首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The goal of these experiments was to test the hypothesis that serotonin (5-HT) is involved in facilitation of the shortening reflex in the leech Hirudo medicinalis. For this reason, we have used the toxin 5-hydroxytryptamine (5,7-DHT) to deplete serotonin from the nervous systems of intact leeches and have assessed the effect on early facilitation, dishabituation, and sensitization of the touch-elicited shortening reflex using behavioral procedures previously developed in our lab (Boulis and Sahley, 1988). We find that 5,7-DHT lesions completely attenuate early facilitation and sensitization but only reduce dishabituation of the touch-elicited shortening reflex. Histological analyses of the ganglia from these leeches using glyoxilic acid staining procedures revealed an absence of staining in the Retzius cell of experimental leeches. All other serotonin-containing neurons showed glyoxilic acid staining comparable to that observed in the control leeches.  相似文献   

2.
The serotonin (5-hydroxytryptamine, 5-HT) content of tissue compartments in the medicinal leech, Hirudo medicinalis, was measured by means of high-pressure liquid chromatography coupled with electrochemical detection (HPLC-EC). Each segmental ganglion contains 21.3 +/- 2.9 (9) pmol 5-HT [X +/- SEM (N)]. The pharynx contains 7.1 +/- 1.1 (9) pmol 5-HT/mg wet weight; the salivary glands 3.2 +/- 0.9 (10), ventral body wall 2.0 +/- 0.2 (11), and vasofibrous tissue 1.2 +/- 0.2 (11). The blood of hungry leeches contains 8.7 +/- 1.9 (7) nM 5-HT while that of well-fed leeches is 2.2 +/- 0.4 (6) nM. Leeches were injected with the cytotoxic analog of serotonin, 5,7-dihydroxytryptamine (5,7-DHT) producing selective lesions of the peripherally projecting serotonin-containing neurons, and which in turn abolished their feeding behavior. The serotonin content of the pharynx and ganglia of these toxin-treated leeches were lowered significantly. The serotonin levels within the body wall and salivary glands were not altered significantly by the toxin treatment, but the levels within the vasofibrous tissue and blood were elevated substantially.  相似文献   

3.
The discovery that dendrites of neurons in the mammalian brain possess the capacity for protein synthesis stimulated interest in the potential role of local, postsynaptic protein synthesis in learning-related synaptic plasticity. But it remains unclear how local, postsynaptic protein synthesis actually mediates learning and memory in mammals. Accordingly, we examined whether learning in an invertebrate, the marine snail Aplysia, involves local, postsynaptic protein synthesis. Previously, we showed that the dishabituation and sensitization of the defensive withdrawal reflex in Aplysia require elevated postsynaptic Ca(2+), postsynaptic exocytosis, and functional upregulation of postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors. Here, we tested whether the synaptic facilitation that underlies dishabituation and sensitization in Aplysia requires local, postsynaptic protein synthesis. We found that the facilitatory transmitter, serotonin (5-HT), enhanced the response of the motor neuron to glutamate, the sensory neuron transmitter, and this enhancement depended on rapid protein synthesis. By using individual motor neurites surgically isolated from their cell bodies, we showed that the 5-HT-dependent protein synthesis occurred locally. Finally, by blocking postsynaptic protein synthesis, we disrupted the facilitation of the sensorimotor synapse. By demonstrating its critical role in a synaptic change that underlies learning and memory in a major model invertebrate system, our study suggests that local, postsynaptic protein synthesis is of fundamental importance to the cell biology of learning.  相似文献   

