首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
MOTIVATION: It is widely recognized that homology search and ortholog clustering are very useful for analyzing biological sequences. However, recent growth of sequence database size makes homolog detection difficult, and rapid and accurate methods are required. RESULTS: We present a novel method for fast and accurate homology detection, assuming that the Smith-Waterman (SW) scores between all similar sequence pairs in a target database are computed and stored. In this method, SW alignment is computed only if the upper bound, which is derived from our novel inequality, is higher than the given threshold. In contrast to other methods such as FASTA and BLAST, this method is guaranteed to find all sequences whose scores against the query are higher than the specified threshold. Results of computational experiments suggest that the method is dozens of times faster than SSEARCH if genome sequence data of closely related species are available.  相似文献   

2.
MOTIVATION: Sequence alignment methods that compare two sequences (pairwise methods) are important tools for the detection of biological sequence relationships. In genome annotation, multiple methods are often run and agreement between methods taken as confirmation. In this paper, we assess the advantages of combining search methods by comparing seven pairwise alignment methods, including three local dynamic programming algorithms (PRSS, SSEARCH and SCANPS), two global dynamic programming algorithms (GSRCH and AMPS) and two heuristic approximations (BLAST and FASTA), individually and by pairwise intersection and union of their result lists at equal p-value cut-offs. RESULTS: When applied singly, the dynamic programming methods SCANPS and SSEARCH gave significantly better coverage (p=0.01) compared to AMPS, GSRCH, PRSS, BLAST and FASTA. Results ranked by BLAST p-values gave significantly better coverage compared to ranking by BLAST e-values. Of 56 combinations of eight methods considered, 19 gave significant increases in coverage at low error compared to the parent methods at an equal p-value cutoff. The union of results by BLAST (p-value) and FASTA at an equal p-value cutoff gave significantly better coverage than either method individually. The best overall performance was obtained from the intersection of the results from SSEARCH and the GSRCH62 global alignment method. At an error level of five false positives, this combination found 444 true positives, a significant 12.4% increase over SSEARCH applied alone.  相似文献   

3.
MOTIVATION: The blastp and tblastn modules of BLAST are widely used methods for searching protein queries against protein and nucleotide databases, respectively. One heuristic used in BLAST is to consider only database sequences that contain a high-scoring match of length at most 5 to the query. We implemented the capability to use words of length 6 or 7. We demonstrate an improved trade-off between running time and retrieval accuracy, controlled by the score threshold used for short word matches. For example, the running time can be reduced by 20-30% while achieving ROC (receiver operator characteristic) scores similar to those obtained with current default parameters. AVAILABILITY: The option to use long words is in the NCBI C and C++ toolkit code for BLAST, starting with version 2.2.16 of blastall. A Linux executable used to produce the results herein is available at: ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/protein_longwords  相似文献   

4.
A common task in many modern bioinformatics applications is to match a set of nucleotide query sequences against a large sequence dataset. Exis-ting tools, such as BLAST, are designed to evaluate a single query at a time and can be unacceptably slow when the number of sequences in the query set is large. In this paper, we present a new algorithm, called miBLAST, that evaluates such batch workloads efficiently. At the core, miBLAST employs a q-gram filtering and an index join for efficiently detecting similarity between the query sequences and database sequences. This set-oriented technique, which indexes both the query and the database sets, results in substantial performance improvements over existing methods. Our results show that miBLAST is significantly faster than BLAST in many cases. For example, miBLAST aligned 247965 oligonucleotide sequences in the Affymetrix probe set against the Human UniGene in 1.26 days, compared with 27.27 days with BLAST (an improvement by a factor of 22). The relative performance of miBLAST increases for larger word sizes; however, it decreases for longer queries. miBLAST employs the familiar BLAST statistical model and output format, guaranteeing the same accuracy as BLAST and facilitating a seamless transition for existing BLAST users.  相似文献   

