首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The structure-based design and discovery of the isothiazolidinone (IZD) heterocycle as a mimic of phosphotyrosine (pTyr) has led to the identification of novel IZD-containing inhibitors of protein tyrosine phosphatase 1B (PTP1B). The structure-activity relationships (SARs) of peptidic IZD-containing inhibitors of PTP1B are described along with a novel synthesis of the aryl-IZD fragments via a Suzuki coupling. The SAR revealed the saturated IZD heterocycle (42) is the most potent heterocyclic pTyr mimetic compared to the unsaturated IZD (25), the thiadiazolidinone (TDZ) (38), and the regioisomeric unsaturated IZD (31). The X-ray crystal structures of 11c and 25 complexed with PTP1B were solved and revealed nearly identical binding interactions in the active site. Ab initio calculations effectively explain the strong binding of the (S)-IZD due to the preorganized binding of the IZD in its low energy conformation.  相似文献   

2.
A series of ten N-(3-(1H-tetrazole-5-yl)phenyl)acetamide derivatives (NM-07 to NM-16) designed from a lead molecule identified previously in our laboratory were synthesized and evaluated for protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. Among the synthesized molecules, NM-14, a 5-Cl substituted benzothiazole analogue elicited significant PTP1B inhibition with an IC50 of 1.88 µM against reference standard suramin (IC50 ≥ 10 µM). Furthermore, this molecule also showed good in vivo antidiabetic activity which was comparable to that of standard antidiabetic drugs metformin and glimepiride. Overall, the results of the study clearly reveal that the reported tetrazole derivatives especially NM-14 are valuable prototypes for the development of novel non-carboxylic inhibitors of PTP1B with antidiabetic potential.  相似文献   

3.
Some fused heterocyclic compounds as eukaryotic topoisomerase II inhibitors   总被引:2,自引:0,他引:2  
Our previously synthesized 37 compounds, which are 2,5,6-substituted benzoxazole, benzimidazole, benzothiazole, and oxazolo(4,5-b)pyridine derivatives, were tested for their eukaryotic DNA topoisomerase II inhibitory activity in cell free system and 28 were found to inhibit the topoisomerase II at an initial concentration of 100 microg/ml. After further testing at a lower range of concentrations, 12 derivatives, which were considered as positive topoisomerase inhibitors, exhibited IC50 values between 11.4 and 46.8 microM. Etoposide was used as the standard reference drug to compare the inhibitor activity. Among these compounds, 2-phenoxymethylbenzothiazole (3f), 6-nitro-2-(2-methoxyphenyl)benzoxazole (1a), 5-methylcarboxylate-2-phenylthiomethylbenzimidazole (3c), and 6-methyl-2-(2-nitrophenyl)benzoxazole (1c) were found to be more active than the reference drug etoposide. Present results point out that, besides the very well-known bi- and ter-benzimidazoles, compounds with single bicycle fused ring systems in their structure such as benzimidazole, benzoxazole, benzothiazole, and/or oxazolopyridine derivatives also exhibit significant topoisomerase II inhibitory activity.  相似文献   

4.
A series of formylchromone derivatives were synthesized as PTP1B inhibitors and some of them were potent against PTP1B with IC50 values as low as 1.0 microM. They exhibited remarkable selectivity for PTP1B over other human PTPases. Kinetic studies revealed that formylchromone derivatives are irreversible and active site-directed inhibitors. Molecular modeling study identified the orientation of the inhibitor bound at the active site of PTP1B.  相似文献   

5.
Structural analyses of the protein-tyrosine phosphatase 1B (PTP1B) active site and inhibitor complexes have aided in optimization of a peptide inhibitor containing the novel (S)-isothiazolidinone (IZD) phosphonate mimetic. Potency and permeability were simultaneously improved by replacing the polar peptidic backbone of the inhibitor with nonpeptidic moieties. The C-terminal primary amide was replaced with a benzimidazole ring, which hydrogen bonds to the carboxylate of Asp(48), and the N terminus of the peptide was replaced with an aryl sulfonamide, which hydrogen bonds to Asp(48) and the backbone NH of Arg(47) via a water molecule. Although both substituents retain the favorable hydrogen bonding network of the peptide scaffold, their aryl rings interact weakly with the protein. The aryl ring of benzimidazole is partially solvent exposed and only participates in van der Waals interactions with Phe(182) of the flap. The aryl ring of aryl sulfonamide adopts an unexpected conformation and only participates in intramolecular pi-stacking interactions with the benzimidazole ring. These results explain the flat SAR for substitutions on both rings and the reason why unsubstituted moieties were selected as candidates. Finally, substituents ortho to the IZD heterocycle on the aryl ring of the IZD-phenyl moiety bind in a small narrow site adjacent to the primary phosphate binding pocket. The crystal structure of an o-chloro derivative reveals that chlorine interacts extensively with residues in the small site. The structural insights that have led to the discovery of potent benzimidazole aryl sulfonamide o-substituted derivatives are discussed in detail.  相似文献   

