首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to use direct electron paramagnetic resonance (EPR) spectroscopy at 37 degrees C and spin trapping techniques to study radical species formed during horseradish peroxidase/H(2)O(2)-initiated low-density lipoprotein (LDL) oxidation. Using direct EPR, we obtained evidence for the formation not only of the alpha-tocopheroxyl radical but also of a protein radical(s), assigned to a tyrosyl radical(s) of apolipoprotein B-100 (apo B-100). Spin trapping with 2-methyl-2-nitrosopropane revealed (i) the formation of a mobile adduct with beta-hydrogen coupling assigned to a lipid radical and (ii) a partially immobilised adduct detected in LDL as well as in apo B-100, assigned after proteolytic digestion to the trapping of a radical centred on a tertiary carbon atom of an aromatic residue, probably tyrosine. Our results support the hypothesis that radicals are initiators of the oxidative process, and show that their formation is an early event in peroxidase-mediated oxidation. We also tested the effects of resveratrol (RSV), a polyphenolic antioxidant present in red wine. Our data indicate that 1-10 microM RSV is able to accelerate alpha-tocopherol consumption, conjugated dienes formation and the decay kinetics of LDL-centred radicals. Since phenols are substrates for peroxidases, this result may be ascribed to a RSV-mediated catalysis of peroxidase activity.  相似文献   

2.
Low-density lipoprotein (LDL) oxidation is the primary event in atherosclerosis, and LDL lipoperoxidation leads to modifications in apolipoprotein B-100 (apo B-100) and lipids. Intermediate species of lipoperoxidation are known to be able to generate amino acid-centered radicals. Thus, we hypothesized that lipoperoxidation intermediates induce protein-derived free radical formation during LDL oxidation. Using DMPO and immuno-spin trapping, we detected the formation of protein free radicals on LDL incubated with Cu2+ or the soybean lipoxidase (LPOx)/phospholipase A2 (PLA2). With low concentrations of DMPO (1 mM), Cu2+ dose-dependently induced oxidation of LDL and easily detected apo B-100 radicals. Protein radical formation in LDL incubated with Cu2+ showed maximum yields after 30 min. In contrast, the yields of apo B-100 radicals formed by LPOx/PLA2 followed a typical enzyme-catalyzed kinetics that was unaffected by DMPO concentrations of up to 50 mM. Furthermore, when we analyzed the effect of antioxidants on protein radical formation during LDL oxidation, we found that ascorbate, urate, and Trolox dose-dependently reduced apo B-100 free radical formation in LDL exposed to Cu2+. In contrast, Trolox was the only antioxidant that even partially protected LDL from LPOx/PLA2. We also examined the kinetics of lipid radical formation and protein radical formation induced by Cu2+ or LPOx/PLA2 for LDL supplemented with α-tocopherol. In contrast to the potent antioxidant effect of α-tocopherol on the delay of LDL oxidation induced by Cu2+, when we used the oxidizing system LPOx/PLA2, no significant protection was detected. The lack of protection of α-tocopherol on the apo B-100 and lipid free radical formation by LPOx may explain the failure of vitamin E as a cardiovascular protective agent for humans.  相似文献   

3.
Almond skin polyphenolics (ASP) and vitamin C (VC) or E (VE) inhibit the Cu2+-induced generation of conjugated dienes in human low-density lipoprotein (LDL) in a synergistic manner. However, the mechanism(s) by which this synergy occurs is unknown. As modification of apolipoprotein (apo) B-100 is an early, critical step in LDL oxidation, we examined the effects of combining ASP or quercetin and antioxidant vitamins on the oxidation of this moiety as well as on the alteration of LDL conformation and electronegativity (LDL−). In a dose-dependent manner, ASP (0.12–2.0 μmol/L gallic acid equivalents) decreased tryptophan (Trp) oxidation by 6.7–75.7%, increased the generalized polarity (Gp) of LDL by 21.0–81.5% at 90 min and reduced the ratio of LDL− to total LDL (tLDL) by 38.2–83.8% at 5 h. The actions of ASP on these parameters were generally additive to those of VC and VE. However, a 10–25% synergy of ASP plus VC in protecting apo B-100 Trp against oxidation may result from their synergistic interaction in prolonging the lag time to oxidation. ASP and VE acted in synergy to reduce LDL−/tLDL by 24–43%. Quercetin's actions were similar to ASP, though more effective at inhibiting Trp oxidation. Thus, ASP and quercetin reduce the oxidative modification of apo B-100 and stabilize LDL conformation in a dose-dependent manner, acting in an additive or synergistic fashion with VC and VE.  相似文献   