5.
In order to use DNA sequences for specimen identification (e.g., barcoding, fingerprinting) an algorithm to compare query sequences with a reference database is needed. Precision and accuracy of query sequence identification was estimated for hierarchical clustering (parsimony and neighbor joining), similarity methods (BLAST, BLAT and megaBLAST), combined clustering/similarity methods (BLAST/parsimony and BLAST/neighbor joining), diagnostic methods (DNA–BAR and DOME ID), and a new method (ATIM). We offer two novel alignment‐free algorithmic solutions (DOME ID and ATIM) to identify query sequences for the purposes of DNA barcoding. Publicly available gymnosperm nrITS 2 and plastid matK sequences were used as test data sets. On the test data sets, almost all of the methods were able to accurately identify sequences to genus; however, no method was able to accurately identify query sequences to species at a frequency that would be considered useful for routine specimen identification (42–71% unambiguously correct). Clustering methods performed the worst (perhaps due to alignment issues). Similarity methods, ATIM, DNA–BAR, and DOME ID all performed at approximately the same level. Given the relative precision of the algorithms (median = 67% unambiguous), the low accuracy of species‐level identification observed could be ascribed to the lack of correspondence between patterns of allelic similarity and species delimitations. Application of DNA barcoding to sequences of CITES listed cycads (Cycadopsida) provides an example of the potential application of DNA barcoding to enforcement of conservation laws. © The Willi Hennig Society 2006.  相似文献   

6.
In recent years we have witnessed a growth in sequencing yield, the number of samples sequenced, and as a result–the growth of publicly maintained sequence databases. The increase of data present all around has put high requirements on protein similarity search algorithms with two ever-opposite goals: how to keep the running times acceptable while maintaining a high-enough level of sensitivity. The most time consuming step of similarity search are the local alignments between query and database sequences. This step is usually performed using exact local alignment algorithms such as Smith-Waterman. Due to its quadratic time complexity, alignments of a query to the whole database are usually too slow. Therefore, the majority of the protein similarity search methods prior to doing the exact local alignment apply heuristics to reduce the number of possible candidate sequences in the database. However, there is still a need for the alignment of a query sequence to a reduced database. In this paper we present the SW#db tool and a library for fast exact similarity search. Although its running times, as a standalone tool, are comparable to the running times of BLAST, it is primarily intended to be used for exact local alignment phase in which the database of sequences has already been reduced. It uses both GPU and CPU parallelization and was 4–5 times faster than SSEARCH, 6–25 times faster than CUDASW++ and more than 20 times faster than SSW at the time of writing, using multiple queries on Swiss-prot and Uniref90 databases  相似文献   

7.
Sequence similarity tools, such as BLAST, seek sequences most similar to a query from a database of sequences. They return results significantly similar to the query sequence and that are typically highly similar to each other. Most sequence analysis tasks in bioinformatics require an exploratory approach, where the initial results guide the user to new searches. However, diversity has not yet been considered an integral component of sequence search tools for this discipline. Some redundancy can be avoided by introducing non-redundancy during database construction, but it is not feasible to dynamically set a level of non-redundancy tailored to a query sequence. We introduce the problem of diverse search and browsing in sequence databases that produce non-redundant results optimized for any given query. We define diversity measures for sequences and propose methods to obtain diverse results extracted from current sequence similarity search tools. We also propose a new measure to evaluate the diversity of a set of sequences that is returned as a result of a sequence similarity query. We evaluate the effectiveness of the proposed methods in post-processing BLAST and PSI-BLAST results. We also assess the functional diversity of the returned results based on available Gene Ontology annotations. Additionally, we include a comparison with a current redundancy elimination tool, CD-HIT. Our experiments show that the proposed methods are able to achieve more diverse yet significant result sets compared to static non-redundancy approaches. In both sequence-based and functional diversity evaluation, the proposed diversification methods significantly outperform original BLAST results and other baselines. A web based tool implementing the proposed methods, Div-BLAST, can be accessed at cedar.cs.bilkent.edu.tr/Div-BLAST  相似文献   

