首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The yeast mitochondrial outer membrane contains a major 70 kd protein with an amino-terminal hydrophobic membrane anchor and a hydrophilic 60 kd domain exposed to the cytosol. We now show that this protein (which we term MAS70) accelerates the mitochondrial import of many (but not all) precursor proteins. Anti-MAS70 IgGs or removal of MAS70 from the mitochondria by either mild trypsin treatment or by disrupting the nuclear MAS70 gene inhibits import of the F1-ATPase beta-subunit, the ADP/ATP translocator, and of several other precursors into isolated mitochondria by up to 75%, but has little effect on the import of porin. Intact cells of a mas70 null mutant import the F1-ATPase alpha-subunit and beta-subunits, cytochrome c1 and other precursors at least several fold more slowly than wild-type cells. Removal of MAS70 from wild-type mitochondria inhibits binding of the ADP/ATP translocator to the mitochondrial surface, indicating that MAS70 mediates one of the earliest import steps. Several precursors are thus imported by a pathway in which MAS70 functions as a receptor-like component. MAS70 is not essential for import of these precursors, but only accelerates this process.  相似文献   

2.
The protein import pathway that targets proteins to the mitochondrial matrix has been extensively characterized in the past 15 years. Variations of this import pathway account for the sorting of proteins to other compartments as well, but the insertion of integral inner membrane proteins lacking a presequence is mediated by distinct translocation machinery. This consists of a complex of Tim9 and Tim10, two homologous, Zn(2+)-binding proteins that chaperone the passage of the hydrophobic precursor across the aqueous intermembrane space. The precursor is then targeted to another, inner-membrane-bound, complex of at least five subunits that facilitates insertion. Biochemical and genetic experiments have identified the key components of this process; we are now starting to understand the molecular mechanism. This review highlights recent advances in this new membrane protein insertion pathway.  相似文献   

3.
M Ohba  G Schatz 《The EMBO journal》1987,6(7):2109-2115
Import of several precursor proteins into isolated yeast mitochondria is inhibited by rabbit antiserum raised against the total mitochondrial outer membrane or against electrophoretically purified 45-kd outer membrane proteins. Antisera against other outer membrane proteins are only marginally active or inactive. Inhibition by the antiserum against 45-kd proteins is only weak with untreated mitochondria, but reaches 80-90% with mitochondria that had been pretreated with 0.1 mg/ml trypsin. This trypsin pretreatment by itself inhibits precursor import only slightly (30-50%). Selective inhibition of import does not correlate with binding of the various IgGs to the mitochondrial surface and is also observed with the corresponding Fab fragments. Inhibition by antibodies against 45-kd outer membrane proteins strongly suggests the existence of a mitochondrial surface protein mediating protein import and offers a means of isolating this protein.  相似文献   

4.
Translocation of nuclear-encoded preproteins across the outer membrane of mitochondria is mediated by the multicomponent transmembrane TOM complex. We have isolated the TOM core complex of Neurospora crassa by removing the receptors Tom70 and Tom20 from the isolated TOM holo complex by treatment with the detergent dodecyl maltoside. It consists of Tom40, Tom22, and the small Tom components, Tom6 and Tom7. This core complex was also purified directly from mitochondria after solubilization with dodecyl maltoside. The TOM core complex has the characteristics of the general insertion pore; it contains high-conductance channels and binds preprotein in a targeting sequence-dependent manner. It forms a double ring structure that, in contrast to the holo complex, lacks the third density seen in the latter particles. Three-dimensional reconstruction by electron tomography exhibits two open pores traversing the complex with a diameter of approximately 2.1 nm and a height of approximately 7 nm. Tom40 is the key structural element of the TOM core complex.  相似文献   