4.
The association of low density lipoprotein (LDL) with proteoglycans of the intima, in particular chondroitin 6-sulphate proteoglycans, may contribute to LDL accumulation during atherogenesis. We studied the interactions of apolipoprotein B-100 (apo B-100) peptide segments and model peptides with chondroitin 6-sulphate. The ability of these peptides to inhibit complex formation between LDL and chondroitin 6-sulphate was used as a measurement of the interaction. Results from earlier studies suggest that surface located segments of apo B-100 are responsible for the interaction of LDL with heparin and chondroitin sulphate-rich arterial proteoglycans. Therefore 16 hydrophilic apo B-100 peptides were selected for studies and synthesized with a peptide synthesizer. These synthetic peptides were 7 to 26 amino acids long. Four of the peptides inhibited the association of LDL with chondroitin 6-sulphate, namely apo B segments 4230–4254, 3359–3377, 3145–3157 and 2106–2121. The 3359–3377 segment was the most efficient. A common feature betweeb the interacting peptides was an excess of positively charged side chains and based on these results we synthesized nine model peptides that shared sequence characateristics with the interacting apo B-100 peptides. Five of these: RSGRKRSGK, RSSRKRSGK, RGGRKRGGK, RSRSRSRSR AND RGRGRGRGR were shown to block the LDL-chrondroitin-6-sulphate association, RSRSRSRSR being the most effective. The results suggest that the optimal association of the peptides with chrondroitin 6-sulphate is obtained with a minimal chain length of nine amino acids and a minimum of five positive charges and that flexibility in the binding region is important.  相似文献   

5.
Incubation of MC-1010 cells with the spin-trapping agent 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) followed by brief treatment with the solid oxidant lead dioxide (PbO2) yielded, after filtration, a cell-free solution that contained two nitroxyl adducts. The first was the hydroxyl radical adduct, 5,5-dimethyl-2-hydroxypyrrolidine-1-oxyl (DMPO-OH), which formed immediately upon PbO2 oxidation. The second had a 6-line EPR spectrum typical of a carbon-centered radical (AN=15.9 G; AH=22.4 G) and formed more slowly. No radical signals were detected in the absence of either cells or PbO2 treatment. The 6-line spectrum could be duplicated in model systems that contained ascorbate, DMPO and DMPO-OH, where the latter was formed from hydroxyl radicals generated by sonolysis or the cleavage of hydrogen peroxide with Fe2+ (Fenton reaction). In addition, enrichment of MC-1010 cells with ascorbate prior to spin trapping yielded the 6-line EPR spectrum as the principal adduct following PbO2 oxidation and filtration. These results suggest that ascorbate reacted with DMPO-OH to form a carbon-centered ascorbyl radical that was subsequently trapped by DMPO. The requirement for mild oxidation to detect the hydroxyl radical adduct suggests that DMPO-OH formed in the cells was reduced to an EPR-silent form (i.e., the hydroxylamine derivative). Alternatively, the hydroxylamine derivative was the species initially formed. The evidence for endogenous hydroxyl radical formation in unstimulated leukocytes may be relevant to the leukemic nature of the MC-1010 cell line. The spin trapping of the ascorbyl radical is the first report of formation of the carbon-centered ascorbyl radical by means other than pulse radiolysis. Unless it is spin trapped, the carbon-centered ascorbyl radical immediately rearranges to the more stable oxygen-centered species that is passive to spin trapping and characterized by the well-known EPR doublet of AH4=1.8 G.Abbreviation EPR Electron Paramagnetic Resonance  相似文献   