8.
9.
MOTIVATION: The global alignment of protein sequence pairs is often used in the classification and analysis of full-length sequences. The calculation of a Z-score for the comparison gives a length and composition corrected measure of the similarity between the sequences. However, the Z-score alone, does not indicate the likely biological significance of the similarity. In this paper, all pairs of domains from 250 sequences belonging to different SCOP folds were aligned and Z-scores calculated. The distribution of Z-scores was fitted with a peak distribution from which the probability of obtaining a given Z-score from the global alignment of two protein sequences of unrelated fold was calculated. A similar analysis was applied to subsequence pairs found by the Smith-Waterman algorithm. These analyses allow the probability that two protein sequences share the same fold to be estimated by global sequence alignment. RESULTS: The relationship between Z-score and probability varied little over the matrix/gap penalty combinations examined. However, an average shift of +4.7 was observed for Z-scores derived from global alignment of locally-aligned subsequences compared to global alignment of the full-length sequences. This shift was shown to be the result of pre-selection by local alignment, rather than any structural similarity in the subsequences. The search ability of both methods was benchmarked against the SCOP superfamily classification and showed that global alignment Z-scores generated from the entire sequence are as effective as SSEARCH at low error rates and more effective at higher error rates. However, global alignment Z-scores generated from the best locally-aligned subsequence were significantly less effective than SSEARCH. The method of estimating statistical significance described here was shown to give similar values to SSEARCH and BLAST, providing confidence in the significance estimation. AVAILABILITY: Software to apply the statistics to global alignments is available from http://barton.ebi.ac.uk. CONTACT: geoff@ebi.ac.uk  相似文献   

10.
We present an evolutionary placement algorithm (EPA) and a Web server for the rapid assignment of sequence fragments (short reads) to edges of a given phylogenetic tree under the maximum-likelihood model. The accuracy of the algorithm is evaluated on several real-world data sets and compared with placement by pair-wise sequence comparison, using edit distances and BLAST. We introduce a slow and accurate as well as a fast and less accurate placement algorithm. For the slow algorithm, we develop additional heuristic techniques that yield almost the same run times as the fast version with only a small loss of accuracy. When those additional heuristics are employed, the run time of the more accurate algorithm is comparable with that of a simple BLAST search for data sets with a high number of short query sequences. Moreover, the accuracy of the EPA is significantly higher, in particular when the sample of taxa in the reference topology is sparse or inadequate. Our algorithm, which has been integrated into RAxML, therefore provides an equally fast but more accurate alternative to BLAST for tree-based inference of the evolutionary origin and composition of short sequence reads. We are also actively developing a Web server that offers a freely available service for computing read placements on trees using the EPA.  相似文献   

11.
Little DP 《PloS one》2011,6(8):e20552
For DNA barcoding to succeed as a scientific endeavor an accurate and expeditious query sequence identification method is needed. Although a global multiple-sequence alignment can be generated for some barcoding markers (e.g. COI, rbcL), not all barcoding markers are as structurally conserved (e.g. matK). Thus, algorithms that depend on global multiple-sequence alignments are not universally applicable. Some sequence identification methods that use local pairwise alignments (e.g. BLAST) are unable to accurately differentiate between highly similar sequences and are not designed to cope with hierarchic phylogenetic relationships or within taxon variability. Here, I present a novel alignment-free sequence identification algorithm--BRONX--that accounts for observed within taxon variability and hierarchic relationships among taxa. BRONX identifies short variable segments and corresponding invariant flanking regions in reference sequences. These flanking regions are used to score variable regions in the query sequence without the production of a global multiple-sequence alignment. By incorporating observed within taxon variability into the scoring procedure, misidentifications arising from shared alleles/haplotypes are minimized. An explicit treatment of more inclusive terminals allows for separate identifications to be made for each taxonomic level and/or for user-defined terminals. BRONX performs better than all other methods when there is imperfect overlap between query and reference sequences (e.g. mini-barcode queries against a full-length barcode database). BRONX consistently produced better identifications at the genus-level for all query types.  相似文献   