5.
Protein import across both mitochondrial membranes is mediated by the cooperation of two distinct protein transport systems, one in the outer and the other in the inner membrane. Previously we described a 45 kDa yeast mitochondrial inner membrane protein (ISP45) that can be cross-linked to a partially translocated precursor protein (Scherer et al., 1992). We have now purified ISP45 to homogeneity and identified it as the product of the nuclear MPI1 gene. Identity of ISP45 with the MPI1 gene product was shown by microsequencing of three tryptic ISP45 peptides and by demonstrating that an antibody against an Mpi1p-beta-galactosidase fusion protein specifically recognizes ISP45. Antibodies monospecific for ISP45 inhibited protein import into right-side-out mitochondrial inner membrane vesicles, but not into intact mitochondria. On solubilizing mitochondria, ISP45 was rapidly converted to a 40 kDa proteolytic fragment unless mitochondria were first denatured with trichloroacetic acid. The combined genetic and biochemical evidence identifies ISP45/Mpi1p as a component of the protein import system of the yeast mitochondrial inner membrane.  相似文献   

6.
Mitochondria import the majority of their proteins from the cytosol. At the mitochondrial outer membrane, import is initiated through a series of reactions, which include preprotein recognition, unfolding, insertion and translocation. These processes are facilitated by a multisubunit complex, the TOM complex. Specific roles can now be assigned to several components of this complex. Although the import machinery of the outer membrane can insert and translocate a few proteins on its own, completion of translocation o f most preproteins is dependent upon coupling to both the membrane potential and mt-Hsp70/ATP-driven transport across the inner membrane, mediated by the TIM complex.  相似文献   

7.
The buffer requirements to maintain mitochondrial intactness and membrane potential in in vitro studies were investigated, using gradient purified yeast mitochondria. It was found that the presence of phosphate is crucial for generation of a stable membrane potential and for preserving the intactness of the outer membrane, as assessed by probing the accessibility of Tom40p to trypsin and the leakage of cytochrome b2 from the intermembrane space. Upon addition of respiratory substrate in the absence of phosphate, mitochondria generate a membrane potential that collapses within 1 min. Under the same conditions, the mitochondrial outer membrane is disrupted. The presence of phosphate prevents both phenomena. The DeltapH component of the proton motive force appears to be responsible for the compromised outer membrane integrity. The collapse of the membrane potential is reversible to a limited extent. Only when phosphate is added soon enough after the addition of exogenous respiratory substrate can a stable membrane potential be obtained again. Within a few minutes, this capacity is lost. The presence of Mg(2+) prevents rupture of the outer membrane, but does not prevent rapid dissipation of the membrane potential. Similar results were obtained for mitochondria isolated and stored in the presence of dextran or bovine serum albumin.  相似文献   

8.
To identify yeast cytosolic proteins that mediate targeting of precursor proteins to mitochondria, we developed an in vitro import system consisting of purified yeast mitochondria and a radiolabeled mitochondrial precursor protein whose C terminus was still attached to the ribosome. In this system, the N terminus of the nascent chain was translocated across both mitochondrial membranes, generating a translocation intermediate spanning both membranes. The nascent chain could then be completely chased into the mitochondrial matrix after release from the ribosome. Generation of this import intermediate was dependent on a mitochondrial membrane potential, mitochondrial surface proteins, and was stimulated by proteins that could be released from the ribosomes by high salt. The major salt-released stimulatory factor was yeast nascent polypeptide-associated complex (NAC). Purified NAC fully restored import of salt-washed ribosome-bound nascent chains by enhancing productive binding of the chains to mitochondria. We propose that ribosome-associated NAC facilitates recognition of nascent precursor chains by the mitochondrial import machinery.  相似文献   

9.
10.
Functions of outer membrane receptors in mitochondrial protein import   总被引:10,自引:0,他引:10  
Most mitochondrial proteins are synthesized in the cytosol as precursor proteins and are imported into mitochondria. The targeting signals for mitochondria are encoded in the presequences or in the mature parts of the precursor proteins, and are decoded by the receptor sites in the translocator complex in the mitochondrial outer membrane. The recently determined NMR structure of the general import receptor Tom20 in a complex with a presequence peptide reveals that, although the amphiphilicity and positive charges of the presequence is essential for the import ability of the presequence, Tom20 recognizes only the amphiphilicity, but not the positive charges. This leads to a new model that different features associated with the mitochondrial targeting sequence of the precursor protein can be recognized by the mitochondrial protein import system in different steps during the import.  相似文献   

