首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
William H. Stone 《Genetica》1987,73(1-2):169-177
The wide array of papers delivered at this symposium, ranging from population genetics to molecular genetics, is convincing evidence that genetic research with nonhuman primates is in full bloom. In fact, progress has been quite remarkable considering that a significant number of pedigreed colonies of nonhuman primates have been available for less than 25 years, which is hardly enough time to raise 3 generations of chimpanzees, 5 generations of baboons or 6 generations of rhesus monkeys. Were it not for these pedigreed colonies, we would not have been privileged to have this assemblage of papers on behavior, social structure, predisposition to disease and management of breeding colonies. It is indeed exciting that preliminary evidence has been obtained for major genes that play a role in susceptibility to dyslipoproteinemias in baboons, and that monoclonal antibodies and DNA markers are helping us to understand cholesterol metabolism. And thanks to computers, we can now rank animals in a colony in terms of their useful genotypes as well as their productivity. One can not help but be impressed with the commonality of humans and nonhuman primates at the structural and functional levels. For example, the major histocompatibility systems and the maternal-fetal relationships are very similar. We heard that this similarity is even more striking at the chromosomal, biochemical and DNA levels. A provocative question yet to be answered is, “what accounts for the obvious differences between humans and nonhuman primates in view of these incredible similarities?” In light of these advances, this symposium was at the cutting edge of primate genetics and the papers published in this issue of Genetica are certain to be hallmarks in the literature.  相似文献   

2.
Primates have long been a favorite subject of evolutionary biologists, and in recent decades, have come to play an increasingly important role in biomedical research, including comparative genetics and phylogenetics. The growing list of annotated genome databases from nonhuman primate species is expected to aid in these endeavors, allowing many analyses to be performed partially or even entirely in silico. However, whole genome sequence data are typically derived from only one, or at best a few, individuals. As a consequence, information in the databases does not capture variation within species or populations, nor can the sequence of one individual be taken as representative across all loci. Furthermore, the vast majority of primate species have not been sequenced, and only a small percentage of species are currently slated for whole genome sequencing efforts. Finally, for many species data on patterns and levels of RNA expression will be lacking. Thus, there will continue to be a demand for samples from nonhuman primates as raw material for genetic and phylogenetic analyses. Gathering such samples can be complicated, with many legal and practical barriers to obtaining samples in the field or transporting samples between research centers and across borders. Here, we provide basic but critical advice for those initiating studies requiring genetic material from nonhuman primates, including some guidance on how to locate and obtain samples, brief overviews of common protocols for handling and processing samples, and a table of useful links for locating resources related to the acquisition of samples. We also advocate for the creation of curated banks of nonhuman primate samples, particularly renewable sources of genetic material such as immortalized cell lines or fibroblasts, to reduce the need for repeated or redundant sampling from living animals.  相似文献   

3.
Modeling human diseases using nonhuman primates including chimpanzee, rhesus, cynomolgus, marmoset and squirrel monkeys has been reported in the past decades. Due to the high similarity between nonhuman primates and humans, including genome constitution, cognitive behavioral functions, anatomical structure, metabolic, reproductive, and brain functions; nonhuman primates have played an important role in understanding physiological functions of the human body, clarifying the underlying mechanism of human diseases, and the development of novel treatments for human diseases. However, nonhuman primate research has been restricted to cognitive, behavioral, biochemical and pharmacological approaches of human diseases due to the limitation of gene transfer technology in nonhuman primates. The recent advancement in transgenic technology that has led to the generation of the first transgenic monkey in 2001 and a transgenic monkey model of Huntington’s disease (HD) in 2008 has changed that focus. The creation of transgenic HD monkeys that replicate key pathological features of human HD patients further suggests the crucial role of nonhuman primates in the future development of biomedicine. These successes have opened the door to genetic manipulation in nonhuman primates and a new era in modeling human inherited genetic disorders. We focused on the procedures in creating transgenic Huntington’s disease monkeys, but our work can be applied to transgenesis in other nonhuman primate species.  相似文献   

4.
Abstract: The genetic similarity between humans and nonhuman primates makes nonhuman primates uniquely suited as models for genetic research on complex physiological and behavioral phenotypes. By comparison with human subjects, nonhuman primates, like other animal models, have several advantages for these types of studies: 1) constant environmental conditions can be maintained over long periods of time, greatly increasing the power to detect genetic effects; 2) different environmental conditions can be imposed sequentially on individuals to characterize genotype-environment interactions; 3) complex pedigrees that are much more powerful for genetic analysis than typically available human pedigrees can be generated; 4) genetic hypotheses can be tested prospectively by selective matings; and 5) essential invasive and terminal experiments can be conducted. Limitations of genetic research with nonhuman primates include cost and availability. However, the ability to manipulate both genetic and environmental factors in captive primate populations indicates the promise of genetic research with these important animal models for illuminating complex disease processes. The utility of nonhuman primates for biomedical research on human health problems is illustrated by examples concerning the use of baboons in studies of osteoporosis, alcohol metabolism, and lipoproteins.  相似文献   