12.
MOTIVATION: Comprehensive performance assessment is important for improving sequence database search methods. Sensitivity, selectivity and speed are three major yet usually conflicting evaluation criteria. The average precision (AP) measure aims to combine the sensitivity and selectivity features of a search algorithm. It can be easily visualized and extended to analyze results from a set of queries. Finally, the time-AP plot can clearly show the overall performance of different search methods. RESULTS: Experiments are performed based on the SCOP database. Popular sequence comparison algorithms, namely Smith-Waterman (SSEARCH), FASTA, BLAST and PSI-BLAST are evaluated. We find that (1) the low-complexity segment filtration procedure in BLAST actually harms its overall search quality; (2) AP scores of different search methods are approximately in proportion of the logarithm of search time; and (3) homologs in protein families with many members tend to be more obscure than those in small families. This measure may be helpful for developing new search algorithms and can guide researchers in selecting most suitable search methods. AVAILABILITY: Test sets and source code of this evaluation tool are available upon request.  相似文献   

13.
Porter TM  Golding GB 《PloS one》2012,7(4):e35749
Nuclear large subunit ribosomal DNA is widely used in fungal phylogenetics and to an increasing extent also amplicon-based environmental sequencing. The relatively short reads produced by next-generation sequencing, however, makes primer choice and sequence error important variables for obtaining accurate taxonomic classifications. In this simulation study we tested the performance of three classification methods: 1) a similarity-based method (BLAST + Metagenomic Analyzer, MEGAN); 2) a composition-based method (Ribosomal Database Project na?ve bayesian classifier, NBC); and, 3) a phylogeny-based method (Statistical Assignment Package, SAP). We also tested the effects of sequence length, primer choice, and sequence error on classification accuracy and perceived community composition. Using a leave-one-out cross validation approach, results for classifications to the genus rank were as follows: BLAST + MEGAN had the lowest error rate and was particularly robust to sequence error; SAP accuracy was highest when long LSU query sequences were classified; and, NBC runs significantly faster than the other tested methods. All methods performed poorly with the shortest 50-100 bp sequences. Increasing simulated sequence error reduced classification accuracy. Community shifts were detected due to sequence error and primer selection even though there was no change in the underlying community composition. Short read datasets from individual primers, as well as pooled datasets, appear to only approximate the true community composition. We hope this work informs investigators of some of the factors that affect the quality and interpretation of their environmental gene surveys.  相似文献   

14.
MOTIVATION: To identify and characterize regions of functional interest in genomic sequence requires full, flexible query access to an integrated, up-to-date view of all related information, irrespective of where it is stored (within an organization or across the Internet) and its format (traditional database, flat file, web site, results of runtime analysis). Wide-ranging multi-source queries often return unmanageably large result sets, requiring non-traditional approaches to exclude extraneous data. RESULTS: Target Informatics Net (TINet) is a readily extensible data integration system developed at GlaxoSmith- Kline (GSK), based on the Object-Protocol Model (OPM) multidatabase middleware system of Gene Logic Inc. Data sources currently integrated include: the Mouse Genome Database (MGD) and Gene Expression Database (GXD), GenBank, SwissProt, PubMed, GeneCards, the results of runtime BLAST and PROSITE searches, and GSK proprietary relational databases. Special-purpose class methods used to filter and augment query results include regular expression pattern-matching over BLAST HSP alignments and retrieving partial sequences derived from primary structure annotations. All data sources and methods are accessible through an SQL-like query language or a GUI, so that when new investigations arise no additional programming beyond query specification is required. The power and flexibility of this approach are illustrated in such integrated queries as: (1) 'find homologs in genomic sequence to all novel genes cloned and reported in the scientific literature within the past three months that are linked to the MeSH term 'neoplasms"; (2) 'using a neuropeptide precursor query sequence, return only HSPs where the target genomic sequences conserve the G[KR][KR] motif at the appropriate points in the HSP alignment'; and (3) 'of the human genomic sequences annotated with exon boundaries in GenBank, return only those with valid putative donor/acceptor sites and start/stop codons'.  相似文献   