11.
The role of plant mitochondrial outer membrane proteins in the process of preprotein import was investigated, as some of the principal components characterized in yeast have been shown to be absent or evolutionarily distinct in plants. Three outer membrane proteins of Arabidopsis thaliana mitochondria were studied: TOM20 (translocase of the outer mitochondrial membrane), METAXIN, and mtOM64 (outer mitochondrial membrane protein of 64 kD). A single functional Arabidopsis TOM20 gene is sufficient to produce a normal multisubunit translocase of the outer membrane complex. Simultaneous inactivation of two of the three TOM20 genes changed the rate of import for some precursor proteins, revealing limited isoform subfunctionalization. Inactivation of all three TOM20 genes resulted in severely reduced rates of import for some but not all precursor proteins. The outer membrane protein METAXIN was characterized to play a role in the import of mitochondrial precursor proteins and likely plays a role in the assembly of beta-barrel proteins into the outer membrane. An outer mitochondrial membrane protein of 64 kD (mtOM64) with high sequence similarity to a chloroplast import receptor was shown to interact with a variety of precursor proteins. All three proteins have domains exposed to the cytosol and interacted with a variety of precursor proteins, as determined by pull-down and yeast two-hybrid interaction assays. Furthermore, inactivation of one resulted in protein abundance changes in the others, suggesting functional redundancy. Thus, it is proposed that all three components directly interact with precursor proteins to participate in early stages of mitochondrial protein import.  相似文献   

12.
We show that a synthetic peptide corresponding to the N-terminal 22 residues of the cytochrome c oxidase subunit IV presequence blocked import of pre-subunit IV into yeast mitochondria. The 22-residue peptide pL4-(1-22) did not alter the electrical potential across the mitochondrial inner membrane (the delta psi). Inhibition of import was reversible and could be overcome by the addition of increased amounts of precursor. Two other peptides, pL4-(1-16) and pL4-(1-23), which correspond to, respectively, the N-terminal 16 and 23 residues of the same presequence, also blocked import of pre-subunit IV. However, pL4-(1-16) was a much weaker inhibitor of import, while the inhibitory effect of pL4-(1-23) was due to its ability to completely collapse the delta psi. pL4-(1-22) seems to be a general inhibitor of mitochondrial import, in that it also blocked uptake of several other proteins. These included the precursors of the yeast proteins cytochrome c oxidase subunit Va, the F1-ATPase beta subunit, mitochondrial malate dehydrogenase, and the ATP/ADP carrier. In addition, uptake of two non-yeast precursor proteins (human ornithine transcarbamylase and a cytochrome oxidase subunit IV-dihydrofolate reductase fusion), was also blocked by the peptide. Subsequent studies revealed that pL4-(1-22) did not block the initial recognition or binding of proteins to mitochondria. Rather, our results suggest that the peptide acts at a subsequent translocation step which is common to the import pathways of many different precursor proteins.  相似文献   

13.
A major 70 kDa protein of the yeast mitochondrial outer membrane is coded by a nuclear gene, synthesized on cytoplasmic ribosomes, and transported to the mitochondrial outer membrane. In order to investigate in detail the information necessary for localizing the 70 kDa protein at the outer membrane, we have examined the intracellular and intramitochondrial location of fusion proteins which consist of various lengths of the amino-terminal region of the 70 kDa protein with an enzymatically active beta-galactosidase. The results indicate that the extreme amino-terminal 12 amino acids of the 70 kDa protein function as a targeting sequence, whereas the subsequent uncharged region (up to residue 29) is necessary for "stop-transfer" and "anchoring" functions. Moreover, we have found that a fusion protein which contained the amino-terminal 19 amino acids of the 70 kDa protein is localized on the outer membrane as well as in the matrix space. Changes in the dual localization of this fusion protein accompanied its overproduction or expression in a respiration-deficient yeast mutant.  相似文献   

14.
The process of mitochondrial protein import has been studied for many years. Despite this attention, many processes associated with mitochondrial biogenesis are poorly understood. Insight into one of these processes, assembly of beta-barrel proteins into the mitochondrial outer membrane, will be discussed. This review focuses on recent data that suggest that assembly of beta-barrel proteins into the outer mitochondrial membrane is dependent on a newly identified protein complex termed the sorting and assembly machinery (SAM complex). Members of the SAM complex have been identified in both eukaryotic and prokaryotic organisms, suggesting that the process of beta-barrel assembly into membranes has been conserved through evolution.  相似文献   