6.
Regions of protein-tyrosine phosphatase (PTP) 1B that are distant from the active site yet affect inhibitor binding were identified by a novel library screen. This screen was based on the observation that expression of v-Src in yeast leads to lethality, which can be rescued by the coexpression of PTP1B. However, this rescue is lost when yeast are grown in the presence of PTP1B inhibitors. To identify regions of PTP1B (amino acids 1-400, catalytic domain plus 80-amino acid C-terminal tail) that can affect the binding of the difluoromethyl phosphonate (DFMP) inhibitor 7-bromo-6-difluoromethylphosphonate 3-naphthalenenitrile, a library coexpressing PTP1B mutants and v-Src was generated, and the ability of yeast to grow in the presence of the inhibitor was evaluated. PTP1B inhibitor-resistant mutations were found to concentrate on helix alpha7 and its surrounding region, but not in the active site. No resistant amino acid substitutions were found to occur in the C-terminal tail, suggesting that this region has little effect on active-site inhibitor binding. An in-depth characterization of a resistant substitution localizing to region alpha7 (S295F) revealed that this change minimally affected enzyme catalytic activity, but significantly reduced the potency of a panel of structurally diverse DFMP PTP1B inhibitors. This loss of inhibitor potency was found to be due to the difluoro moiety of these inhibitors because only the difluoro inhibitors were shifted. For example, the inhibitor potency of a monofluorinated or non-fluorinated analog of one of these DFMP inhibitors was only minimally affected. Using this type of library screen, which can scan the nearly full-length PTP1B sequence (catalytic domain and C-terminal tail) for effects on inhibitor binding, we have been able to identify novel regions of PTP1B that specifically affect the binding of DFMP inhibitors.  相似文献   

7.
A novel series of pTyr mimetics containing triaryl-sulfonamide derivatives (5a-r) are reported as potent and selective PTP1B inhibitors. Some of the test compounds (5o and 5p) showed excellent selectivity towards PTP1B over various PTPs, including TCPTP (in vitro). The lead compound 5o showed potent antidiabetic activity (in vivo), along with improved pharmacokinetic profile. These preliminary results confirm discovery of highly potent and selective PTP1B inhibitors for the treatment of T2DM.  相似文献   

8.
Protein tyrosine phosphatases are a class of enzymes that function to modulate tyrosine phosphorylation of cellular proteins and play an essential role in regulating cell function. PTP1B has been implicated in the negative regulation of the insulin signaling pathway by dephosphorylating the activated insulin receptor. Inhibiting this phosphatase and preventing the insulin-receptor downregulation has been suggested as a target for the treatment of Type II diabetes. A high-throughput screen for inhibitors of PTP1B was developed using a scintillation proximity assay (SPA) with GST-- or FLAG--PTP1B((1-320)) and a potent [(3)H]-tripeptide inhibitor. The problem of interference from extraneous oxidizing and alkylating agents which react with the cysteine active-site nucleophile was overcome by the use of the catalytically inactive C215S form of the native enzyme (GST--PTP1B(C215S)). The GST--PTP1B was linked to the protein A scintillation bead via GST antibody. The radiolabeled inhibitor when bound to the enzyme gave a radioactive signal that was competed away by the unknown competitive compounds. Further utility of PTP1B(C215S) was demonstrated by mixing in the same well both the catalytically inactive GST--PTP1B(C215S) and the catalytically active FLAG--CD45 with an inhibitor. Both a binding and kinetic assay was then performed in the same 96-well plate with the inhibition results determined for the PTP1B(C215S) (binding assay) and CD45 (activity assay). In this way inhibitors could be differentiated between the two phosphatases under identical assay conditions in one 96-well assay plate. The use of a mutant to reduce interference in a binding assay and compare with activity assays is also amenable for most cysteine active-site proteases.  相似文献   