15.
Detection of homologous proteins by an intermediate sequence search   总被引:2,自引:0,他引:2  
We developed a variant of the intermediate sequence search method (ISS(new)) for detection and alignment of weakly similar pairs of protein sequences. ISS(new) relates two query sequences by an intermediate sequence that is potentially homologous to both queries. The improvement was achieved by a more robust overlap score for a match between the queries through an intermediate. The approach was benchmarked on a data set of 2369 sequences of known structure with insignificant sequence similarity to each other (BLAST E-value larger than 0.001); 2050 of these sequences had a related structure in the set. ISS(new) performed significantly better than both PSI-BLAST and a previously described intermediate sequence search method. PSI-BLAST could not detect correct homologs for 1619 of the 2369 sequences. In contrast, ISS(new) assigned a correct homolog as the top hit for 121 of these 1619 sequences, while incorrectly assigning homologs for only nine targets; it did not assign homologs for the remainder of the sequences. By estimate, ISS(new) may be able to assign the folds of domains in approximately 29,000 of the approximately 500,000 sequences unassigned by PSI-BLAST, with 90% specificity (1 - false positives fraction). In addition, we show that the 15 alignments with the most significant BLAST E-values include the nearly best alignments constructed by ISS(new).  相似文献   

16.
Mittler T  Levy M  Chad F  Karen S 《Bioinformation》2010,5(5):224-226
Basic Local Alignment Search Tool, (BLAST) allows the comparison of a query sequence/s to a database of sequences and identifies those sequences that are similar to the query above a user-defined threshold. We have developed a user friendly web application, MULTBLAST that runs a series of BLAST searches on a user-supplied list of proteins against one or more target protein or nucleotide databases. The application pre-processes the data, launches each individual BLAST search on the University of Nevada, Reno''s-TimeLogic DeCypher® system (available from Active Motif, Inc.) and retrieves and combines all the results into a simple, easy to read output file. The output file presents the list of the query proteins, followed by the BLAST results for the matching sequences from each target database in consecutive columns. This format is especially useful for either comparing the results from the different target databases, or analyzing the results while keeping the identification of each target database separate.

Availability

The application is available at the URLhttp://blastpipe.biochem.unr.edu/  相似文献   

17.
Sequence comparison methods based on position-specific score matrices (PSSMs) have proven a useful tool for recognition of the divergent members of a protein family and for annotation of functional sites. Here we investigate one of the factors that affects overall performance of PSSMs in a PSI-BLAST search, the algorithm used to construct the seed alignment upon which the PSSM is based. We compare PSSMs based on alignments constructed by global sequence similarity (ClustalW and ClustalW-pairwise), local sequence similarity (BLAST), and local structure similarity (VAST). To assess performance with respect to identification of conserved functional or structural sites, we examine the accuracy of the three-dimensional molecular models predicted by PSSM-sequence alignments. Using the known structures of those sequences as the standard of truth, we find that model accuracy varies with the algorithm used for seed alignment construction in the pattern local-structure (VAST) > local-sequence (BLAST) > global-sequence (ClustalW). Using structural similarity of query and database proteins as the standard of truth, we find that PSSM recognition sensitivity depends primarily on the diversity of the sequences included in the alignment, with an optimum around 30-50% average pairwise identity. We discuss these observations, and suggest a strategy for constructing seed alignments that optimize PSSM-sequence alignment accuracy and recognition sensitivity.  相似文献   