15.
Cultures of whole fetal rat sensory ganglia which had matured and myelinated in culture were treated for 1-3 h with a pulse of 0.2% trypsin. The tissue was observed during the period of treatment and during subsequent weeks using both light and electron microscopy. Within minutes after trypsin addition the matrix of the culture was altered and the nerve fascicles loosened. Progressive changes included the retraction of Schwann cell processes from the nodal region the detachment of the myelin-related paranodal Schwann cell loops from the axon, and lengthening of the nodal region as the axon was bared. The retraction of myelin from nodal stabilized several hours after trypsin withdrawal. Breakdown of the altered myelin segments was rare. There were no discernable changes in neurons or their processes after this exposure to trypsin. The partial repair which occured over a period of several weeks included the reattachment of paranodal Schwann cell loops to the axolemma and the insertion of new myelin segments where a substantial length of axolemma had been bared. The significance of these observations to the characterization of the Schwann cell-axolemmal junctions on myelinated nerve fibers is discussed. The dramatic degree of myelin change that can occur without concomitant myelin breakdown is particularly noted, as is the observation that these altered myelin segments are, in part, repaired.  相似文献   

16.
Proteins targeted to mitochondria are transported into the organelle through a high molecular weight complex called the translocase of the outer mitochondrial membrane (TOM). At the core of this machinery is a multisubunit general import pore (GIP) of 400 kDa. Here we report the assembly of the yeast GIP that involves two successive intermediates of 250 kDa and 100 kDa. The precursor of the channel-lining Tom40 is first targeted to the membrane via the receptor proteins Tom20 and Tom22; it then assembles with Tom5 to form the 250 kDa intermediate exposed to the intermembrane space. The 250 kDa intermediate is followed by the formation of the 100 kDa intermediate that associates with Tom6. Maturation to the 400 kDa complex occurs by association of Tom7 and Tom22. Tom7 functions by promoting both the dissociation of the 400 kDa complex and the transition from the 100 kDa intermediate to the mature complex. These results indicate that the dynamic conversion between the 400 kDa complex and the 100 kDa late intermediate allows integration of new precursor subunits into pre-existing complexes.  相似文献   

17.
β-Barrel proteins are present only in the outer membranes of Gram-negative bacteria, chloroplasts and mitochondria. Fungal mitochondria were shown to readily import and assemble bacterial β-barrel proteins, but human mitochondria exhibit certain selectivity. Whereas enterobacterial β-barrel proteins are not imported, neisserial ones are. Of those, solely neisserial Omp85 is integrated into the outer membrane of mitochondria. In this study, we wanted to identify the signal that targets neisserial β-barrel proteins to mitochondria. We exchanged parts of neisserial Omp85 and PorB with their Escherichia coli homologues BamA and OmpC. For PorB, we could show that its C-terminal quarter can direct OmpC to mitochondria. In the case of Omp85, we could identify several amino acids of the C-terminal β-sorting signal as crucial for mitochondrial targeting. Additionally, we found that at least two POTRA (polypeptide-transport associated) domains and not only the β-sorting signal of Omp85 are needed for its membrane integration and function in human mitochondria. We conclude that the signal that directs neisserial β-barrel proteins to mitochondria is not conserved between these proteins. Furthermore, a linear mitochondrial targeting signal probably does not exist. It is possible that the secondary structure of β-barrel proteins plays a role in directing these proteins to mitochondria.  相似文献   

18.
Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long‐standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence‐carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.  相似文献   

19.
Import of precursor proteins into the yeast mitochondrial matrix can occur directly across the inner membrane. First, disruption of the outer membrane restores protein import to mitochondria whose normal import sites have been blocked by an antibody against the outer membrane or by a chimeric, incompletely translocated precursor protein. Second, a potential- and ATP-dependent import of authentic or artificial precursor proteins is observed with purified inner membrane vesicles virtually free of outer membrane components. Third, import into purified inner membrane vesicles is insensitive to antibody against the outer membrane. Thus, while outer membrane components are clearly required in vivo, the inner membrane contains a complete protein translocation system that can operate by itself if the outer membrane barrier is removed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号