5.
Despite significant progress in reducing the incidence of tuberculosis in nonhuman primates (NHPs) maintained in captivity, outbreaks continue to occur in established colonies, with potential serious consequences in human exposures, animal losses, disruption of research, and costs related to disease control efforts. The intradermal tuberculin skin test (TST) using mammalian old tuberculin (MOT) has been the mainstay of NHP tuberculosis surveillance and antemortem diagnosis for more than 60 years. But limitations of the TST, particularly its inability to reliably identify animals with latent TB infections, make it unsuitable for use as a single, standalone test for TB surveillance in nonhuman primates in the 21st century. Advances in technology and the availability of Mycobacterium spp. genomic sequence data have facilitated the development and evaluation of new immune-based screening assays as possible adjuncts and alternatives to the TST, including in vitro whole blood assays that measure the release of interferon gamma in response to stimulation with tuberculin or specific mycobacterial antigens, and assays that detect antibodies to highly immunogenic secreted proteins unique to M. tuberculosis, M. bovis, and other species belonging to the M. tuberculosis complex. It is becoming apparent that no single screening test will meet all the requirements for surveillance and diagnosis of tuberculosis in nonhuman primates. Instead, the use of several tests in combination can increase the overall sensitivity and specificity of screening and surveillance programs and likely represents the future of TB testing in nonhuman primates. In this article we describe the characteristics of these newer screening tests and discuss their potential contributions to NHP tuberculosis surveillance programs.  相似文献   

6.
7.
Similarities in developmental biology between human and nonhuman primates have resulted in the use of macaque species as models in perinatal research. Studies have frequently included invasive surgical procedures or may have required "blind" injections. Several techniques have been established in human subjects using ultrasound as a guide such as cordocentesis and fetal therapy. These techniques have been applied to the nonhuman primate laboratory setting, which significantly decreases the risk of pregnancy loss due to experimental intervention.  相似文献   

8.
Osteoporosis and disorders of bone fragility are highly heritable, but despite much effort the identities of few of the genes involved has been established. Recent developments in genetics such as genome-wide association studies are revolutionizing research in this field, and it is likely that further contributions will be made through application of next-generation sequencing technologies, analysis of copy number variation polymorphisms, and high-throughput mouse mutagenesis programs. This article outlines what we know about osteoporosis genetics to date and the probable future directions of research in this field.  相似文献   

9.
Osteoporosis and disorders of bone fragility are highly heritable, but despite much effort the identities of few of the genes involved has been established. Recent developments in genetics such as genome-wide association studies are revolutionizing research in this field, and it is likely that further contributions will be made through application of next-generation sequencing technologies, analysis of copy number variation polymorphisms, and high-throughput mouse mutagenesis programs. This article outlines what we know about osteoporosis genetics to date and the probable future directions of research in this field.  相似文献   

10.
Models of rheumatoid arthritis (RA) in laboratory animals are important tools for research into pathogenic mechanisms and the development of effective, safe therapies. Rodent models (rats and mice) have provided important information about the pathogenic mechanisms. However, the evolutionary distance between rodents and humans hampers the translation of scientific principles into effective therapies. The impact of the genetic distance between the species is especially seen with treatments based on biological molecules, which are usually species-specific. The outbred nature and the closer anatomical, genetic, microbiological, physiological, and immunological similarity of nonhuman primates to humans may help to bridge the wide gap between inbred rodent strain models and the heterogeneous RA patient population. Here we review clinical, immunological and pathological aspects of the rhesus monkey model of collagen-induced arthritis, which has emerged as a reproducible model of human RA in nonhuman primates.  相似文献   

11.
Classical genetic markers and DNA markers: A commensal marriage   总被引:1,自引:0,他引:1  
In this paper, we present an overview of classical genetic markers in nonhuman primates and then contrast the discriminatory powers of these markers with DNA markers. We have restricted the scope of our discussion to genetic markers found in blood, since they have been studied most extensively over the past 30 years. For example, immunoglobulin allotypes, complement markers, transferrins, and other protein markers can be identified using serum or plasma. Lymphocytes carry the major histocompatibility complex (MHC) markers, which are very polymorphic in most nonhuman primates. Lymphocytes are also used as a source of DNA. Finally, red blood cells carry an enormous array of blood group as well as isozyme markers. Our discussion will be limited to three species: rhesus monkeys (Macaca mulatta), baboons (Papio hamadryas), and chimpanzees (Pan troglodytes), although the principles are applicable to all nonhuman primates.  相似文献   

