首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M. Kitajima  W.L. Butler 《BBA》1975,408(3):297-305
The parameters listed in the title were determined within the context of a model for the photochemical apparatus of photosynthesis.

The fluorescence of variable yield at 750 nm at −196 °C is due to energy transfer from Photosystem II to Photosystem I. Fluorescence excitation spectra were measured at −196 °C at the minimum, FO, level and the maximum, FM, level of the emission at 750 nm. The difference spectrum, FMFO, which represents the excitation spectrum for FV is presented as a pure Photosystem II excitation spectrum. This spectrum shows a maximum at 677 nm, attributable to the antenna chlorophyll a of Photosystem II units, with a shoulder at 670 nm and a smaller maximum at 650 nm, presumably due to chlorophyll a and chlorophyll b of the light-harvesting chlorophyll complex.

Fluorescence at the FO level at 750 nm can be considered in two parts; one part due to the fraction of absorbed quanta, , which excites Photosystem I more-or-less directly and another part due to energy transfer from Photosystem II to Photosystem I. The latter contribution can be estimated from the ratio of FO/FV measured at 692 nm and the extent of FV at 750 nm. According to this procedure the excitation spectrum of Photosystem I at −196 °C was determined by subtracting 1/3 of the excitation spectrum of FV at 750 nm from the excitation spectrum of FO at 750 nm. The spectrum shows a relatively sharp maximum at 681 nm due to the antenna chlorophyll a of Photosystem I units with probably some energy transfer from the light-harvesting chlorophyll complex.

The wavelength dependence of was determined from fluorescence measurements at 692 and 750 nm at −196 °C. is constant to within a few percent from 400 to 680 nm, the maximum deviation being at 515 nm where shows a broad maximum increasing from 0.30 to 0.34. At wavelengths between 680 and 700 nm, increases to unity as Photosystem I becomes the dominant absorber in the photochemical apparatus.  相似文献   


2.
Herman Kramer  Paul Mathis   《BBA》1980,593(2):319-329
The formation of the triplet state of carotenoids (detected by an absorption peak at 515 nm) and the photo-oxidation of the primary donor of Photosystem II, P-680 (detected by an absorption increase at 820 nm) have been measured by flash absorption spectroscopy in chloroplasts in which the oxygen evolution was inhibited by treatment with Tris. The amount of each transient form has been followed versus excitation flash intensity (at 590 or 694 nm). At low excitation energy the quantum yield of triplet formation (with the Photosystem II reaction center in the state Q) is about 30% that of P-680 photo-oxidation. The yield of carotenoid triplet formation is higher in the state Q than in the state Q, in nearly the same proportion as chlorophyll a fluorescence. It is concluded that, for excited chlorophyll a, the relative rates of intersystem crossing to the triplet state and of fluorescence emission are the same in vivo as in organic solvent. At high flash intensity the signal of P-680+ completely saturates, whereas that of carotenoid triplet continues to increase.

The rate of triplet-triplet energy transfer from chlorophyll a to carotenoids has been derived from the rise time of the absorption change at 515 nm, in chloroplasts and in several light-harvesting pigment-protein complexes. In all cases the rate is very high, around 8 · 107 s−1 at 294 K. It is about 2–3 times slower at 5 K. The transitory formation of chlorophyll triplet has been verified in two pigment-protein complexes, at 5 K.  相似文献   


3.
Stable light-induced absorbance changes in chloroplasts at −196 °C were measured across the visible spectrum from 370 to 730 nm in an effort to find previously undiscovered absorbance changes that could be related to the primary photochemical activity of Photosystem I or Photosystem II. A Photosystem I mediated absorbance increase of a band at 690 nm and a Photosystem II mediated absorbance increase of a band at 683 nm were found. The 690-nm change accompanied the oxidation of P700 and the 683-nm increase accompanied the reduction of C-550. No Soret band was detected for P700.

