首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
促红细胞生成素是一种促进红系造血前体细胞增殖、分化的细胞因子,主要作用为促进红细胞增殖,应用于临床各种贫血治疗。随着研究进展,学者发现促红细胞生成素为一种多功能营养因子及神经保护因子,具有调节中枢神经系统发育、神经营养及神经保护作用。脑缺血性卒中实验研究显示,促红细胞生成素可有效改善中枢神经系统疾病所致的神经功能缺损,本文主要概述促红细胞生成素在脑缺血性卒中动物模型的研究进展,及其发挥神经保护作用所经由的分子机制。相信随着实验研究进展,其在脑缺血性卒中临床治疗方面将拥有更广阔的前景。  相似文献   

2.
摘要:缺血性脑卒中是成年人群致残、致死的重要原因之一,有效治疗手段和药物的匮乏是脑卒中致残的主要原因。精氨酸既是一种营养物质,又具有多种独特的生理与药理作用,在早产儿和严重应激状态下精氨酸在维持正氮平衡与正常生理功能方面发挥重要作用,常将精氨酸称为条件必需氨基酸。精氨酸是生物体合成多胺的前体物质,同时精氨酸代谢也产生高活性自由基一氧化氮。精氨酸代谢及其代谢产物的改变可对脑卒中产生多种影响,如线粒体功能破坏、钙离子通道紊乱、血脑屏障损伤等。本文综述了精氨酸及其代谢产物在缺血性脑卒中病理过程中的作用。深入的研究和探讨其损伤和保护的双重作用机制将为缺血性脑卒中的防御和治疗提供新的策略。  相似文献   

3.
硫化氢(H2S)是一种新型内源性气体信使分子,在许多生理和病理生理过程中,尤其在神经保护中,扮演重要角色,既是神经调节剂, 也是神经保护剂。近年来的研究发现,H2S对于脑缺血再灌注损伤具有积极的防治作用,它可通过抗氧化应激、抗炎及抗细胞凋亡等多个途径, 对脑缺血再灌注损伤起保护作用,具有良好的临床应用前景。简介脑内H2S生成途径,综述H2S在中枢神经系统中的生物学效应及其对脑 缺血再灌注损伤的保护作用与机制研究进展,以期为脑缺血再灌注损伤的临床防治提供新思路。  相似文献   

4.
 腺嘌呤核苷(ADO)和它的类似物2-Cl-ADO对牛附睾尾部精子的运动有刺激作用,为了探讨ADO及其类似物对精子运动调节作用的机理,我们从ADO受体,核苷运转系统(NTS)及腺苷脱氨酶(ADA)三个方面对牛附睾尾部的精子进行了研究。我们发现腺苷受体不存在于牛精子膜上,但ADA和NTS以膜蛋白的形式结合在精子膜上,并对精子体内的ADO浓度起调节作用。我们的结论是ADO及其类似物对牛精子运动的调节作用是首先通过精子膜上的ADA和NTS影响精子体内的ADO浓度,进而ADO又通过调节钙离子浓度刺激牛精子运动。  相似文献   

5.
活性氧簇是细胞有氧代谢过程中产生的一类化学基团。线粒体是活性氧簇的主要生成位点。一般观点认为,在脑缺血-再灌注损伤过程中,活性氧簇发挥神经细胞损伤作用。活性氧簇不仅直接参与神经细胞氧化损伤过程,也可通过外源性途径和内源性途径,引起神经细胞凋亡。然而,除神经细胞损伤作用外,活性氧簇也可发挥神经细胞保护作用。活性氧簇可激活低氧诱导因子、核转录因子κB、PI3K/Akt通路和MAPK通路等,参与神经细胞存活机制,减轻神经细胞损伤。本文对活性氧簇在脑缺血-再灌注损伤中的双重作用进行综述。  相似文献   

6.
脑缺血及缺血后再灌注过程的病理生理机制复杂,发病后可能伴随卒中后抑郁等精神障碍,对人类生命和生活质量产生很大的威胁。目前的溶栓和取栓治疗具有极大限制性,寻求一种理想的神经保护药物对于治疗脑缺血有极其重要的临床意义。近年研究发现维甲酸不仅可通过调节炎症反应、保护血脑屏障、抗凋亡、促进神经再生等过程对脑缺血性疾病发挥保护作用,并且血清维甲酸水平在脑缺血及卒中后抑郁中可作为一项独立的指标发挥预测作用。该文将针对维甲酸在脑缺血及卒中后抑郁中的作用进行综述。  相似文献   