12.
Killer Ig-like receptors (KIRs) are implicated in protection from multiple pathogens including HIV, human papillomavirus, and malaria. Nonhuman primates such as rhesus and cynomolgus macaques are important models for the study of human pathogens; however, KIR genetics in nonhuman primates are poorly defined. Understanding KIR allelic diversity and genomic organization are essential prerequisites to evaluate NK cell responses in macaques. In this study, we present a complete characterization of KIRs in Mauritian cynomolgus macaques, a geographically isolated population. In this study we demonstrate that only eight KIR haplotypes are present in the entire population and characterize the gene content of each. Using the simplified genetics of this population, we construct a model for macaque KIR genomic organization, defining four putative KIR3DL loci, one KIR3DH, two KIR2DL, and one KIR1D. We further demonstrate that loci defined in Mauritian cynomolgus macaques can be applied to rhesus macaques. The findings from this study fundamentally advance our understanding of KIR genetics in nonhuman primates and establish a foundation from which to study KIR signaling in disease pathogenesis.  相似文献   

13.
Scheffrahn et al. (1998a,b) aimed to outline the possible contributions of genetics to conservation biology: the determination of genetic variation of wild groups and its use as a guideline in breeding programs. Unfortunately, the amount of genetic variation within wild groups of nonhuman primates is rarely known. In particular, this observation holds for prosimians. Average heterozygosity is widely considered to be a good indicator of the magnitude of intraspecific variation. We provide some values of average heterozygosity of wild populations of Otolemur garnettii, Eulemur macaco macaco and E. m. flavifrons.  相似文献   

14.
Since nonhuman primates are closely related to humans and share many physical similarities, they are important for use in research areas such as human infectious diseases, reproduction, physiology, endocrinology, metabolism, neurology and longevity. To develop and maintain these animals, we must establish techniques for in vitro manipulation of spermatozoa and eggs. For a decade my research group has been conducting basic research to establish embryo manipulation techniques and to clarify the reproductive phenomena in nonhuman primates. This article summarizes the past research on in vitro manipulation of nonhuman primate gametes, from collection of reproductive cells and in vitro fertilization to the birth of offspring after embryo transfer, as well as the current status of these research areas. The studies summarized here will directly lead to the development of standard techniques for practical and comprehensive use in nonhuman primates.  相似文献   

15.
Retroviruses have been the common foe in two recent “wars,” first against cancer, then against AIDS. Although neither war is close to over, some battles have been won, thanks in part to research using nonhuman primates. As useful as these animals were in studying retroviruses and cancer, their contribution to AIDS research is already far greater. This paper will briefly review the major contribution of nonhuman primates and their retroviruses to research on cancer and AIDS.  相似文献   

16.
Animal models that represent human diseases constitute an important tool in understanding the pathogenesis of the diseases, and in developing effective therapies. Neurodegenerative diseases are complex disorders involving neuropathologic and psychiatric alterations. Although transgenic and knock-in mouse models of Alzheimer's disease, (AD), Parkinson's disease (PD) and Huntington's disease (HD) have been created, limited representation in clinical aspects has been recognized and the rodent models lack true neurodegeneration. Chemical induction of HD and PD in nonhuman primates (NHP) has been reported, however, the role of intrinsic genetic factors in the development of the diseases is indeterminable. Nonhuman primates closely parallel humans with regard to genetic, neuroanatomic, and cognitive/behavioral characteristics. Accordingly, the development of NHP models for neurodegenerative diseases holds greater promise for success in the discovery of diagnoses, treatments, and cures than approaches using other animal species. Therefore, a transgenic NHP carrying a mutant gene similar to that of patients will help to clarify our understanding of disease onset and progression. Additionally, monitoring disease onset and development in the transgenic NHP by high resolution brain imaging technology such as MRI, and behavioral and cognitive testing can all be carried out simultaneously in the NHP but not in other animal models. Moreover, because of the similarity in motor repertoire between NHPs and humans, it will also be possible to compare the neurologic syndrome observed in the NHP model to that in patients. Understanding the correlation between genetic defects and physiologic changes (e.g. oxidative damage) will lead to a better understanding of disease progression and the development of patient treatments, medications and preventive approaches for high risk individuals. The impact of the transgenic NHP model in understanding the role which genetic disorders play in the development of efficacious interventions and medications is foreseeable.  相似文献   

17.
Ovulation induction, sperm capacitation, and fertilization have been studied for over 50 years in nonhuman primates but it has only been in the past 20 years that extensive studies on sizeable numbers of embryos have been carried out. Of over 200 species of nonhuman primates only a few have been studied and the majority of the findings come from studies of the squirrel monkey, baboon, rhesus, and cynomolgus macaque. Nevertheless, the fertilization process appears to be similar to that identified in other mammals and in man.  相似文献   