A specific effort was made to measure the difference spectrum for the photooxidation of P680 under conditions (chloroplasts frozen to −196 °C in the presence of ferricyanide) where a stable, Photosystem II mediated EPR signal, attributed to P680+ has been reported. The difference spectra, however, did not show that P680+ was stable at −196 °C under any conditions tested. Absorbance measurements induced by saturating flashes at −196 °C (in the presence or absence of ferricyanide) indicated that all of the P680+ formed by the flash was reduced in the dark either by a secondary electron donor or by a backreaction with the primary electron acceptor. We conclude that P680+ is not stable in the dark at −196 °C: if the normal secondary donor at −196 °C is oxidized by ferricyanide prior to freezing, P680+ will oxidize other substances.  相似文献   


4.
M. D. Il''ina  A. Y. Borisov 《BBA》1980,590(3):345-352
The pigment-protein complexes enriched with Photosystem I (PPC-I) and Photosystem II (PPC-II) were obtained using sievorptive chromatography on DEAE-Sephadex column. Both types of complexes contain Chlorophyll a, β-carotene and minor quantities of Chl b. Red absorbance maxima are located at 676 nm and 673 nm for PPC-I and PPC-II, respectively. The degrees of reaction centre enrichment were measured by the method of differential spectrophotometry: PPC-I has one P-700 per 35 bulk Chl a molecules, PPC-II contains one P-680 per 18 bulk Chl a molecules. The yield of PPC-II is 7–10 times lower than that of PPC-I. After one chromatographic procedure the amount of P-680 in PPC-I preparation does not exceed 7% of that of P-700, the amount of P-700 in PPC-II preparation 2% of that of P-680. The product of PPC-II degradation was studied.  相似文献   

5.
Teruo Ogawa  Leo P. Vernon 《BBA》1970,197(2):292-301
When membrane fragments of Anabaena variabilis grown in the presence of diphenylamine (designated diphenylamine-Anabaena) are treated with Triton X-100 and subjected to sucrose density gradient centrifugation, a bluish-green membrane fragment enirched in P700 is obtained. This high-P700 fragment, denoted HP700, contains three P700 molecules per 100 chlorophyll a molecules and reduces NADP at a rate that is approximately nine times higher than that of HP700 fragments prepared from normally cultured Anabaena by the use of Triton X-100 following extraction with organic solvents. An HP700 fragment has also been isolated from a carotenoidless Scenedesmus mutant 6E, by the use of Triton X-100 and sucrose density gradient centrifugation.

Both HP700 fragments show the characteristic rapid absorbance changes of P700 upon illumination. The fluorescence properties of the HP700 fragments at −196° are different from those of the original membrane fragments. At −196° the long wavelength fluorescence peak is located at a shorter wavelength (724 mμ) in the diphenylamine-Anabaena HP700 fragment and is lower in intensity than that observed with the membrane fragment. Long wavelength fluorescence at −196° is low in the flurorescence spectra of the membrane fragments of Scenedesmus mutant 6E and is barely observable in the HP700 fragment. The fluorescence spectra of the HP700 fragments of both diphenylamine-Anabaena and Scenedesmus mutant 6E at −196° show a shoulder or peak at 700 nm. The data on fluorescence properties of the HP700 fragments suggest that 730 nm fluorescence does not originate from P700.  相似文献   


6.
Fluorescence emission spectra excited at 514 and 633 nm were measured at -196 degrees C on dark-grown bean leaves which had been partially greened by a repetitive series of brief xenon flashes. Excitation at 514 nm resulted in a greater relative enrichment of the 730 nm emission band of Photosystem I than was obtained with 633 nm excitation. The difference spectrum between the 514 nm excited fluorescence and the 633 nm excited fluorescence was taken to be representative of a pure Photosystem I emission spectrum at -196 degrees C. It was estimated from an extrapolation of low temperature emission spectra taken from a series of flashed leaves of different chlorophyll content that the emission from Photosystem II at 730 nm was 12% of the peak emission at 694 nm. Using this estimate, the pure Photosystem I emission spectrum was subtracted from the measured emission spectrum of a flashed leaf to give an emission spectrum representative of pure Photosystem II fluorescence at -196 degrees C. Emission spectra were also measured on flashed leaves which had been illuminated for several hours in continuous light. Appreciable amounts of the light-harvesting chlorophyll a/b protein, which has a low temperature fluorescence emission maximum at 682 nm, accumulate during greening in continuous light. The emission spectra of Photosystem I and Photosystem II were subtracted from the measured emission spectrum of such a leaf to obtain the emission spectrum of the light-harvesting chlorophyll a/b protein at -196 degrees C.  相似文献   