6.
Copper binding to apolipoprotein B-100 (apo B-100) and its reduction by endogenous components of low-density lipoprotein (LDL) represent critical steps in copper-mediated LDL oxidation, where cuprous ion (Cu(I)) generated from cupric ion (Cu(II)) reduction is the real trigger for lipid peroxidation. Although the copper-reducing capacity of the lipid components of LDL has been studied extensively, we developed a model to specifically analyze the potential copper reducing activity of its protein moiety (apo B-100). Apo B-100 was isolated after solubilization and extraction from size exclusion-HPLC purified LDL. We obtained, for the first time, direct evidence for apo B-100-mediated copper reduction in a process that involves protein-derived radical formation. Kinetics of copper reduction by isolated apo B-100 was different from that of LDL, mainly because apo B-100 showed a single phase-exponential kinetic, instead of the already described biphasic kinetics for LDL (namely alpha-tocopherol-dependent and independent phases). While at early time points, the LDL copper reducing activity was higher due to the presence of alpha-tocopherol, at longer time points kinetics of copper reduction was similar in both LDL and apo B-100 samples. Electron paramagnetic resonance studies of either LDL or apo B-100 incubated with Cu(II), in the presence of the spin trap 2-methyl-2-nitroso propane (MNP), indicated the formation of protein-tryptophanyl radicals. Our results supports that apo B-100 plays a critical role in copper-dependent LDL oxidation, due to its lipid-independent-copper reductive ability.  相似文献   

7.
Human low-density lipoprotein (LDL) is a major cholesterol carrier in blood. Elevated concentration of low-density lipoprotein, especially when oxidized, is a risk factor for atherosclerosis and other cardiac inflammatory diseases. Past research has connected free radical initiated oxidations of LDL with the formation of atherosclerotic lesions and plaque in the arterial wall. The role of LDL protein in the associated diseases is still poorly understood, partially due to a lack of structural information. In this study, LDL was oxidized by hydroxyl radical. The oxidized protein was then delipidated and subjected to trypsin digestion. Peptides derived from trypsin digestion were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Identification of modified peptide sequences was achieved by a database search against apo B-100 protein sequences using the SEQUEST algorithm. At different hydroxyl radical concentrations, oxidation products of tyrosine, tryptophan, phenylalanine, proline, and lysine were identified. Oxidized amino acid residues are likely located on the exterior of the LDL particle in contact with the aqueous environment or directly bound to the free radical permeable lipid layer. These modifications provided insight for understanding the native conformation of apo B-100 in LDL particles. The presence of some natural variants at the protein level was also confirmed in our study.  相似文献   

8.
Peptides corresponding to lipid binding domains of Apo B-100 were synthesized, purified, and incubated with dimyristoylphosphatidylcholine (DMPC) liposomes. The secondary structure of the apo B-100 peptide-lipid complexes was evaluated by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Those peptides belonging to the hydrophobic core domain of apo B-100 when associated with phospholipids were rich in sheet structure; a predominant helical conformation was shown to be associated with one peptide located in a surface region of apo B-100. IR dichroic spectra revealed, in the case of the core peptides, that the sheet component is the only oriented structure with respect to the phospholipid acyl chains. This orientation of the sheet was recently found in LDL particles after proteolytic digestion by trypsin (Goormaghtigh, E., Cabiaux, V., De Meutter, J., Rosseneu, M., and Ruysschaert, J. M., 1993,Biochemistry 32, 6104–6110). Altogether, the data suggest that sheet, present in a high proportion in the native apo B-100, is probably another protein structure in addition to the amphipathic helix which strongly interacts with the lipid outer layer surrounding the LDL particle.Abbreviations used Apo apolipoprotein - ATR attenuated total reflection - CD circular dichroism - DMPC dimyris-toylphosphatidylcholine - DMSO dimethylsulfoxide - FTIR Fourier transform infrared spectroscopy - HPLC high-performance liquid chromatography - LDL low density lipoprotein - TFA trifluoroacetic acid - Cx apoB-100 core peptide corresponding to the following residues: C2, 2462–2482; C3, 4208–4231; C5, 4493–4513; and C7, 4271–4288 - S6 apoB-100 surface Peptide Corresponding to Residues 374–400  相似文献   