7.
腺苷和一氧化氮(Nitric oxide,NO)都是十分活跃的具有多种生物活性的内源性物质。近年来,关于腺苷和NO在周围组织和中枢神经系统中的相互作用被广泛关注。腺苷在中枢神经系统中广泛存在,可作为整合中枢兴奋和抑制性神经递质的调节因子;NO在中枢神经系统中具有广泛的生物学意义,既兼有第二信使和神经递质的性能,又是效应分子,参与多种生理功能,代谢衍生物有一定的中枢神经毒性。在中枢神经系统中,腺苷和NO之间可能有一定联系,本文综述了二者在中枢神经系统中的相互作用及其与癫痫的相关性,以期为中枢神经系统相关疾病的发病机制研究及防治方法提供新的思路。  相似文献   

8.
腺苷的中枢作用   总被引:2,自引:0,他引:2  
腺苷是包括中枢神经系统(CNS)细胞外液在内的体液的正常组成成分,其正常水平为0.03~0.3μmol/L。ATP合成与分解失衡的条件下明显升高,如缺血时可升高1000倍之多。腺苷通过腺苷受体(adenodinereceptor,AR)对CNS具有多方面的生理与病理作用,被认为是CNS的抑制性神经调质,具有神经保护作用。  相似文献   

9.
目前成年神经发生的调节机制及其在脑缺血后功能修复中的作用尚不清楚,研究表明神经发生受体内外多种信号分子的调控,许多内源性营养因子影响脑缺血后神经干细胞的增殖、迁移和分化.本文就多种营养因子对脑缺血后内源性神经发生的调控研究进展和存在的问题作一综述.  相似文献   

10.
硫化氢(hydrogen sulfide, H2S)作为一种重要的内源性气体信号分子或气体递质,在调节中枢神经系统内环境稳态和细胞信号传导方面发挥着重要的生理作用,被认为是新兴的神经保护剂和神经调节剂. 20余年来,越来越多的科学家投入到H2S神经保护和神经调节作用的研究中,力图更深入地认识H2S对中枢神经系统的生物学效应及其机制,以H2S为匙,从而更好地打开中枢神经系统重大疾病的治疗迷局.本文从内源性H2S的产生与代谢过程、生物学效应和H2S在中枢神经系统疾病中的作用及其机制等方面进行回顾,重点阐述了H2S在神经退行性疾病等中枢神经系统重大疾病中的保护作用及其分子靶点,同时介绍了本课题组所做的相关工作,以期为H2S和中枢神经系统重大疾病领域的研究者提供参考.  相似文献   

11.
The effects of an adenosine deaminase inhibitor (deoxycoformycin, 500 μg/kg) and of an inhibitor of nucleoside transport (propentofylline, 10 mg/kg) on adenosine and adenine nucleotide levels in the ischemic rat brain were investigated. The brains of the rats were microwaved before, at the end of a 20 min period of cerebral ischemia (4 vessel occlusion+hypotension), or after 5, 10, 45, and 90 min of reperfusion. Deoxycoformycin increased brain adenosine levels during both ischemia and the initial phases of reperfusion. AMP levels were elevated during ischemia and after 5 min of reperfusion. ATP levels were elevated above those in the non-treated animals after 10 and 45 min of reperfusion. ADP levels were elevated above the non-drug controls at 90 min. These increases in ATP, ADP and AMP resulted in significant increases in total adenylates during ischemia, and after 10 min and 90 min of reperfusion. Propentofylline administration resulted in enhanced AMP levels during ischemia but did not alter adenosine or adenine nucleotide levels during reperfusion in comparison with non-treated controls.  相似文献   

12.
The excitatory glutamatergic neurons in the hippocampus are modulated by inhibitory GABA-releasing interneurons. The neuromodulator adenosine is known to inhibit the presynaptic release of neurotransmitters and to hyperpolarize postsynaptic neurons in the hippocampus, which would imply that it is an endogenous protective agent against cerebral ischemia and excitotoxic neuronal damage. Interactions of the GABAergic and adenosinergic systems in regulating neuronal excitability in the hippocampus is of crucial importance, particularly under cell-damaging conditions. We now characterized the effects of adenosine receptor agonists and antagonists on the release of preloaded [3H]GABA from hippocampal slices prepared from adult (3-month-old) mice, using a superfusion system. The effects were tested both under normal conditions and in ischemia induced by omitting glucose and oxygen from the superfusion medium. Basal and K+-evoked GABA release in the hippocampus were depressed by adenosinergic compounds. Under normal conditions activation of both adenosine A1 and A2A receptors by the agonists R(-)N6-(2-phenylisopropyl)adenosine and CGS 21680 inhibited the K+-evoked release, which effects were blocked by their specific antagonists, 8-cyclopentyl-1,3-dipropyl-xanthine and 3,7-dimethyl-1-propargylxanthine, respectively. Under ischemic conditions the release of both GABA and adenosine is markedly enhanced. The above receptor agonists then depressed both the basal and K+-evoked GABA release, only the action of A2A receptors being however receptor-mediated. The demonstrated depression of GABA release by adenosine in the hippocampus could be deleterious to neurons and contribute to excitotoxicity.  相似文献   