7.
Pierre Setif  Guy Hervo  Paul Mathis 《BBA》1981,638(2):257-267
Absorption changes induced in chlorophyll protein (CP 1) particles by short laser flashes have been analyzed in order to decide whether a state lasting for a few microseconds at 21°C or 800 μs at 10 K corresponds to the biradical P-700+ ... A1 (A1 being a chlorophyll a) or to a triplet state produced in a submicrosecond recombination of the preceding state. At 21°C the spectrum of the flash-induced ΔA (720–870 nm) presents a flat-topped band from 740 to 820 nm, clearly different from that of P-700+. A saturation curve (ΔA vs. laser energy), obtained with a 2 or 10 ns laser pulse, indicates that ΔA saturates at a value 2- or 3-times smaller than that expected on the basis of the chemical oxidation of P-700. At 21°C the size of flash-induced ΔA is slightly decreased (5–15%) when the sample is subjected to a 400 G magnetic field. The kinetics of decay are not affected; they are not affected either by the oxygen concentration. At 10 K the spectrum of the flash-induced ΔA has been measured between 650 and 1700 nm. Between 650 and 720 nm, the spectrum presents only one major negative peak at 702 nm; it is quite different from that due to the chemical oxidation of P-700 (which has additional peaks at 688 and 677 nm). Between 720 and 870 nm, the spectrum is identical to that obtained at 21°C. Above 870 nm, the spectrum includes a broad band around 1250 nm, which is absent in P-700+. A saturation curve leads to a maximum ΔA greater than that at 21°C and which is also greater with a 1 μs dye laser flash than with a 10 ns ruby laser flash. An analysis of the spectral data indicates that these do not fit correctly with the hypothesis of a contribution of P-700+ and of a chlorophyll a anion radical. They fit more closely with the hypothesis of a triplet state of P-700, a hypothesis which is discussed in relation to other experimental data.  相似文献   

8.
Fluorescence emission spectra excited at 514 and 633 nm were measured at ?196 °C on dark-grown bean leaves which had been partially greened by a repetitive series of brief xenon flashes. Excitation at 514 nm resulted in a greater relative enrichment of the 730 nm emission band of Photosystem I than was obtained with 633 nm excitation. The difference spectrum between the 514 nm excited fluorescence and the 633 nm excited fluorescence was taken to be representative of a pure Photosystem I emission spectrum at ?196 °C. It was estimated from an extrapolation of low temperature emission spectra taken from a series of flashed leaves of different chlorophyll content that the emission from Photosystem II at 730 nm was 12% of the peak emission at 694 nm. Using this estimate, the pure Photosystem I emission spectrum was subtracted from the measured emission spectrum of a flashed leaf to give an emission spectrum representative of pure Photosystem II fluorescence at ?196 °C. Emission spectra were also measured on flashed leaves which had been illuminated for several hours in continuous light. Appreciable amounts of the light-harvesting chlorophyll a/b protein, which has a low temperature fluorescence emission maximum at 682 nm, accumulate during greening in continuous light. The emission spectra of Photosystem I and Photosystem II were subtracted from the measured emission spectrum of such a leaf to obtain the emission spectrum of the light-harvesting chlorophyll a/b protein at ?196 °C.  相似文献   

