首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Plant viruses must interact with host cellular components to replicate and move from cell to cell. In the case of Potato virus X (PVX), it carries stem-loop 1 (SL1) RNA essential for viral replication and movement. Using two-dimensional electrophoresis northwestern blot analysis, we previously identified several host proteins that bind to SL1 RNA. Of those, we further characterized a DnaJ-like protein from Nicotiana benthamiana named NbDnaJ. An electrophoretic mobility shift assay confirmed that NbDnaJ binds only to SL1 minus-strand RNA, and bimolecular fluorescence complementation (BiFC) indicated that NbDnaJ interacts with PVX capsid protein (CP). Using a series of deletion mutants, the C-terminal region of NbDnaJ was found to be essential for the interaction with PVX CP. The expression of NbDnaJ significantly changed upon infection with different plant viruses such as PVX, Tobacco mosaic virus, and Cucumber mosaic virus, but varied depending on the viral species. In transient experiments, both PVX replication and movement were inhibited in plants that over-expressed NbDnaJ but accelerated in plants in which NbDnaJ was silenced. In summary, we suggest that the newly identified NbDnaJ plays a role in PVX replication and movement by interacting with SL1(-) RNA and PVX CP.  相似文献   

2.
The 3′ noncoding region (NCR) of the negative-strand RNA [3′(−)NCR RNA] of the arterivirus simian hemorrhagic fever virus (SHFV) is 209 nucleotides (nt) in length. Since this 3′ region, designated 3′(−)209, is the site of initiation of full-length positive-strand RNA and is the template for the synthesis of the 5′ leader sequence, which is found on both full-length and subgenomic mRNAs, it is likely to contain cis-acting signals for RNA synthesis and to interact with cellular and viral proteins to form replication complexes. Gel mobility shift assays showed that cellular proteins in MA104 S100 cytoplasmic extracts formed two complexes with the SHFV 3′(−)209 RNA, and results from competition gel mobility shift assays demonstrated that these interactions were specific. Four proteins with molecular masses of 103, 86, 55, and 36 kDa were detected in UV-induced cross-linking assays, and three of these proteins (103, 55, and 36 kDa) were also detected by Northwestern blotting assays. Identical gel mobility shift and UV-induced cross-linking patterns were obtained with uninfected and SHFV-infected extracts, indicating that the four proteins detected are cellular, not viral, proteins. The binding sites for the four cellular proteins were mapped to the region between nt 117 and 184 (68-nt sequence) from the 3′ end of the SHFV negative-strand RNA. This 68-nt sequence was predicted to form two stem-loops, SL4 and SL5. The 3′(−)NCR RNA of another arterivirus, lactate dehydrogenase-elevating virus C (LDV-C), competed with the SHFV 3′(−)209 RNA in competition gel mobility shift assays. UV-induced cross-linking assays showed that four MA104 cellular proteins with the same molecular masses as those that bind to the SHFV 3′(−)209 RNA also bind to the LDV-C 3′(−)NCR RNA and equine arteritis virus 3′(−)NCR RNA. However, each of these viral RNAs also bound to an additional MA104 protein. The binding sites for the MA104 cellular proteins were shown to be located in similar positions in the LDV-C 3′(−)NCR and SHFV 3′(−)209 RNAs. These data suggest that the binding sites for a set of the cellular proteins are conserved in all arterivirus RNAs and that these cell proteins may be utilized as components of viral replication complexes.  相似文献   

3.
4.
We describe the optimized storage conditions of recombinant Potato virus A coat protein (ACP) carrying two different epitopes from Human papillomavirus type 16 (HPV-16). Epitope derived from minor capsid protein L2 was expressed as N-terminal fusion with ACP while an epitope derived from E7 oncoprotein was fused to its C-termini. The construct was cloned into Potato X potexvirus (PVX) based vector and transiently expressed in plants using Agrobacterium tumefaciens mediated inoculation. The effect of storage conditions on the serological activity of L2ACPE7 was studied by ELISA using IgG anti PVX, PVA and L2. Purified L2ACPE7 stored freeze-dried (at −20 °C), frozen at various temperatures (−20 °C, −70 °C) and at +4 °C were tested. Purified L2ACPE7 was most stable as lyophilized material stored at −20 °C. Our study demonstrates suitable way for the storage of plant material containing foreign viral epitopes for the purposes of edible vaccination.  相似文献   