13.
Excitatory amino acid release and neurotoxicity in the ischemic brain may be reduced by endogenously released adenosine which can modulate both glutamate or aspartate release and depress neuronal excitability. The present study reports on the patterns of release of glutamate and aspartate; the inhibitory amino acids GABA and glycine; and of the purine catabolites adenosine and inosine from the rat parietal cerebral cortex during 20 and 60 min periods of middle cerebral artery (MCA) occlusion followed by reperfusion. Aspartate and glutamate efflux into cortical superfusates rose steadily during the period of ischemia and tended to increase even further during the subsequent 40 min of reperfusion. GABA release rose during ischemia and declined during reperfusion, whereas glycine efflux was relatively unchanged during both ischemia and reperfusion. Adenosine levels in cortical superfusates rose rapidly at the onset of ischemia and then declined even though MCA occlusion was continued. Recovery to pre-occulusion levels was rapid following reperfusion. Inosine efflux also increased rapidly, but its decline during reperfusion was slower than that of adenosine.  相似文献   

14.
Ischemia, through modulation of adenosine receptors (ARs), may influence adenosine-mediated-cellular responses. In the present study, we investigated the modulation of rat A2A receptor expression and functioning, in rat cerebral cortex and striatum, following in vivo focal ischemia (24 h). In cortex, middle cerebral artery occlusion did not induce any alterations in A2A receptor binding and functioning. On the contrary, in striatum, a significant decrease in A2A ligand affinity, associated with an increase in receptor density, were detected. In striatum, ischemia also induced a significant reduction both in G protein pool and in A2A receptor-G protein coupling. On the contrary, A2A receptor functional responsiveness, measured as stimulation of adenylyl cyclise, was not affected by ischemia, suggesting receptor up-regulation may represent a compensatory mechanism to maintain receptor functioning during cerebral damage. Immunohistochemical study showed that following 24 h middle cerebral artery occlusion, A2A ARs were definitely expressed both on neurons and activated microglia in ischemic striatum and cortex, but were not detected on astrocytes. In the non-ischemic hemisphere and in sham-operated rats A2A ARs were barely detected. Modifications of ARs may play a significant role in determining adenosine effects during ischemia and therefore should be taken into account when evaluating time-dependent protective effects of specific A2A active compounds.  相似文献   

15.
A(2A) adenosine receptors are considered an excellent target for drug development in several neurological and psychiatric disorders. It is noteworthy that the responses evoked by A(2A) adenosine receptors are regulated by D(2) dopamine receptor ligands. These two receptors are co-expressed at the level of the basal ganglia and interact to form functional heterodimers. In this context, possible changes in A(2A) adenosine receptor functional responses caused by the chronic blockade/activation of D(2) dopamine receptors should be considered to optimise the therapeutic effectiveness of dopaminergic agents and to reduce any possible side effects. In the present paper, we investigated the regulation of A(2A) adenosine receptors induced by antipsychotic drugs, commonly acting as D(2) dopamine receptor antagonists, in a cellular model co-expressing both A(2A) and D(2) receptors. Our data suggest that the treatment of cells with the classical antipsychotic haloperidol increased both the affinity and responsiveness of the A(2A) receptor and also affected the degree of A(2A)-D(2) receptor heterodimerisation. In contrast, an atypical antipsychotic, clozapine, had no effect on A(2A) adenosine receptor parameters, suggesting that the two classes of drugs have different effects on adenosine-dopamine receptor interaction. Modifications to A(2A) adenosine receptors may play a significant role in determining cerebral adenosine effects during the chronic administration of antipsychotics in psychiatric diseases and may account for the efficacy of A(2A) adenosine receptor ligands in pathologies associated with dopaminergic system dysfunction. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11302-010-9201-z) contains supplementary material, which is available to authorized users.  相似文献   