9.
K. Erixon  W. L. Butler 《BBA》1971,234(3):381-389
Absorbance changes and fluorescence yield changes induced by irradiating spinach chloroplasts with red light at −196° were measured as a function of the redox potential of the chloroplast suspension. Absorbance changes at 546 nm indicate the photoreduction of C-550 and changes at 556 nm indicate the photooxidation of cytochrome b 559. The changes of fluorescence yield indicate the photoreduction of Q, the fluorescence quencher of chlorophylla a in Photosystem II. The titration curves for all three changes were essentially the same and showed the same midpoint potential. In other experiments as well, it was found that when C-550 is in the reduced state the fluorescence yield of the chloroplasts is high and the low-temperature photooxidation of cytochrome b 559 is blocked. These data indicate that C-550 may be equivalent to Q and that cytochrome b 559 serves as the electron donor for the photoreduction of C-550 at low temperature.  相似文献   

10.
S. Okayama  W. L. Butler 《BBA》1972,267(3):523-529
The maximum light-induced fluorescence yield, FM, of spinach chloroplasts at − 196 °C was less when the chloroplasts were oxidized with ferricyanide prior to freezing; the minimum fluorescence yield, F0, of the dark-adapted chloroplasts at − 196 °C was unaffected. The ratio of the fluorescence yields, FM/F0, measured at 695 nm at low temperature was 4.5–5.0 for normal chloroplasts and 2.0–2.5 in the presence of ferricyanide. The oxidative titration curve of FM followed a 1 electron Nernst equation with a midpoint potential of 365 mV and followed closely to the oxidation of cytochrome b559. The photoreduction of C−550 at low temperature was the same at all redox potentials over the range of 200–500 mV. It is suggested that a relatively strong oxidant associated with the water-splitting side of Photosystem II, possibly the primary electron donor, can chlorophyll fluorescence of Photosystem II as well as the primary electron acceptor.  相似文献   

11.
C.P. Rijgersberg  J. Amesz 《BBA》1980,593(2):261-271
Fluorescence emission spectra of Anacystis nidulans, Porphyridium cruentum and Cyanidium caldarium, three phycobiliprotein-containing algae, were measured at temperatures between 4 and 120 K in the absence and in the presence of quinones as quenchers of chlorophyll fluorescence. In all species three major emission bands were observed in the chlorophyll a region, near 685 nm (F-685), 695 nm (F-695) and between 710 and 730 nm. Additional bands were observed at shorter wavelengths; these were preferentially excited by light absorbed by the phycobiliproteins and are presumably due to phycocyanins and allophycocyanins.

The amplitudes of F-685, F-695 and the long-wave emission showed a distinct increase upon cooling. For F-685 and F-695 the temperature dependence was similar to that earlier observed with spinach chloroplasts, for the long-wave emission it appeared to depend on the location of the emission bands, which was different for different species. All three bands were strongly quenched by quinones. These and other data suggest that the origin of these bands is the same as in higher plants, and that the fluorescence increase upon cooling can be explained by a lowering of the efficiency of energy transfer between chlorophyll molecules. It is concluded that at most a small percentage of the emission at 685 nm can be ascribed to allophycocyanin B, and that the efficiency of energy transfer between allophycocyanin B and chlorophyll a probably exceeds 99% both at 77 and 4 K. Experiments with isolated phycobilisomes suggest that energy transfer from allophycocyanin to allophycocyanin B occurs with an efficiency of about 90% at low temperature.

The effect of quenchers can be understood by the assumption that the quenching is caused by the formation of non-fluorescent traps in the bulk chlorophyll. Of three quinones tested, the strongest quenching was observed with dibromothymoquinone, which quenched F-685, F-695 and the long-wave emission approximately equally. Menadione and 1,4-naphthoquinone, however, preferentially quenched the long-wave bands, indicating a stronger interaction with Photosystem I than with Photosystem II chlorophylls.  相似文献   