18.
Nonhuman primates, primarily rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicularis), and baboons (Papio spp.), have been used extensively in research models of solid organ transplantation, mainly because the nonhuman primate (NHP) immune system closely resembles that of the human. Nonhuman primates are also frequently the model of choice for preclinical testing of new immunosuppressive strategies. But the management of post-transplant nonhuman primates is complex, because it often involves multiple immunosuppressive agents, many of which are new and have unknown effects. Additionally, the resulting immunosuppression carries a risk of infectious complications, which are challenging to diagnose. Last, because of the natural tendency of animals to hide signs of weakness, infectious complications may not be obvious until the animal becomes severely ill. For these reasons the diagnosis of infectious complications is difficult among post-transplant NHPs. Because most nonhuman primate studies in organ transplantation are quite small, there are only a few published reports concerning infections after transplantation in nonhuman primates. Based on our survey of these reports, the incidence of infection in NHP transplant models is 14%. The majority of reports suggest that many of these infections are due to reactivation of viruses endemic to the primate species, such as cytomegalovirus (CMV), polyomavirus, and Epstein-Barr virus (EBV)-related infections. In this review, we address the epidemiology, pathogenesis, role of prophylaxis, clinical presentation, and treatment of infectious complications after solid organ transplantation in nonhuman primates.  相似文献   

19.
Forest biotechnology: Innovative methods, emerging opportunities   总被引:1,自引:0,他引:1  
Summary The productivity of plantation forests is essential to meet the future world demand for wood and wood products in a sustainable fashion and in a manner that preserves natural stands and biodiversity. Plantation forestry has enormously benefited from development and implementation of improved silvicultural and forest management practices during the past century. A second wave of improvements has been brought about by the introduction of new germplasm developed through genetics and breeding efforts for both hardwood and conifer tree species. Coupled with the genetic gains achieved through tree breeding, the emergence of new biotechnological approaches that span the fields of plant developmental biology, genetic transformation, and discovery of genes associated with complex multigenic traits have added a new dimension to forest tree improvement programs. Significant progress has been made during the past five years in the area of plant regeneration via organogenesis and somatic embryogenesis (SE) for economically important tree species. These advances have not only helped the development of efficient gene transfer techniques, but also have opened up avenues for deployment of new high-performance clonally replicated planting stocks in forest plantations. One of the greatest challenges today is the ability to extend this technology to the most elite germplasm, such that it becomes an, economically feasible means for large-scale production and delivery of improved planting stock. Another challenge will be the ability of the forestry research community to capitalize rapidly on current and future genomics-based elucidation of the underlying mechanisms for important but complex phenotypes. Advancements in gene cloning and genomics technology in forest trees have enabled the discovery and introduction of value-added traits for wood quality and resistance to biotic and abiotic stresses into improved genotypes. With these technical advancements, it will be necessary for reliable regulatory infrastructures and processes to be in place worldwide for testing and release of trees improved through biotechnology. Commercialization of planting stocks, as new varieties generated through clonal propagation and advanced breeding programs or as transgenic trees with high-value traits, is expected in the near future, and these trees will enhance the quality and productivity of our plantation forests.  相似文献   

20.
Use of primates in research: a global overview   总被引:6,自引:0,他引:6  
We assessed the use of nonhuman primates and nonhuman primate biological material in research by reviewing studies published in 2001 in peer-reviewed journals. The number and species of primates used, the origin of the animals, the type of study, the area of research of the investigation, and the location at which the research was performed were tabulated. Additionally, factors related to the animals that may have affected the outcome of the experiments were recorded. A total of 2,937 articles involving 4,411 studies that employed nonhuman primates or nonhuman primate biological material were identified and analyzed. More than 41,000 animals were represented in the studies published in 2001. In the 14% of studies for which re-use could be determined, 69% involved animals that had been used in previous experiments. Published studies most commonly used nonhuman primates or nonhuman primate biological material from the species Chlorocebus aethiops (19%), Macaca mulatta (18%), M. fascicularis (9%), and Papio spp. (6%). Of these studies, 54% were classified as in vitro studies, 14% as noninvasive, 30% as chronic, and 1% were considered acute. Nonhuman primates were primarily used in research areas in which they appear to be the most appropriate models for humans. The most common areas of research were microbiology (including HIV/AIDS (26%)), neuroscience (19%), and biochemistry/chemistry (12%). Most (84%) of the primate research published in 2001 was conducted in North America, Europe, and Japan. The animals and conditions under which they were housed and used were rarely described. Although it is estimated that nonhuman primates account for an extremely small fraction of all animals used in research, their special status makes it important to report the many husbandry and environmental factors that influence the research results generated. This analysis has identified that editors rarely require authors to provide comprehensive information concerning the subjects (e.g., their origin), treatment conditions, and experimental procedures utilized in the studies they publish. The present analysis addresses the use of primates for research, including the effects of a shortage of suitable nonhuman primate subjects in many research areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号