9.
In the present work, the derivatives of calix[4]arene, thiacalix[4]arene, and sulfonylcalix[4]arene bearing four methylene(phenyl)phosphinic acid groups on the upper rim of the macrocycle were synthesized and studied as inhibitors of human protein tyrosine phosphatases. The inhibitory capacities of the three compounds towards PTP1B were higher than those for protein tyrosine phosphatases TC–PTP, MEG1, MEG2, and SHP2. The most potent sulfonylcalix[4]arene phosphinic acid displayed Ki value of 32?nM. The thiacalix[4]arene phosphinic acid was found to be a low micromolar inhibitor of PTP1B with selectivity over the other PTPs. The kinetic experiments showed that the inhibitors compete with the substrate for the active site of the enzyme. Molecular docking was performed to explain possible binding modes of the calixarene-based phosphinic inhibitors of PTP1B.  相似文献   

10.
Endocellular protein tyrosine phosphatase 1B (PTP1B) is one of the most promising target for designing and developing drugs to cure type-II diabetes and obesity. Molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) and solvated interaction energy methods were applied to study binding differences of three inhibitors (ID: 901, 941, and 968) to PTP1B, the calculated results show that the inhibitor 901 has the strongest binding ability to PTP1B among the current inhibitors. Principal component (PC) analysis was also carried out to investigate the conformational change of PTP1B, and the results indicate that the associations of inhibitors with PTP1B generate a significant effect on the motion of the WPD-loop. Free energy decomposition method was applied to study the contributions of individual residues to inhibitor bindings, it is found that three inhibitors can generate hydrogen bonding interactions and hydrophobic interactions with different residues of PTP1B, which provide important forces for associations of inhibitors with PTP1B. This research is expected to give a meaningfully theoretical guidance to design and develop of effective drugs curing type-II diabetes and obesity.  相似文献   

11.
Protein-tyrosine phosphatases (PTPs) are critically involved in regulation of signal transduction processes. Members of this class of enzymes are considered attractive therapeutic targets in several disease states, e.g. diabetes, cancer, and inflammation. However, most reported PTP inhibitors have been phosphorus-containing compounds, tight binding inhibitors, and/or inhibitors that covalently modify the enzymes. We therefore embarked on identifying a general, reversible, competitive PTP inhibitor that could be used as a common scaffold for lead optimization for specific PTPs. We here report the identification of 2-(oxalylamino)-benzoic acid (OBA) as a classical competitive inhibitor of several PTPs. X-ray crystallography of PTP1B complexed with OBA and related non-phosphate low molecular weight derivatives reveals that the binding mode of these molecules to a large extent mimics that of the natural substrate including hydrogen bonding to the PTP signature motif. In addition, binding of OBA to the active site of PTP1B creates a unique arrangement involving Asp(181), Lys(120), and Tyr(46). PTP inhibitors are essential tools in elucidating the biological function of specific PTPs and they may eventually be developed into selective drug candidates. The unique enzyme kinetic features and the low molecular weight of OBA makes it an ideal starting point for further optimization.  相似文献   

12.
Taing M  Keng YF  Shen K  Wu L  Lawrence DS  Zhang ZY 《Biochemistry》1999,38(12):3793-3803
Several protein tyrosine phosphatases (PTPases) have been implicated as regulatory agents in the insulin-stimulated signal transduction pathway, including PTP1B, PTPalpha, and LAR. Furthermore, since all three enzymes are suggested to serve as negative regulators of insulin signaling, one or more may play a pivotal role in the pathogenesis of insulin resistance. We report herein the acquisition of highly selective PTP1B-targeted inhibitors. We recently demonstrated that PTP1B contains two proximal aromatic phosphate binding sites [Puius, Y. A., Zhao, Y., Sullivan, M., Lawrence, D. S., Almo S. C., and Zhang, Z. Y. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 13420-5], and we have now employed this structural feature to design and synthesize an array of bis(aryldifluorophosphonates). Not only do the lead compounds serve as potent inhibitors of PTP1B but, in addition, several exhibit selectivities for PTP1B versus PTPalpha, LAR, and VHR that are greater than 2 orders in magnitude.  相似文献   