12.
The fluorescence induction and other fluorescence properties of spinach chloroplasts at room temperature were probed utilizing two 30-ps wide laser pulses (530 nm) spaced Δt (s) apart in time (Δt = 5–110 ns). The energy of the first pulse (P1) was varied (1012–1016 photons · cm−2), while the energy of the second (probe) pulse (P2) was held constant (5 · 1013 photons · cm−2). A gated (10 ns) optical multichannel analyzer-spectrograph system allowed for the detection of the fluorescence generated either by P1 alone, or by P2 alone (preceded by P1). The dominant effect observed for the fluorescence yield generated by P1 alone is the usual singlet-singlet exciton annihilation which gives rise to a decrease in the yield at high energies. However, when the fluorescence yield of dark-adapted chloroplasts is measured utilizing P2 (preceded by pulse P1) an increase in this yield is observed. The magnitude of this increase depends on Δt, and is characterized by a time constant of 28 ± 4 ns. This rise in the fluorescence yield is attributed to a reduction of the oxidized (by P1) reaction center P-680+ by a primary donor. At high pulse energies (P1 = 4 · 1014 photons · cm−2) the magnitude of this fluorescence induction is diminished by another quenching effect which is attributed to triplet excited states generated by intense P1 pulses. Assuming that the P1 pulse energy dependence of the fluorescence yield rise reflects the closing of the reaction centers, it is estimated that about 3–4 photon hits per reaction center are required to close completely the reaction centers, and that there are 185–210 chlorophyll molecules per Photosystem II reaction center.  相似文献   

13.
Rates of photooxidation of P-700 by green (560 nm) or blue (438 nm) light were measured in whole cells of porphyridium cruentum which had been frozen to -196 degrees C under conditions in which the Photosystem II reaction centers were either all open (dark adapted cells) or all closed (preilluminated cells). The rate of photooxidation of P-700 at -196 degrees C by green actinic light was approx. 80% faster in the preilluminated cells than in the dark-adapted cells. With blue actinic light, the rates of P-700 photooxidation in the dark-adapted and preilluminated cells were not significantly different. These results are in excellent agreement with predictions based on our previous estimates of energy distribution in the photosynthetic apparatus of Porphyridium cruentum including the yield of energy transfer from Photosystem II to Photosystem I determined from low temperature fluorescence measurements.  相似文献   

14.
Seven-day-old dark-grown bean leaves were greened under continuous light. The amount of chlorophyll, the ratio of chlorophyll a to chlorophyll b, the O2 evolving capacity and the primary photochemical activities of Photosystem I and Photosystem II were measured on the leaves after various times of greening. The primary photochemical activities were measured as the photo-oxidation of P700, the photoreduction of C-550, and the photo-oxidation of cytochrome b559 in intact leaves frozen to −196 C. The results indicate that the reaction centers of Photosystem I and Photosystem II begin to appear within the first few minutes and that Photosystem II reaction centers accumulate more rapidly than Photosystem I reaction centers during the first few hours of greening. The very early appearances of the primary photochemical activity of Photosystem II was also confirmed by light-induced fluorescence yield measurements at −196 C.  相似文献   

15.
1. Light-induced absorbance changes of cytochrome b-559 and cytochrome f in the -band region were examined in leaves and in isolated chloroplasts.

2. Absorbance changes of cytochrome b-559 were not detected in untreated leaves or in most preparations of isolated chloroplasts. After treatment of leaves or chloroplasts with carbonyl cyanide m-chlorophenylhydrazone, high rates of photooxidation of cytochrome b-559 were obtained, both in far-red (>700 nm) and red actinic light. Cytochrome f was photooxidized in far-red light, but in red light it remained mainly in the reduced state. The initial rates of photooxidation of cytochrome b-559 in leaves or chloroplasts treated with carbonyl cyanide m-chlorophenylhydrazone were considerably decreased by 3-(3′,4′-dichlorophenyl)-1,1-dimethyl urea.