5.
6.
Matsuo K  Hong JS  Tabayashi N  Ito A  Masuta C  Matsumura T 《Planta》2007,225(2):277-286
We have developed Cucumber mosaic virus (CMV) as a plant virus vector especially for production of pharmaceutical proteins. The CMV vector is a vector modifiable for different host plants and does not require further engineering steps. CMV contains three genomic RNA molecules (RNAs 1–3) necessary for infectivity. With this system, instead of creating different vector constructs for each plant we use, we take advantage of the formation of pseudrecombinants between two CMV isolates by simply reassembling a vector construct (RNA 2 base) and an RNA molecule containing the host determinant (mostly RNA 3). In this study, the gene for acidic fibroblast growth factor (aFGF), one of the human cytokines, was cloned under the control of the subgenomic promoter for RNA 4A of the CMV-based vector, C2-H1. Infected Nicotiana benthamiana plants produced aFGF at levels up to 5–8% of the total soluble protein. The tobacco-produced aFGF was purified, and its biological activity was confirmed. Using this system, which provides a versatile and viable strategy for the production of therapeutic proteins in plants, we also demonstrated a high level of aFGF in Glycine max (soybean) and Arabidopsis thaliana.  相似文献   

7.
Polygonatum cyrtonema Hua. lectins (PCLs) were extracted from plantlets regenerated from rhizome explants of P. cyrtonema. Rhizome explants demonstrated a high frequency of callus induction (72.5%) and adventitious shoots differentiation (83.7%) on Murashige Skoog (MS) medium supplemented with 2.0 mg l−1 2,4-dichlorophenoxyacetic acid and 1.0 mg l−1 6-benzyladenine. The adventitious shoots could root readily on 1/2 MS medium + 0.5 mg l−1 α-naphthaleneacetic acid and regenerate plantlets with a survival rate of 75.0%. Regenerated rhizomes were freeze-dried, macerated and prepared for total RNAs and proteins extraction. The PCL gene was cloned and its expression level was measured by RT-PCR. Western blot using a lectin-specific antibody revealed a similar amount in regenerated rhizomes compared to wild rhizomes, Furthermore, lectin derived from regenerated rhizomes retained its ability to haemagglutinate rabbit blood cells.  相似文献   

8.
Stem-loop I (SL1) located in the 5′ untranslated region of the hepatitis C virus (HCV) genome initiates binding to miR-122, a microRNA required for hepatitis HCV replication. However, proteins that bind SL1 remain elusive. In this study, we employed a human proteome microarray, comprised of ∼17,000 individually purified human proteins in full-length, and identified 313 proteins that recognize HCV SL1. Eighty-three of the identified proteins were annotated as liver-expressing proteins, and twelve of which were known to be associated with hepatitis virus. siRNA-induced silencing of eight out of 12 candidate genes led to at least 25% decrease in HCV replication efficiency. In particular, knockdown of heterogeneous nuclear ribonucleoprotein K (hnRNP K) reduced HCV replication in a concentration-dependent manner. Ultra-violet-crosslinking assay also showed that hnRNP K, which functions in pre-mRNA processing and transport, showed the strongest binding to the HCV SL1. We observed that hnRNP K, a nuclear protein, is relocated in the cytoplasm in HCV-expressing cells. Immunoprecipitation of the hnRNP K from Huh7.5 cells stably expressing HCV replicon resulted in the co-immunoprecipitation of SL1. This work identifies a cellular protein that could have an important role in the regulation of HCV RNA gene expression and metabolism.RNA viruses are the cause of numerous human diseases. Because of their relatively simple genomes, successful infection by RNA viruses is intimately linked to host factors that can both contribute to, or antagonize the viral infection process (13). Infection by the hepatitis C virus (HCV)1, a positive-sense RNA virus, can lead to liver cirrhosis and hepatocellular carcinoma. Approximately 2–3% of the world''s population is chronically infected with HCV, with more than 350,000 annual fatalities in recent years (4). As is typical for viruses, a large number of host factors have been reported to facilitate HCV infection including microRNA-122 (miR-122), CD81, claudin-1, cyclophilins, and lipoproteins, to name a few (59). These cellular factors interact with viral proteins or RNA, thus promoting HCV entry, genome translation, and replication.The 5′-untranslated region (5′-UTR) of the HCV RNA genome contains complex RNA structures that interact with cellular factors. These structures include the internal ribosomal entry site that regulates cap-independent translation of the viral RNA (1011). The 5′-most stem-loop (SL) structure, namely SL1, has been reported to interact with miR-122 to increase the stability of the genomic RNA and facilitate HCV RNA replication in cells (1213). However, host proteins that can bind to SL1 remain largely elusive because of a lack of proper tools. Previously, we have shown that functional protein microarrays, comprised of individually purified yeast proteins, are an ideal tool to identify proteins that directly interact with important RNA structures encoded by an RNA virus (14). Here, we took a similar approach using a human proteome microarray to identify human hnRNP K as a specific HCV SL1-binding protein that is required for efficient HCV RNA replication.  相似文献   