13.
Potent,selective inhibitors of protein tyrosine phosphatase 1B   总被引:4,自引:0,他引:4  
We have previously reported a novel series of oxalyl-aryl-amino benzoic acid-based, catalytic site-directed, competitive, reversible protein tyrosine phosphatase 1B (PTP1B) inhibitors. With readily access to key intermediates, we utilized a solution phase parallel synthesis approach and rapidly identified a highly potent PTP1B inhibitor (19, K(i)=76 nM) with moderate selectivity (5-fold) over T-cell PTPase (TCPTP) through interacting with a second phosphotyrosine binding site (site 2) in the close proximity to the catalytic site.  相似文献   

14.
Protein tyrosine phosphatase 1B (PTP1B) is believed to be one of the enzymes involved in down-regulating the insulin receptor and is a drug target for the treatment of type II diabetes. To better understand the in vitro and in vivo behavior of PTP1B inhibitors, a cell-based assay to directly measure enzyme occupancy of PTP1B by inhibitors using photoaffinity labeling was developed. Two photoaffinity probes were synthesized containing the photolabile diazirine moiety. These photoprobes were specific for PTP1B and T-cell protein tyrosine phosphatase over CD45, with the most potent photoprobe having an IC(50) value of 0.2nM for PTP1B. Activation of the photoprobes with a 40-W UV lamp in the presence of purified AspTyrLysAspAspAspAspLys (Flag)-PTP1B formed a 1:1 irreversible adduct with the enzyme. The photolabeling was competed by known PTP1B inhibitors, vanadate, and the peptide inhibitor N-benzoyl-l-glutamyl-[4-phosphono(difluoromethyl)]-l-phenylalanyl-[4-phosphono(difluoromethyl)]l-phenylalanineamide (BzN-EJJ-amide). In HepG2 (human hepatoma cell line) cells, endogenous PTP1B was labeled by the UV-activated photoprobes in both lysed and intact cells. Enzyme occupancy measurements were conducted with a series of PTP1B inhibitors using the photoprobe affinity assay. Several compounds were shown to bind to endogenous PTP1B in the HepG2 intact cells.  相似文献   

15.
Protein tyrosine phosphatase 1B (PTP1B) has recently been identified as a potential target of Norathyriol. Unfortunately, Norathyriol is not a potent PTP1B inhibitor, which somewhat hinders its further application. Based on the fact that no study on the relationship of chemical structure and PTP1B inhibitory activity of Norathyriol has been reported so far, we attempted to perform structural optimization so as to improve the potency for PTP1B. Via structure-based drug design (SBDD), a rational strategy based on the binding mode of Norathyriol to PTP1B, we designed 26 derivatives with substitutions at the four phenolic hydroxyl groups of Norathyriol. By chemical synthesis and in vitro bioassay, we identified seven PTP1B inhibitors that were more potent than Norathyriol, of which XWJ24 showed the highest potency (IC50: 0.6 μM). We also found out that XWJ24 was a competitive inhibitor and showed the 4.5-fold selectivity over its close homolog, TC-PTP. Through molecular docking of XWJ24 against PTP1B, we highlighted the essential role of its hydrogen bond with Asp181 for PTP1B inhibition and identified a potential halogen bond with Asp48 that was not observed for Norathyriol. The current data indicate that our SBDD strategy is effective to discover potent PTP1B-targeted Norathyriol derivatives, and XWJ24 is a promising lead compound for further development.  相似文献   

16.
Сalix[4]arenes bearing methylenebisphosphonic or hydroxymethylenebisphosphonic acid fragments at the wide rim of the macrocycle were studied as inhibitors of PTP1B. Some of the inhibitors showed IC50 values in the micromolar range and good selectivity in comparison with other protein tyrosine phosphatases such as TC-PTP, PTPβ, LAR, and CD45. Kinetic studies indicated that the calix[4]arene derivatives influence PTP1B activity as slow-binding inhibitors. Based on molecular docking results, the binding modes of the macrocyclic bisphosphonates in the active centre of PTP1B are discussed.  相似文献   