9.
《Free radical research》2013,47(4):255-265
α-phenyl-tert-butyl-nitrone (PBN) a spin adduct forming agent is believed to have a protective action in ischemia-reperfusion injury of brain by forming adducts of oxygen free radicals including ±OH radical. Electron paramagnetic resonance (EPR) has been used to both detect and monitor the time course of oxygen free radical formation in the in vivo rat cerebral cortex. Cortical cups were placed over both cerebral hemispheres of methoxyflurane anesthetized rats prepared for four vessel occlusion-evoked cerebral ischemia. Prior to the onset of sample collection, both cups were perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent α-(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN 100 mM) for 20 min. In addition 50 mg/kg BW of POBN was administered intraperitoneally (IP) 20 min prior to ischemia in order to improve our ability to detect free radical adducts. Cup fluid was subsequently replaced every 15 min during ischemia and every 10 min during reperfusion with fresh POBN containing CSF and the collected cortical superfusates were analyzed for radical adducts by EPR spectroscopy. After a basal 10 min collection, cerebral ischemia was induced for 15 or 30 min (confirmed by EEG flattening) followed by a 90 min reperfusion. -OH radical adducts (characterized by six line EPR spectra) were detected during ischemia and 90 min reperfusion. No adduct was detected in the basal sample or after 90 min of reperfusion. Similar results were obtained when diethylenetriaminepenta-acetic acid (100 μM; DETAPAC) a chelating agent was included in the artificial CSF. Systemic administration of PBN (100 mg/kg BW) produced a significant attenuation of radical adduct during reperfusion. A combination of systemic and topical PBN (100 mM) was required to suppress -OH radical adduct formation during ischemia as well as reperfusion. PBN free radical adducts were detected in EPR spectra of the lipid extracts of PBN treated rat brains subjected to ischemia/reperfusion. Thus this study suggests that PBN's protective action in cerebral ischemia/reperfusion injury is related to its ability to prevent a cascade of free radical generation by forming spin adducts.  相似文献   

10.
Cyclooxygenase catalysis by prostaglandin H synthase (PGHS)-1 and -2 involves reaction of a peroxide-induced Tyr385 radical with arachidonic acid (AA) to form an AA radical that reacts with O2. The potential for isomeric AA radicals and formation of an alternate tyrosyl radical at Tyr504 complicate analysis of radical intermediates. We compared the EPR spectra of PGHS-1 and -2 reacted with peroxide and AA or specifically deuterated AA in anaerobic, single-turnover experiments. With peroxide-treated PGHS-2, the carbon-centered radical observed after AA addition was consistently a pentadienyl radical; a variable wide-singlet (WS) contribution from mixture of Tyr385 and Tyr504 radicals was also present. Analogous reactions with PGHS-1 produced EPR signals consistent with varying proportions of pentadienyl and tyrosyl radicals, and two additional EPR signals. One, insensitive to oxygen exposure, is the narrow singlet tyrosyl radical with clear hyperfine features found previously in inhibitor-pretreated PGHS-1. The second type of EPR signal is a narrow singlet lacking detailed hyperfine features that disappeared upon oxygen exposure. This signal was previously ascribed to an allyl radical, but high field EPR analysis indicated that ~ 90% of the signal originates from a novel tyrosyl radical, with a small contribution from a carbon-centered species. The radical kinetics could be resolved by global analysis of EPR spectra of samples trapped at various times during anaerobic reaction of PGHS-1 with a mixture of peroxide and AA. The improved understanding of the dynamics of AA and tyrosyl radicals in PGHS-1 and -2 will be useful for elucidating details of the cyclooxygenase mechanism, particularly the H-transfer between tyrosyl radical and AA.  相似文献   

