectional flux from inside to outside is 0.361 +/- 0.023 s(-1). The rate constant of unidirectional flux from the membrane to BSA in the medium ([BSA]o) increases with the square root of [BSA]o in accordance with the theory of an unstirred layer around ghosts. Anandamide passed through the red blood cell membrane very rapidly, within seconds. At a molar ratio of anandamide to BSA of <1, membrane binding of anandamide increases with increasing temperatures between 0 degrees C and 37 degrees C, and the equilibrium dissociation constants are in the nanomolar range. The nature of membrane binding and the mechanism of membrane translocation are discussed.  相似文献   

18.
The synthesis of 2-N-[4-(1'-azitrifluoroethyl)benzoyl]-1,3-bis-(D-mannos-4-++ +yloxy)-2- propylamine (ATB-BMPA) is described. This compound was used as an exofacial probe for the human erythrocyte glucose-transport system. A new method is described for directly estimating the affinity for exofacial ligands which bind to the erythrocyte glucose transporter. By using this equilibrium-binding method, the Ki for ATB-BMPA was found to be 338 +/- 37 microM at 0 degrees C and 368 +/- 59 microM at 20 degrees C. This was similar to the concentration of ATB-BMPA required to half-maximally inhibit D-galactose uptake (Ki = 297 +/- 53 microM). The new photoaffinity reagent labelled the glucose transporter in intact cells but, because of its improved selectivity, was also used to label the glucose transporter in isolated erythrocyte membranes. The ATB-BMPA-labelled glucose transporter was 80% immunoprecipitated by anti-(GLUT1-C-terminal peptide) antibody, which shows that the GLUT1 glucose transporter is the major isoform present in erythrocytes. The labelling of the glucose transporter at its exofacial site, and the adoption of an outward-facing conformation, renders the transport system resistant to thermolysin and trypsin treatment. Trypsin treatment of the unlabelled glucose transporter in erythrocyte membranes produced an 18 kDa fragment which was subsequently labelled by ATB-BMPA, but had low affinity for this exofacial ligand. This suggests that the trypsin-treated transporter adopts an inward-facing conformation. The ability of D-glucose to displace ATB-BMPA from the native transporter and from the 18 kDa trypsin fragment have been compared. The D-glucose concentration which was required to obtain half-maximal inhibition of ATB-BMPA labelling was 6-fold lower for the 18 kDa tryptic fragment.  相似文献   

19.
At 0 degrees C, pH 7.3, palmitate (PA) binds to human erythrocyte ghosts suspended in 0.2% bovine serum albumin (BSA) solution with molar ratios of PA to BSA, v, between 0.2 and 1.3. The binding depends on the water phase PA concentration, measured in equilibrium experiments, using BSA-filled ghosts as semipermeable bags. The saturable binding has a capacity of 19.4 +/- 7.5 nmol g-1 packed ghosts (7.2 x 10(9) cells) and Kd = 13.5 +/- 5 nM. PA exchange efflux kinetics to 0.2% BSA is recorded from ghosts without and with 0.2% BSA with a resolution time of about 1 s. Data are analyzed in terms of compartmental models. Using BSA-free ghosts the kinetics is essentially monoexponential. The rate constant is 0.0287 +/- 0.0022 s-1. Using ghosts with BSA, the kinetics is biexponential with widely different rate constants. Extrapolated zero-time values reflect, according to additional investigations, 'instantaneous' release of PA from the outer surface of the ghosts. Analyses of the biexponential curve up to about 55% tracer efflux assign unequivocally values to three model parameters. (1) k1, the dissociation rate constant of the PA-BSA complex is (1.47 +/- 0.03) x 10(-3) s-1 and (2.56 +/- 0.08) x 10(-3) s-1 and (4.08 +/- 0.13) x 10(-3) s-1 at v = 0.2, 0.6 and 1.4, respectively. (2) k3*, the overall rate constant of PA transport from the inside of the ghost membrane to the medium is 0.0269 +/- 0.0020 s-1 independent of v. (3) Qkin, the ratio of PA on the inside of the membrane to PA on BSA within the ghosts is v dependent and smaller than a corresponding ratio Qeq measured in equilibrium by a value corresponding to PA on the outer surface. This fraction is released with a rate constant, k5, which is of the order of 1 s-1. The data suggest a maximum PA transport capacity, Jmax, of 2 pmol min-1 cm-2, 0 degrees C, pH 7.3.  相似文献   

20.
D-[14C]Glucose self exchange and unidirectional efflux from human red blood cells were studied at 20 degrees C (pH 7.2) by means of the Millipore-Swinnex filtering technique whose time resolution is greater than 1 s and the continuous flow-tube method with a time resolution of greater than 2 ms. The unidirectional efflux data were analyzed using both the method of initial rates and the integrated rate equation. Simple Michaelis-Menten kinetics apply to the results obtained under both experimental conditions. In self-exchange mode, the half-saturation constant, K1/2ex, was 10 (S.E. +/- 1) mM. In unidirectional efflux mode K1/2ue was 6.6 (S.E. +/- 0.5) mM (initial rates) or by the method of integrated rates 7.7 mM, with a range of 2.7-12.1 mM, K1/2ue increasing with an increased initial intracellular glucose concentration. Our results of K1/2ex oppose previous published values of 32 mM for self exchange (Eilam and Stein (1972) Biochim. Biophys. Acta 266, 161-173) and 25 mM for unidirectional efflux (Karlish et al. (1972) Biochim. Biophys. Acta 255, 126-132) that have been used extensively in kinetic considerations of glucose transport models. Under self-exchange conditions Jmaxex was 1.8 x 10(-10) mol cm-2s-1, and in unidirectional efflux mode Jmaxue was 8.3 x 10(-11) mol cm-2s-1 (initial rates) and 8.6 x 10(-11) mol cm-2s-1 (integrated rates). We suggest that the previous high values of Jmax and in particular K1/2 are due to the use of methods with insufficient time resolution. Our results indicate that the transport system is less asymmetric than was generally accepted, and that complicated transport models developed to account for the great difference between the determined K1/2 and J max values are redundant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号