18.
MOTIVATION: Sequence alignment techniques have been developed into extremely powerful tools for identifying the folding families and function of proteins in newly sequenced genomes. For a sufficiently low sequence identity it is necessary to incorporate additional structural information to positively detect homologous proteins. We have carried out an extensive analysis of the effectiveness of incorporating secondary structure information directly into the alignments for fold recognition and identification of distant protein homologs. A secondary structure similarity matrix based on a database of three-dimensionally aligned proteins was first constructed. An iterative application of dynamic programming was used which incorporates linear combinations of amino acid and secondary structure sequence similarity scores. Initially, only primary sequence information is used. Subsequently contributions from secondary structure are phased in and new homologous proteins are positively identified if their scores are consistent with the predetermined error rate. RESULTS: We used the SCOP40 database, where only PDB sequences that have 40% homology or less are included, to calibrate homology detection by the combined amino acid and secondary structure sequence alignments. Combining predicted secondary structure with sequence information results in a 8-15% increase in homology detection within SCOP40 relative to the pairwise alignments using only amino acid sequence data at an error rate of 0.01 errors per query; a 35% increase is observed when the actual secondary structure sequences are used. Incorporating predicted secondary structure information in the analysis of six small genomes yields an improvement in the homology detection of approximately 20% over SSEARCH pairwise alignments, but no improvement in the total number of homologs detected over PSI-BLAST, at an error rate of 0.01 errors per query. However, because the pairwise alignments based on combinations of amino acid and secondary structure similarity are different from those produced by PSI-BLAST and the error rates can be calibrated, it is possible to combine the results of both searches. An additional 25% relative improvement in the number of genes identified at an error rate of 0.01 is observed when the data is pooled in this way. Similarly for the SCOP40 dataset, PSI-BLAST detected 15% of all possible homologs, whereas the pooled results increased the total number of homologs detected to 19%. These results are compared with recent reports of homology detection using sequence profiling methods. AVAILABILITY: Secondary structure alignment homepage at http://lutece.rutgers.edu/ssas CONTACT: anders@rutchem.rutgers.edu; ronlevy@lutece.rutgers.edu Supplementary Information: Genome sequence/structure alignment results at http://lutece.rutgers.edu/ss_fold_predictions.  相似文献   

19.
BALSA: Bayesian algorithm for local sequence alignment   总被引:3,自引:1,他引:2       下载免费PDF全文
The Smith–Waterman algorithm yields a single alignment, which, albeit optimal, can be strongly affected by the choice of the scoring matrix and the gap penalties. Additionally, the scores obtained are dependent upon the lengths of the aligned sequences, requiring a post-analysis conversion. To overcome some of these shortcomings, we developed a Bayesian algorithm for local sequence alignment (BALSA), that takes into account the uncertainty associated with all unknown variables by incorporating in its forward sums a series of scoring matrices, gap parameters and all possible alignments. The algorithm can return both the joint and the marginal optimal alignments, samples of alignments drawn from the posterior distribution and the posterior probabilities of gap penalties and scoring matrices. Furthermore, it automatically adjusts for variations in sequence lengths. BALSA was compared with SSEARCH, to date the best performing dynamic programming algorithm in the detection of structural neighbors. Using the SCOP databases PDB40D-B and PDB90D-B, BALSA detected 19.8 and 41.3% of remote homologs whereas SSEARCH detected 18.4 and 38% at an error rate of 1% errors per query over the databases, respectively.  相似文献   

20.
MOTIVATION: Two proteins can have a similar 3-dimensional structure and biological function, but have sequences sufficiently different that traditional protein sequence comparison algorithms do not identify their relationship. The desire to identify such relations has led to the development of more sensitive sequence alignment strategies. One such strategy is the Intermediate Sequence Search (ISS), which connects two proteins through one or more intermediate sequences. In its brute-force implementation, ISS is a strategy that repetitively uses the results of the previous query as new search seeds, making it time-consuming and difficult to analyze. RESULTS: Saturated BLAST is a package that performs ISS in an efficient and automated manner. It was developed using Perl and Perl/Tk and implemented on the LINUX operating system. Starting with a protein sequence, Saturated BLAST runs a BLAST search and identifies representative sequences for the next generation of searches. The procedure is run until convergence or until some predefined criteria are met. Saturated BLAST has a friendly graphic user interface, a built-in BLAST result parser, several multiple alignment tools, clustering algorithms and various filters for the elimination of false positives, thereby providing an easy way to edit, visualize, analyze, monitor and control the search. Besides detecting remote homologies, Saturated BLAST can be used to maintain protein family databases and to search for new genes in genomic databases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号