11.
Efforts to elucidate the role of lipoprotein [a] (Lp[a]) in atherogenesis have been hampered by the lack of an animal model with high plasma Lp[a] levels. We produced two lines of transgenic mice expressing apolipoprotein [a] (apo[a]) in the liver and crossed them with mice expressing human apolipoprotein B-100 (apoB-100), generating two lines of Lp[a] mice. One had Lp[a] levels of approximately 700 mg/dl, well above the 30 mg/dl threshold associated with increased risk of atherosclerosis in humans; the other had levels of approximately 35 mg/dl. Most of the LDL in mice with high-level apo[a] expression was covalently bound to apo[a], but most of the LDL in the low-expressing line was free. Using an enzyme-linked sandwich assay with monoclonal antibody EO6, we found high levels of oxidized phospholipids in Lp[a] from high-expressing mice but not in LDL from low-expressing mice or in LDL from human apoB-100 transgenic mice (P <0.00001), even though all mice had similar plasma levels of human apoB-100. The increase in oxidized lipids specific to Lp[a] in high-level apo[a]-expressing mice suggests a mechanism by which increased circulating levels of Lp[a] could contribute to atherogenesis.  相似文献   

12.
Prostaglandin H synthase isoforms 1 and -2 (PGHS-1 and -2) react with peroxide to form a radical on Tyr385 that initiates the cyclooxygenase catalysis. The tyrosyl radical EPR signals of PGHS-1 and -2 change over time and are altered by cyclooxygenase inhibitor binding. We characterized the tyrosyl radical dynamics using wild type human PGHS-1 (hPGHS-1) and its Y504F, Y385F, and Y385F/Y504F mutants to determine whether the radical EPR signal changes involve Tyr504 radical formation, Tyr385 radical phenyl ring rotation, or both. Reaction of hPGHS-1 with peroxide produced a wide singlet, whereas its Y504F mutant produced only a wide doublet signal, assigned to the Tyr385 radical. The cyclooxygenase specific activity and KM value for arachidonate of hPGHS-1 were not affected by the Y504F mutation, but the peroxidase specific activity and the KM value for peroxide were increased. The Y385F and Y385F/Y504F mutants retained only a small fraction of the peroxidase activity; the former had a much-reduced yield of peroxide-induced radical and the latter essentially none. After binding of indomethacin, a cyclooxygenase inhibitor, hPGHS-1 produced a narrow singlet but the Y504F mutant did not form a tyrosyl radical. These results indicate that peroxide-induced radicals form on Tyr385 and Tyr504 of hPGHS-1, with radical primarily on Tyr504 in the wild type protein; indomethacin binding prevented radical formation on Tyr385 but allowed radical formation on Tyr504. Thus, hPGHS-1 and -2 have different distributions of peroxide-derived radical between Tyr385 and Tyr504. Y504F mutants in both hPGHS-1 and -2 significantly decreased the cyclooxygenase activation efficiency, indicating that formation of the Tyr504 radical is functionally important for both isoforms.  相似文献   

13.
《Free radical research》2013,47(6):377-385
Electron spin resonance spectroscopy and the spin trapping technique were used to study the formation of the superoxide radical in pyridine. 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was employed as a trapping agent. Superoxide radical was generated using chemical (potassium superoxide) and photochemical methods with anthralin, benzanthrone, rose bengal, 1,8-dihydroxyanthraquinone and zinc tetraphenylporphyrine as photoactive pigments. Hyperfine coupling (hf) constants for DMPO/O2- were determined to be aN = 12.36 G, aβH= 9.85G, aγH = 1.34 G. The aN and aβH constants are in good agreement with values calculated from a previously determined relationship between hf constants and solvent acceptor number (Reszka et al., (1992) Free Radical Res. Commun., in press). When concentrated hydrogen peroxide was added to DMPO in pyridine a similar EPR spectrum was observed. It is suggested that in this case the DMPO/'O2H adduct is formed by nucleophilic addition of H2O2 to DMPO to give a hydroxylamine, followed by oxidation to the respective nitroxide. The EPR spectrum observed when tetrapropylammonium hydroxide and H2O2 were added to DMPO in pyridine had hf couplings aN = 13.53 G, aβH = 11.38 G, aγH = 0.79 G and it was assigned to a DMPO/'OH adduct. This assignment was based on similarity of this spectrum to the one produced by UV photolysis of hydrogen peroxide and DMPO in aqueous solution and subsequent transfer to pyridine.  相似文献   