4.
The distribution of myomodulinlike immunoreactivity in the leech CNS was determined using an antiserum raised against Aplysia myomodulin. Segmental ganglia contained approximately 60 immunoreactive neurons. In addition, numerous fibers containing immunoreactive varicosities were found throughout the neuropil. Using a combination of Lucifer Yellow injections and immunocytochemistry, we identified neurons including the anterior Pagodas (AP), annulus erector (AE), motor neurons, Leydig, longitudinal muscle motoneurons (L), S cells, and coupling interneurons, all of which are active during the touch-elicited shortening reflex. FMRF-amide-like immunoreactivity in three of these cells (L, AP, and AE) was previously demonstrated. Specific staining for myomodulin was abolished by preadsorption of the antiserum with synthetic myomodulin, but not with FMRF-amide. These results suggest a potential role for myomodulin in both intrinsic and extrinsic modulation of the leech touch-elicited shortening reflex. Further, it is possible that several neurons mediating this reflex contain multiple neuromodulatory peptides. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
The immediate and long-term effects of the selective serotonergic neurotoxin 5,7-dihydroxytryp-tamine (5,7-DHT) on rat striatal serotonergic neurons were examined after its intracerebroventricular administration using in vivo voltammetry. Extracellular concentration of 5-hydroxyindoles increased immediately following intracerebroventricular 5,7-DHT injection (200 g in 24 l, 18 min), peaked at 1.5-2 h, and returned to normal by 4 h. 5,7-DHT diffused to the contralateral striatum in detectable amounts 9 to 12 min after the start of injection and returned to basal levels by 1.5 h. Three to 6 days after 5,7-DHT lesions, 5-hydroxytryptophan administration produced an increase in striatal 5-hydroxyindoles that was greater than that produced in pre-lesioned rats. This effect was maximal at 14 to 17 days post-lesion, and remained even after 50 days. The short-term effect of 5,7-DHT may be attributable to increased serotonin release, inhibition of uptake, or monoamine oxidase inhibition. The long-term effect of 5,7-DHT lesions may attributable to increased synthesis of serotonin or decreased reuptake in remaining serotonergic neurons.  相似文献   

6.
The cricket, Gryllus bimaculatus, shows a rhythm reversal from diurnal to nocturnal in about a week after the imaginal molt. In the present study, we investigated the role of serotonin (5-HT) in the rhythm reversal. The 5-HT content in the brain measured by HPLC equipped with an electrochemical detector gradually increased after the imaginal molt, and in fully nocturnal adults it was about 2 times of nymphal level. We then examined the effects of 5,7-dihydroxytryptamine (5,7-DHT), a selective neurotoxine to serotonergic neurons, on the locomotor rhythm. In most animals with 5,7-DHT (25 muM or 250 muM, 32.2 nl) injected into the brain, daytime activity significantly increased even after the rhythm reversal, while nighttime activity was not significantly affected, forming rather diurnal pattern. The serotonin content in the brain of animals injected with 250 muM 5,7-DHT was reduced by about 30%. On the basis of these results, possible involvement of 5-HT in the neural mechanism controlling the locomotor rhythm is discussed.  相似文献   

7.
The serotonin neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) appears to affect invertebrate systems differently from vertebrate ones. The basis for toxicity in vertebrates appears to involve the intraneuronal actions of monoamine oxidase (MAO) upon the toxin. In insects, MAO is not present in appreciable amounts. In this study, we demonstrate that in vitro 5.7-DHT competitively inhibits the uptake of [3H]serotonin by serotonergic neurohaemal areas. The apparent KM increases from 4.9 × 10−7 to 1.7 × 10−6 M. This neurotoxin also causes a significant release of previously accumulated [3H]serotonin in nominally Ca2+-free saline. While 5,7-DHT does not affect the uptake of [3H]tryptophan, it reduces the subsequent synthesis of [3H]serotonin. In vivo, the tissues appear to have recovered 2 weeks after toxin treatment, as determined by immunohistochemistry. At 24 h, 1 week and 2 weeks after injection, the tissues are able to take up and release [3H]serotonin normally. 1 and 2 weeks after injection, insects ingest a normal-sized blood meal, a behaviour acutely disrupted by 5,7-DHT treatment. The results of this and other invertebrate studies suggest that 5,7-DHT does not destroy serotonergic neurons, as it does in vertebrates. 5,7-DHT may be a more useful tool to study the functions of serotonin in invertebrates as one may transiently affect serotonin stores.  相似文献   