3. A slow photoreduction of cytochrome b-559 was observed in aged mutant pea chloroplasts in red light.

4. The results do not support the view that cytochrome b-559 is a component of the electron transport chain between the light reactions. It is suggested that cytochrome b-559 is located on a side path from Photosystem II, but with a possible additional link to Photosystem I.  相似文献   


16.
The parameters listed in the title were determined within the context of a model for the photochemical apparatus of photosynthesis. The fluorescence of variable yield at 750 nm at -196 degrees C is due to energy transfer from Photosystem II to Photosystem I. Fluorescence excitation spectra were measured at -196 degrees C at the minimum, FO, level and the maximum, FM, level of the emission at 750 nm. The difference spectrum, FM-FO, which represents the excitation spectrum for FV is presented as a pure Photosystem II excitation spectrum. This spectrum shows a maximum at 677 nm, attributable to the antenna chlorophyll a of Photosystem II units, with a shoulder at 670 nm and a smaller maximum at 650 nm, presumably due to chlorophyll a and chlorophyll b of the light-harvesting chlorophyll complex. Fluoresence at the FO level at 750 nm can be considered in two parts; one part due to the fraction of absorbed quanta, alpha, which excites Photosystem I more-or-less directly and another part due to energy transfer from Photosystem II to Photosystem I. The latter contribution can be estimated from the ratio of FO/FV measured at 692 nm and the extent of FV at 750 nm. According to this procedure the excitation spectrum of Photosystem I at -196 degrees C was determined by subtracting 1/3 of the excitation spectrum of FV at 750 nm from the excitation spectrum of FO at 750 nm. The spectrum shows a relatively sharp maximum at 681 nm due to the antenna chlorophyll a of Photosystem I units with probably some energy transfer from the light-harvesting chlorophyll complex. The wavelength dependence of alpha was determined from fluorescence measurements at 692 and 750 nm at -196 degrees C. Alpha is constant to within a few percent from 400 to 680 nm, the maximum deviation being at 515 nm where alpha shows a broad maximum increasing from 0.30 to 0.34. At wavelengths between 680 and 700 nm, alpha increases to unity as Photosystem I becomes the dominant absorber in the photochemical apparatus.  相似文献   

17.
A model for the photochemical apparatus of photosynthesis is presented which accounts for the fluorescence properties of Photosystem II and Photosystem I as well as energy transfer between the two photosystems. The model was tested by measuring at - 196 degrees C fluorescence induction curves at 690 and 730 nm in the absence and presence of 5mMMgCl2 which presumably changes the distrubution of excitation energy between the two photosystems. The equations describing the fluorescence properties involve terms for the distribution of absorbed quanta, alpha, being the fraction distributed to Photosystem I, and beta, the fraction to Photosystem II to Photosystem I, KT(II yields I). The data, analyzed within the context of the model, permit a direct comparison of alpha and kt(II yields I) in the absence (minus) and presence (+) of Mg-2+ :alpha minus/alpha-+ equals 1.2 and k-minus t)II yields I)/K-+T(II yields I) equal to 1.9. If the criterion that alpha + beta equal to 1 is applied absolute values can be calculated: in the presence of Mg-2+, alpha-+ equal to 0.27 and the yield of energy transfer, phi-+ t(II yields I) varied the presence of Mg-2+, alpha-+ equal to 0.27 and the yield of energy transfer, phi-+ t(II yields I) varied from 0.065 when the Photosystem II reaction centers were all open to 0.23 when they were closed. In the absence of Mg-2+, alpha-minus equal to 0.32 and phi t(II yields I) varied from 0.12 to 0.28. The data were also analyzed assuming that two types of energy transfer could be distinguished; a transfer from the light-harvesting chlorophyll of Photosystem II to Photosystem I, kt(II yields I), and a transfer from the reaction centers of Photosystem II to Photosystem I, kt(II yields I). In that case alpha-minus/alpha+ equal to 1.3, k-minus t(II yields I)/k+ t(II yields I)equal to 1.3 and k-minus t(II yields I) equal to 3.0. It was concluded, however, that both of these types of energy transfer are different manifestations of a single energy transfer process.  相似文献   