14.
The present investigation aimed at defining the localization of apolipoproteins (apo) A-I, A-IV, B-48, and B-100 along the crypt-villus axis of the human fetal colon, their biogenesis during gestation, and their hormonal regulation. Using immunofluoresence, the distribution of apo A-I and A-IV appeared as a gradient, increasing from the developing crypt to the tip of the villus. On the other hand, apo B-100 staining was found in the crypt and the lower mid-villus region with varying intensities in the upper villus cells, while the 2D8 antibody which recognizes both apo B-100 and B-48, revealed uniform staining along the crypt-villus axis. Apolipoprotein synthesis, determined by [35S] methionine labeling, immunoprecipitation, and SDS-PAGE showed a predominance of apo A-IV (53%), followed by apo A-I (23.9%), apo B-48 (13.4%), and apo B-100 (9.7%). The synthesis of each apolipoprotein was significantly modulated by hydrocortisone, insulin and epidermal growth factor (EGF). Apart from a decrease in apo B-100 exerted by EGF and a reduction in apo A-I resulting from the addition of insulin, the other apolipoproteins were all enhanced. Our data confirm that the fetal colon has the capacity to synthesize apolipoprotein A-I, A-IV, B-48, and B-100 and establish that their synthesis are modulated by hormonal and growth factors known to be involved in the regulatory mechanism of the functional development of human jejunum. J. Cell. Biochem. 70:354–365, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Summary Although Caco-2 cells are frequently employed for the study of enterocyte lipid metabolism, variable results have been reported regarding their ability to synthesize and secrete lipids and apolipoproteins. The major goal of this investigation is to examine the capacity of Caco-2 cells to elaborate and secrete lipids, lipoproteins, and apolipoproteins at different degrees of morphological and functional differentiation. Cells were cultured in medium with 5% fetal bovine serum (FBS), on permeable polycarbonate filters from 2 to 30 d in the presence of 14C-oleate or 35S-methionine. Cellular differentiation, as assessed by morphology (light and electron microscopy), transepithelial resistance, free fatty acid flux, and sucrase activity, progressed steadily up to 20 d of culture. Caco-2 cells esterified oleic acid mainly into phospholipids, triglycerides (TG), and smaller amounts of cholesterol esters. Lipid synthesis began as early as 2 d, and TG secretion was enhanced with increased duration of culture. However, very low efficiency of lipid export was observed at all levels of differentiation, reaching a maximum of only 6% of intracellular lipids. VLDL and LDL were the dominant lipoproteins secreted, with HDL comprising <20% of the total. VLDL secretion increased, while LDL decreased, whereas the lipid composition of lipoproteins varied little with increasing duration of culture. Apoprotein B and A-I synthesis and secretion increased markedly from 11 to 20 d of culture. The ratio of apo B-100/B-48 decreased between 11 and 30 d, consistent with enhanced apo B editing of more mature enterocytes. Taken together, our data suggest that from 20 d of culture, Caco-2 cells are morphologically and functionally mature, capable of lipid esterification, and lipoprotein and apolipoprotein synthesis. However, despite their functional and morphological similarities to mature enterocytes, Caco-2 cells have a very limited lipid export capacity.  相似文献   

16.
Acetoacetate (AA) and 2-methylacetoacetate (MAA) are accumulated in metabolic disorders such as diabetes and isoleucinemia. Here we examine the mechanism of AA and MAA aerobic oxidation initiated by myoglobin (Mb)/H2O2. We propose a chemiluminescent route involving a dioxetanone intermediate whose thermolysis yields triplet α-dicarbonyl species (methylglyoxal and diacetyl). The observed ultraweak chemiluminescence increased linearly on raising the concentration of either Mb (10-500 μM) or AA (10-100 mM). Oxygen uptake studies revealed that MAA is almost a 100-fold more reactive than AA. EPR spin-trapping studies with MNP/MAA revealed the intermediacy of an α-carbon-centered radical and acetyl radical. The latter radical, probably derived from triplet diacetyl, is totally suppressed by sorbate, a well-known quencher of triplet carbonyls. Furthermore, an EPR signal assignable to MNP-AA adduct was observed and confirmed by isotope effects. Oxygen consumption and α-dicarbonyl yield were shown to be dependent on AA or MAA concentrations (1-50 mM) and on H2O2 or tert-butOOH added to the Mb-containing reaction mixtures. That ferrylMb is involved in a peroxidase cycle acting on the substrates is suggested by the reaction pH profiles and immunospin-trapping experiments. The generation of radicals and triplet dicarbonyl products by Mb/H2O2/β-ketoacids may contribute to the adverse health effects of ketogenic unbalance.  相似文献   