8.
The concentrations of 5,7-dihydroxytryptamine (5,7-DHT) and serotonin (5-HT) were measured in brainstem, hypothalamus and cerebral cortex 0, 2, 6, 12, and 24 hours following the bilateral, lateral ventricular injection of 5,7-DHT (100 g/each ventricle) into adult male rats. At 6 hours, 5,7-DHT levels had decreased 99% from 0 hr values in all brain regions. Thereafter, 5,7-DHT levels continued to decline in cortex, but not in hypothalamus or brainstem; at 24 hr, but not 48 hr, 5,7-DHT peaks were still measurable in each brain region examined. Serotonin levels in all three regions also fell markedly by 2-6 hours after 5,7-DHT administration. At 24 hours, hypothalamus and brainstem 5HT levels had declined >70% and cerebral cortex 50% below control values. The relevance of these findings to the protective action of monoamine reuptake blockers is discussed.  相似文献   

9.
目的:于中脑正中中缝核局部微量注射5,7-二羟色胺(5,7-DHT),探讨5-羟色胺(5-HT)与癫痫的关系及匹罗卡品(PILO)致痫大鼠学习记忆改变的可能机制。方法:成年SD大鼠随机分为PILO组、PILO+5,7-DHT组、空白对照组三组,然后根据是否出现癫痫持续状态(SE)再将PILO组分成:PILO+SE组和PILO-SE组两亚组;利用视频脑电图观察大鼠癫痫发作及皮层脑电变化;运用Morris水迷宫测评大鼠空间学习记忆水平;最后运用免疫组化法观察大鼠中缝核5-HT能神经元。结果:大鼠予以5,7-DHT(PILO+5,7-DHT组)处理后造模成功率、死亡率及慢性期自发性发作频率均增高;与空白组比较PILO+SE组中缝核5-HT能神经元数目有所下降(P<0.05),而PILO+5,7-DHT组下降更明显(P<0.01);与空白组比较PILO+SE组平均逃避潜伏期延长、穿越平台次数减少、原平台象限停留时间缩短(P<0.05),而与PILO+SE组比较PILO+5,7-DHT组变化不明显。结论:脑内5-HT水平的降低容易诱发癫痫发作,尚不能认为癫痫大鼠合并认知功能障碍与脑内5-HT水平下降有关。  相似文献   

10.
The effect of direct 5,7-dihydroxytryptamine (5,7-DHT) injection into the medulla region of the optic lobe on the locomotor activity was investigated in the adult male cricket, Gryllus bimaculatus. After a 6 hr phase advance of a light-dark cycle, the 5,7-DHT injected animals needed significantly longer time for resynchronization to the new cycle (6.55 +/- 0.62 days) than the control, Ringer's solution injected animals (3.17 +/- 0.15 days; P < 0.001, t-test). Light induced a bout of activity (i.e., masking effect) when light-dark cycle was phase advanced by 6 hr and the duration of the masking effect was significantly longer in 5,7-DHT injected animals. An initial bout of the nocturnal activity was significantly greater in the 5,7-DHT injected animal. Under constant darkness, the freerunning periods of both groups were not significantly different. Under constant light, a significantly higher percentage of 5,7-DHT injected animals showed arrhythmicity compared with the control group. An analysis carried by high-pressure liquid chromatography with electro-chemical detection (HPLC-ECD) revealed that the serotonin content in the optic lobe was significantly reduced to less than 50% in the 5,7-DHT injected animals, even one month after the injection. These results suggest that serotonin plays important roles in the regulation of circadian locomotor rhythms of the cricket mainly by regulating the sensitivity of the photoreceptive system.  相似文献   