17.
Considerable attention has been paid to protein tyrosine phosphatase 1B (PTP1B) inhibitors as a potential therapy for diabetes, obesity, and cancer. Ten caffeoylquinic acid derivatives (110) from leaves of Artemisia princeps Pamp. (Asteraceae) were identified as natural PTP1B inhibitors. Among them, chlorogenic acid (3) showed the most potent inhibitory activity (IC50 11.1?μM). Compound 3 was demonstrated to be a noncompetitive inhibitor by a kinetic analysis. Molecular docking simulation suggested that compound 3 bound to the allosteric site of PTP1B. Furthermore, compound 3 showed remarkable selectivity against four homologous PTPs. According to these findings, compound 3 might be potentially valuable for further drug development.  相似文献   

18.
We describe herein the design, synthesis, and biological evaluation of a series of novel protein tyrosine phosphatase 1B (PTP1B) inhibitor retrochalcones having an allyl chain at the C-5 position of their B ring. Biological screening results showed that the majority of these compounds exhibited an inhibitory activity against PTP1B. Thus, preliminary structure-activity relationship (SAR) and quantitative SAR analyses were conducted. Among the compounds, 23 was the most potent inhibitor, exhibiting the highest in vitro inhibitory activity against PTP1B with an IC50 of 0.57?µM. Moreover, it displayed a significant hepatoprotective property via activation of the IR pathway in type 2 diabetic db/db mice. In addition, the results of our docking study showed that 23, as a specific inhibitor of PTP1B, effectively transformed the WPD loop from “close” to “open” in the active site. These results may reveal suitable compounds for the development of PTP1B inhibitors.  相似文献   

19.
Park J  Pei D 《Biochemistry》2004,43(47):15014-15021
Protein tyrosine phosphatases (PTPs) catalyze the hydrolysis of phosphotyrosyl (pY) proteins to produce tyrosyl proteins and inorganic phosphate. Specific PTPs inhibitors provide useful tools for studying PTP function in signal transduction processes and potential treatment for human diseases such as diabetes, inflammation, and cancer. In this work, trans-beta-nitrostyrene (TBNS) and its derivatives are found to be slow-binding inhibitors against protein tyrosine phosphatases PTP1B, SHP-1, and Yop with moderate potencies (K(I*) = 1-10 microM). Competition experiments with a substrate (pNPP) and iodoacetate indicate that TBNS is active site-directed. The mechanism of inhibition was investigated by UV-vis absorption spectroscopy, (1)H-(13)C heteronuclear single-quantum correlation NMR spectroscopy, and site-directed mutagenesis. These studies suggested a mechanism in which TBNS acts a pY mimetic and binds to the PTP active site to form an initial noncovalent E.I complex, followed by nucleophilic attack on the TBNS nitro group by Cys-215 of PTP1B to form a reversible, covalent adduct as the tighter E.I* complex. TBNS derivatives represent a new class of neutral pY mimetic inhibitors of PTPs.  相似文献   

20.
Targeting of protein tyrosine phosphatase-1B (PTP1B) has emerged as a promising strategy for therapeutic intervention of diabetes and obesity. Investigation of new inhibitors with good bioavailability and high selectivity is the major challenge of drug discovery program targeting PTP1B. Therefore, herein, new neutral benzene-sulfonamide containing compounds were designed, synthesized and biologically evaluated as potent PTP1B inhibitors. New series of thiazolidine, oxazolidine, thiazinan, oxazinan, oxazole, thiazole, tetrazole, cyanopyridine, chromenone, and iminochromene of benzene-sulfonamide derivatives (MSE-1 to MSE-15) were synthesized in a good yield under mild condition using sulfadiazine as a starting material. Among the synthesized compounds, MSE-13 and MSE-14 showed the most in vitro potent PTP-1B inhibitory activity (IC50 of 0.88 µM and 3.33 µM, respectively). Animal treatment by the target compounds significantly improved the insulin resistance, diminished plasma glucose level, decreased initial body weight, and normalized the serum lipid profile compared to pioglitazone, a standard PTP1B inhibitor. The molecular modeling study showed a high affinity and selectivity of our synthesized compounds to the active site and B-site of PTP1B holding hydrogen bonding, hydrophobic, and electrostatic interactions. Furthermore, Electrostatic Surface Potential (ESP) and HOMO/LUMO analysis indicated the importance of sulfamoyl moiety for PTP1B binding. In silico ADME predictions of such compounds also showed the promising pharmacokinetic and physicochemical properties. The proposed compounds could be considered a lead inhibitory scaffold to PTP1B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号