17.
《Free radical research》2013,47(4):478-486
Abstract

New techniques and probes are routinely emerging for detecting short-lived free radicals such as superoxide radical anion (O2?–), nitric oxide (?NO), and transient oxidants derived from peroxynitrite (ONOO/ONOOH). Recently, we reported the profiles of oxidation products (2-hydroxyethidium, ethidium, and various dimeric products) of the fluorogenic probe hydroethidine (HE) in the ?NO/O2?– system (Zielonka et al. 2012). In this study, we used HPLC analyses of HE oxidation products in combination with continuous wave electron paramagnetic resonance (CW-EPR) spin trapping with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide (BMPO) to define the identity of the oxidizing species formed in the ?NO/O2?– system. EPR spin-trapping technique is still considered as the gold standard for characterization of free radicals and their intermediates. We monitored formation of BMPO-superoxide (BMPO-?OOH) and BMPO-hydroxyl (BMPO-?OH) radical adducts. Simultaneous analyses of results from EPR spin-trapping and HPLC measurements are helpful in the interpretation of the mechanism of formation of products of HE oxidation.  相似文献   

18.
Apolipoprotein B-100 (apo B-100) contains putative lipid-associating regions that are, in part, responsible for its overall structure in human plasma low-density lipoproteins. Some of these regions have been identified by reassembly of the total tryptic peptides of apo B-100 with bovine brain sphingomyelin, 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) and dimyristoylphos-phatidylcholine (DPMC). Although more than 500 tryptic peptides are predicted from the known number of arginines and lysines in apo B-100, significant amounts of only 13 peptides spontaneously associate with all three phospholipids. These peptides share some structural characteristics, as predicted by several algorithms, that distinguish them from the water-soluble apolipoproteins. Most apolipoproteins associate with lipids via amphipathic helices and are highly helical in native and reassembled lipoproteins. Analysis of all apo B-100 lipophilic peptides by circular dichroism and by use of a predictive algorithm reveals no evidence of amphipathic helices. Although the predictive algorithm suggested that the lipophilic peptides of apo B-100 contain the sequence determinants for -sheet, no spectroscopic evidence for this structure was found. We conclude that the lipophilic regions of apo B-100 liberated by trypsinolysis are highly hydrophobic, although their secondary structures do not fit any simple model.  相似文献   

19.
The effects of defined oxygen-centred free radicals on human low-density lipoprotein (LDL) structure and receptor affinity are discussed in relation to the mechanisms of cell-mediated oxidative modification of LDL. Both hydroxyl (OH.) and hydroperoxyl (HO2.) radicals caused depletion of endogenous alpha-tocopherol and formation of hydroperoxides. Superoxide (O2-.) radicals produced only very limited oxidation, but could potentiate oxidation stimulated by the addition of Cu2+. All these radicals enhanced the net negative charge of intact LDL and induced fragmentation of apolipoprotein B-100 (apo B). OH. also caused cross-linking of apo B. Radical attack decreased the affinity of LDL for the fibroblast apo B/E receptor, but did not enhance its endocytosis by mouse macrophages.  相似文献   

20.
In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe3+cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H2O2) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe3+cyt c in the presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe3+cyt c, and H2O2 in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe3+cyt c increased with NADH and H2O2 concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe3+cyt c oxidizes NADH to NAD, which in turn donates an electron to O2, resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe3+cyt c is reduced in the presence of both NADH and H2O2. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe3+cyt c may play a key role in the mitochondrial “ROS-induced ROS-release” signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical by this mechanism may have implications for the regulation of apoptotic cell death, endothelial dysfunction, and neurological diseases. We also propose an alternative electron transfer pathway, which may protect mitochondria and mitochondrial proteins from oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号