11.
The spinotectal somatosensory projection was compared in normal, genetically eyeless, and embryonically manipulated salamanders. In normal animals, serotonin fluorescence was restricted to the intermediate tectalneuropil. This same region showed both high levels of serotonin uptake and somatosensory single unit electrical activity. In mutant eyeless salamanders and in normal animals enucleated early in development, serotonin fluorescence, serotonin uptake, and somatosensory activity were present in the superficial tectal neuropil. One-eyed animals, either genetically normal axolotls with one eye enucleated embryonically or genetically eyeless animals in which a normal eye had been transplanted, showed normal intermediate serotonin fluroescence and somatosensory physiology in the visually innervated half-tectum. In the visually uninnervated half-tectum, they showed superficial serotonin fluorescence and somatosensory physiology. In normal animals, 5,7-dihydroxytryptamine (5,7-DHT), a specific poison for serotonergic fibers, eliminated physiological responses in the contralateral somatosensory tectal region. The 5,7-DHT poisoning also abolished U.V.-induced serotonin fluorescence in the intermediate tectal neuropil. These results are discussed in terms of (1) evidence for serotonin as a central neurotransmitter for somatosensory information in the tectum, (2) the effects of eyelessness on tectal organization, and (3) related results in other animals.  相似文献   

12.
During embryonic life, the growth of the olfactory and accessory lobes of the lobster brain is retarded by serotonin depletion using 5,7-dihydroxytryptamine (5,7-DHT) (Benton et al., 1997). The local and projection interneurons that synapse with chemosensory cells in the olfactory lobes are potential targets of this depletion. This study documents proliferation and survival in the local interneuron cell clusters, and examines the differentiation of a prominent local interneuron, the serotonergic dorsal giant neuron (DGN), following serotonin depletion. An increase in dye coupling between the DGN and nearby cells is seen after serotonin depletion. However, morphometric analyses of individual DGNs in normal, sham-injected, and 5,7-DHT-treated embryos show that the general morphology and size of the DGNs are not significantly altered by serotonin depletion. Thus, the DGN axonal arbor occupies a greater proportion of the reduced olfactory lobes in the 5,7-DHT-treated embryos than in normal and sham-injected groups. The paired olfactory globular tract neutrophils (OGTNs), where olfactory interneurons synapse onto the DGNs, are 75% smaller in volume than the comparable region in either sham-injected or normal embryos. In vivo experiments using bromodeoxyuridine (BrdU) show that proliferation in the local interneuron soma clusters is reduced by 5,7-DHT treatment and that survival of newly proliferated local interneurons is also compromised. Our data suggest that alterations in the growth of the DGNs do not contribute to the dramatic reduction in size of the olfactory neutrophils following serotonin depletion, but that cell proliferation and survival among the local interneurons are regulated by serotonin during development. Reduced numbers of local interneurons are therefore one likely reason for the growth reduction observed after serotonin depletion.  相似文献   

13.
The analgesic effect of morphine in the tail immersion test was studied in rats three and ten days after intracerebroventricular 5,7-dihydroxytryptamine (5,7-DHT) given to selectively destroy serotonergic neurons. Morphine analgesia was reduced three but not ten days after the neurotoxin. Ten days after 5,7-DHT, the inhibiting effect of metergoline, a serotonin antagonist, on morphine analgesia was still present, suggesting that functional recovery of the serotonergic system may partly explain the different results.  相似文献   