18.
Arthur C. Ley  Warren L. Butler 《BBA》1977,462(2):290-294
Rates of photooxidation of P-700 by green (560 nm) or blue (438 nm) light were measured in whole cells of Porphyridium cruentum which had been frozen to ?196 °C under conditions in which the Photosystem II reaction centers were either all open (dark adapted cells) or all closed (preilluminated cells). The rate of photooxidation of P-700 at ?196 °C by green actinic light was approx. 80% faster in the preilluminated cells than in the dark-adapted cells. With blue actinic light, the rates of P-700 photooxidation in the dark-adapted and preilluminated cells were not significantly different. These results are in excellent agreement with predictions based on our previous estimates of energy distribution in the photosynthetic apparatus of Porphyridium cruentum including the yield of energy transfer from Photosystem II to Photosystem I determined from low temperature fluorescence measurements.  相似文献   

19.
Steven P. Berg  S. Izawa 《BBA》1976,440(3):483-494
Salicylaldoxime has been found to have a variety of concentration-dependent effects on chloroplast activities. At low concentrations (< 10 mM), salicylaldoxime reversibly inhibits all reactions which involve Photosystem II. Since the DCMU-insensitive silicomolybdate Hill reaction is also inhibited, one site of inhibition is definitely located before the DCMU-sensitive site, possibly before the photoact. The inhibition kinetics and the response of chloroplast fluorescence may indicate another site in the DCMU-sensitive region. At almost exactly the same concentrations (< 10 mM), salicylaldoxime uncouples phosphorylation reversibly, whether it is supported by Photosystem II or by Photosystem I. At higher concentrations (approx. 20 mM) salicylaldoxime inhibits Photosystem II irreversibly, uncouples irreversibly, and begins to cause changes in chloroplast light scattering which could be manifestations of membrane damage. At very high concentrations (approx. 45 mM) salicylaldoxime irreversibly inhibits Photosystem I activity in the region of plastocyanin. This is indicated by the ability of salicylaldoxime to inhibit the photooxidation of cytochrome f but not the photooxidation of P-700.  相似文献   

20.
Keith A. Rose  Alan Bearden 《BBA》1980,593(2):342-352
Electron paramagnetic resonance (EPR) power saturation and saturation recovery methods have been used to determine the spin lattice, T1, and spin-spin, T2, relaxation times of P-700+ reaction-center chlorophyll in Photosystem I of plant chloroplasts for 10 K T 100 K. T1 was 200 μs at 100 K and increased to 900 μs at 10 K. T2 was 40 ns at 40 K and increased to 100 ns at 10 K. T1 for 40 K T 100 K is inversely proportional to temperature, which is evidence of a direct-lattice relaxation process. At T = 20 K, T1 deviates from the 1/T dependence, indicating a cross relaxation process with an unidentified paramagnetic species. The individual effects of ascorbate and ferricyanide on T1 of P-700+ were examined: T1 of P-700+ was not affected by adding 10 mM ascorbate to digitonin-treated chloroplast fragments (D144 fragments). The P-700+ relaxation time in broken chloroplasts treated with 10 mM ferricyanide was 4-times shorter than in the untreated control at 40 K. Ferricyanide appears to be relaxing the P-700+ indirectly to the lattice by a cross-relaxation process. The possibility of dipolar-spin broadening of P-700+ due to either the iron-sulfur center A or plastocyanin was examined by determining the spin-packet linewidth for P-700+ when center A and plastocyanin were in either the reduced or oxidized states. Neither reduced center A nor oxidized plastocyanin was capable of broadening the spin-packet linewidth of the P-700+ signal. The absence of diplolar broadening indicates that both center A and plastocyanin are located at a distance at least 3.0 nm from the P-700+ reaction center chlorophyll. This evidence supports previous hypotheses that the electron donor and acceptor to P-700 are situated on opposite sides of the chloroplast membrane. It is also shown that the ratio of photo-oxidized P-700 to photoreduced centers A and B at low temperature is 2 : 1 if P-700 is monitored at a nonsaturating microwave power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号