16.
Zhou AM  Li QJ  Chen XL  Li WB 《生理学报》2001,53(4):265-269
采用放射性配基结合法,测定大鼠全脑缺血后海马细胞膜腺苷(adenosine,ADO)受体数量及亲和力的变化,以探讨其与脑缺血耐受形成之间的关系。发现缺血6min即可导致海马组织明显的神经元延迟性死亡(delayed neuron  相似文献   

17.
18.
1-Methylisoguanosine, a marine natural product with potent muscle-relaxant and cardiovascular actions in vivo, interacts directly with adenosine receptors in guinea-pig brain slices to stimulate adenylate cyclase. These effects are blocked by theophylline. Comparison of the in vivo pharmacological activity of a number of synthetic analogues of 1-methylisoguanosine with in vitro adenylate cyclase-stimulating ability indicates that compounds lacking the latter biochemical activity have little muscle-relaxant activity. Adenosine is a potent stimulator of adenylate cyclase but is inactive in vivo because of rapid removal from the extracellular environment by uptake and deamination. Unlike adenosine, 1-methylisoguanosine is resistant to deamination and is only poorly accumulated by brain tissue slices or homogenates containing synaptosomes. Since it is an extremely weak competitive inhibitor of adenosine deaminase and only a weak inhibitor of adenosine uptake, it is unlikely to act by potentiating the effects of adenosine itself at extracellular receptors. Thus, the pharmacological effects of 1-methylisoguanosine are apparently due to its actions as a long-lasting adenosine analogue.  相似文献   

19.
Activation of adenosine A(1) receptors inhibits excitatory synaptic transmission. Equilibrative nucleoside transporters (ENTs) regulate extracellular adenosine levels; however, the role of neuronal ENTs in adenosine influx and efflux during cerebral ischemia has not been determined. We used mice with neuronal expression of human ENT type 1 and wild type (Wt) littermates to compare responses to in vitro hypoxic or ischemic conditions. Extracellular recordings in the CA1 region of hippocampal slices from transgenic (Tg) mice revealed increased basal synaptic transmission, relative to Wt slices, and an absence of 8-cyclopentyl-1,3-dipropyl-xanthine mediated augmentation of excitatory neurotransmission. Adenosine (10-100 μM) had a reduced potency for inhibiting synaptic transmission in slices from Tg mice; inhibitory concentration 50% values were approximately 25 and 50 μM in Wt and Tg slices, respectively. Potency of the A(1) receptor agonist N(6) -cyclopentyladenosine (1 nM-1 μM) was unchanged. Transient hypoxia or oxygen-glucose deprivation produced greater inhibition of excitatory neurotransmission in slices from Wt than Tg, mice. The ENT1 inhibitor S-(4-nitrobenzyl)-6-thioinosine abolished these differences. Taken together, our data provide evidence that neuronal ENTs reduce hypoxia- and ischemia-induced increases in extracellular adenosine levels and suggest that inhibition of neuronal adenosine transporters may be a target for the treatment of cerebral ischemia.  相似文献   

20.
A(3) adenosine receptors have been proposed to play an important role in the pathophysiology of cerebral ischemia with a regimen-dependent nature of the therapeutic effects probably related to receptor desensitization and down-regulation. Here we studied the agonist-induced internalization of human A(3) adenosine receptors in transfected Chinese hamster ovary cells, and then we evaluated the relationship between internalization and signal desensitization and resensitization. Binding of N(6)-(4-amino-3-[(125)I]iodobenzyl)adenosine-5'-N-methyluronamide to membranes from Chinese hamster ovary cells stably transfected with the human A(3) adenosine receptor showed a profile typical of these receptors in other cell lines (K:(D) = 1.3+/-0.08 nM; B(max) = 400+/-28 fmol/mg of proteins). The iodinated agonist, bound at 4 degrees C to whole transfected cells, was internalized by increasing the temperature to 37 degrees C with a rate constant of 0.04+/-0.034 min(-1). Agonist-induced internalization of A(3) adenosine receptors was directly demonstrated by immunogold electron microscopy, which revealed the localization of these receptors in plasma membranes and intracellular vesicles. Moreover, short-term exposure of these cells to the agonist caused rapid desensitization as tested in adenylyl cyclase assays. Subsequent removal of the agonist led to restoration of the receptor function and recycling of the receptors to the cell surface. The rate constant of receptor recycling was 0.02+/-0.0017 min(-1). Blockade of internalization and recycling demonstrated that internalization did not affect signal desensitization, whereas recycling of internalized receptors was implicated in the signal resensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号