14.
5,7-Dihydroxytryptamine (5,7-DHT) is a neurotoxin which causes the depletion of serotonin. Moreover, the serotonergic system is the regulator of the blood glucose level. However, the role of centrally located serotonergic system in blood glucose regulation after D-glucose feed and immobilization (IMO) stress was not clearly characterized yet. Thus the present study was designed to examine the effect of 5,7-DHT administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) on the blood glucose level in D-glucose-fed and immobilization stress models. Mice were pretreated once i.c.v. or i.t. with 5,7-DHT (from 10 to 40?µg) for 3 days and D-glucose (2?g/kg) was fed orally. The blood glucose level was measured at 0, 30, 60 and 120?min after D-glucose feeding and immobilization stress initiation. We found that i.c.v. or i.t. pretreatment with 5,7-DHT attenuated the blood glucose level in both animal models. D-glucose feeding causes an increase in plasma insulin level, whereas the plasma corticosterone level was downregulated in the D-glucose-fed model. The i.c.v. or i.t. pretreatment with 5,7-DHT alone slightly increased the plasma corticosterone level. In addition, the i.c.v. or i.t. pretreatment with 5,7-DHT caused a reversal of the downregulation of plasma corticosterone level induced by D-glucose feeding, whereas immobilization stress causes an increase in plasma corticosterone and insulin levels. The i.c.v or i.t. pretreatment with 5,7-DHT attenuated the immobilization stress-induced plasma corticosterone and plasma insulin levels. Our results suggest that supraspinal and spinal depletion of serotonin appears to be responsible for the downregulation of blood glucose level in both D-glucose-fed and immobilization stress models.  相似文献   

15.
The role of serotonin in expression of membrane properties of identified neurons was studied during defensive reflex conditioning using the neurotoxic analogue of serotonin 5,6-dihydroxytryptamine (5,6-DHT). The defensive reflex conditioning in snails was destroyed on the second day after second injection of 5,6-DHT. Through the 1st weeks after second injection of 5,6-DHT the snails were learned but worse than snails after injection of saline solution. This result shows the recovery of snail's learning ability within 2 weeks after the second injection of 5,6-DHT. It was found that injection of 5,6-DHT prevented the decrease of membrane and threshold potentials of command neurons during defensive reflex conditioning as compared with the snails injected with 5,6-DHT without learning.  相似文献   

16.
The present study was undertaken to determine cerebrospinal fluid (CSF) and brain levels of norepinephrine (NE), serotonin (5-HT) and their metabolites--3,4-dihydroxyphenylacetic acid (DOPAC), 4-hydroxy-3-methoxyphenylacetic acid (HVA) and 5-hydroxyindole-3-acetic acid (5-HIAA)--in rats pretreated with 6-hydroxydopamine (6-OHDA) or 5,7-dihydroxytryptamine (5,7-DHT). In the 6-OHDA pretreated rats, both CSF and brain concentrations of NE, DOPAC and HVA sustained significant decreases as compared with those in non-treated rats. Positive and significant correlations between CSF and brain levels were observed in respect to NE, DOPAC and HVA. In 5,7-DHT pretreated rats, both CSF and brain concentrations of 5-HT and 5-HIAA were significantly decreased. A positive and significant correlation between CSF and brain levels in respect to 5-HT and 5-HIAA was observed. Further studies were carried out to determine ACh levels of both the CSF and the brain in microspheres (MS)-treated rats, which are used as a model of microembolization. The CSF ACh concentrations in MS-treated groups were significantly decreased as compared with those in non-treated rats. The brain ACh contents also tended to decrease in this group. A positive and significant correlation was observed between CSF and brain levels of ACh. These findings suggest that NE, 5-HT and ACh concentrations in the CSF are direct indications of central noradrenergic, serotonergic and cholinergic nerve activity, respectively.  相似文献   

17.
Summary Intraventricular injections of moderate doses (25–75g) of 5,7-dihydroxytryptamine (5,7-DHT) into the left lateral ventricle of ether anaesthetized rats cause pronounced damage to CNS indoleamine axons, reflected by accumulations of large amounts of serotonin in distorted, heavily swollen axons, so called indoleamine droplet fibres. Larger doses (100, 150 or 300 g) provoke a piling up of catecholamines in drug affected preterminal catecholamine containing fibres besides extensive lesioning of indoleamine axons.5,7-DHT condenses with formaldehyde to form a light yellow fluorescent compound. Uptake and accumulation of 5,7-DHT into indoleamine terminals and axons—as revealed in short term experiments—provides a means of mapping of indoleamine neurons in the rat brain.Following the application of 5,7-DHT (25–150 g), rats develop characteristic behavioural disturbances, as e.g. increased sensitivity to sensory stimulation, and a failure to habituate to repeatedly applied sensory stimuli, and bizarre social behaviour, i.e. repeated fighting attacks in an unusual upright posture. These alterations resemble those observed after 5,6-DHT and may be indicative of a deprivation of the brain from functional serotonin.5,7-DHT is considered to be an important, additional tool for the investigation of serotonin neurons and problems of serotonin transmission in the mammalian brain.Dedicated to Prof. Dr. Dr. R. Janzen with the best wishes for his 65th birthday.Supported by the Deutsche Forschungsgemeinschaft.  相似文献   

18.
The physiological and molecular mechanisms of age-related memory loss are complicated by the complexity of vertebrate nervous systems. This study takes advantage of a simple neural model to investigate nervous system aging, focusing on changes in learning and memory in the form of behavioral sensitization in vivo and synaptic facilitation in vitro. The effect of aging on the tail withdrawal reflex (TWR) was studied in Aplysia californica at maturity and late in the annual lifecycle. We found that short-term sensitization in TWR was absent in aged Aplysia. This implied that the neuronal machinery governing nonassociative learning was compromised during aging. Synaptic plasticity in the form of short-term facilitation between tail sensory and motor neurons decreased during aging whether the sensitizing stimulus was tail shock or the heterosynaptic modulator serotonin (5-HT). Together, these results suggest that the cellular mechanisms governing behavioral sensitization are compromised during aging, thereby nearly eliminating sensitization in aged Aplysia.  相似文献   

19.
A complete understanding of the cellular mechanisms underlying the formation of associations between stimuli, as occurs during classical conditioning, requires an understanding of the non-associative effects of the individual stimuli. The siphon withdrawal reflex of Aplysia exhibits both non-associative and associative learning when a tactile stimulus to the siphon serves as a conditioned stimulus, and tail shock serves as an unconditioned stimulus. In this chapter we describe experiments which examine the non-associative effects of tail shock at three different levels of analysis. At a behavioural level we found that the magnitude, and even the sign of reflex modulation induced by tail shock depended critically on three parameters: (i) the state of the reflex (habituated or non-habituated); (ii) the strength of the tail shock, and (iii) the time of testing after tail shock. Specifically, when non-habituated responses produced by water jet stimuli to the siphon were examined, tail shock produced transient inhibition 90 s later; facilitation of non-habituated responses (sensitization) only emerged after a considerable delay of 20-30 min. When habituated responses were examined, tail shock produced immediate facilitation (dishabituation); the amount of facilitation was inversely related to the strength of tail shock, with stronger shock producing no dishabituation. At a cellular level it was found that the complex excitatory postsynaptic potential (EPSP) in siphon motor neurons produced by water jet stimuli to the siphon provides a reliable cellular correlate of several of the non-associative effects of tail shock that we observe behaviourally. When non-decremented complex EPSPS were examined, strong tail shock produced transient inhibition at a test 90 s after shock.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
1. Several weeks after administration of 5,7-dihydroxytryptamine (5,7-DHT) to Aplysia, a dark pigmentation appears in serotonin-containing neurons, and this pigmentation allows visual identification of serotonergic neurons but does not appear to alter their physiology. 2. We have determined the distribution of labeled nerve cell bodies in the various ganglia of Aplysia and have characterized the pigment containing structures in both control and labeled neurons. 3. All neurons in this preparation, whether or not they utilize serotonin as a transmitter, contain pigment granules, and three types of pigment granules can be distinguished. After 5,7-DHT a new type of granule appears in serotonergic neurons, probably reflecting lysosomes that have accumulated serotonergic synaptic vesicles that contain the oxidized 5,7-DHT. 4. It remains unclear why this substance does not cause neurotoxicity in mollusks as it does in mammalian preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号