9.
Tian C  Wang T  Zhang W  Yu XF 《Nucleic acids research》2007,35(21):7288-7302
Diverse retroviruses have been shown to package host SRP (7SL) RNA. However, little is known about the viral determinants of 7SL RNA packaging. Here we demonstrate that 7SL RNA is more selectively packaged into HIV-1 virions than are other abundant Pol-III-transcribed RNAs, including Y RNAs, 7SK RNA, U6 snRNA and cellular mRNAs. The majority of the virion-packaged 7SL RNAs were associated with the viral core structures and could be reverse-transcribed in HIV-1 virions and in virus-infected cells. Viral Pol proteins influenced tRNAlys,3 packaging but had little influence on virion packaging of 7SL RNA. The N-terminal basic region and the basic linker region of HIV-1 NCp7 were found to be important for efficient 7SL RNA packaging. Although Alu RNAs are derived from 7SL RNA and share the Alu RNA domain with 7SL RNA, the packaging of Alu RNAs was at least 50-fold less efficient than that of 7SL RNA. Thus, 7SL RNAs are selectively packaged into HIV-1 virions through mechanisms distinct from those for viral genomic RNA or primer tRNAlys,3. Virion packaging of both human cytidine deaminase APOBEC3G and cellular 7SL RNA are mapped to the same regions in HIV-1 NC domain.  相似文献   

10.
The human granulocyte macrophage colony-stimulating factor (GM-CSF) is a glycoprotein with important clinical applications for the treatment of neutropenia and aplastic anemia and reducing infections associated with bone marrow transplants. We evaluated the potential for using a potato virus X (PVX) viral vector system for efficient expression of the biologically functional GM-CSF protein in Nicotiana benthamiana leaves. The GM-CSF gene was cloned into PVX viral expression vector, driven with the CaMV 35S promoter. Gene transfer was accomplished by inoculating N. benthamiana leaves with the plasmid DNA of PVX vector containing the GM-CSF gene. The expression level of the recombinant GM-CSF protein was determined with ELISA and its size was confirmed by Western blot analysis. The results showed that: (1) leaf age significantly affects GM-CSF protein concentration with younger leaves accumulating 19.8 mg g−1 soluble protein which is 2.6 times the concentration in older leaves, (2) recombinant protein accumulation within a given leaf declined slightly over time but was not significantly different between 7 and 11 days post-inoculation (dpi), and (3) the two leaves immediately above the inoculated leaves play an important role for GM-CSF accumulation in the younger leaves. Protein extracts of infected N. benthamiana leaves contained recombinant human GM-CSF protein in concentrations of up to 2% of total soluble protein, but only when the pair of leaves immediately above the inoculated leaves remained intact. The recombinant protein actively stimulated the growth of human TF-1 cells suggesting that the recombinant human GM-CSF expressed via PVX viral vector was biologically active.  相似文献   

11.
V S Sriskanda  G Pruss  X Ge    V B Vance 《Journal of virology》1996,70(8):5266-5271
Gel retardation and UV-cross-linking techniques were used to demonstrate that two tobacco proteins, with approximate molecular masses of 28 and 32 kDa, bind to a site within the 3' region of potato virus X (PVX) genomic RNA. The protein binding is specific, in that a 50-fold excess of unlabeled probe prevents formation of the complexes but no reduction is observed with a 2,000-fold molar excess of yeast tRNA. Complex formation is inhibited by poly(U) but is relatively unaffected by poly(A), poly(G), or poly(C-I). PVX RNA-host protein complex formation occurs in vitro at salt concentrations up to 400 mM. Deletion mapping indicates that the proteins bind within the 3' untranslated region (UTR) of PVX genomic RNA and that an 8-nucleotide U-rich sequence (5'-UAUUUUCU) is required for the binding. Deletion of the 8-nucleotide U-rich region from the 3' UTR of a sensitive PVX reporter virus that carries the luciferase gene in place of the PVX coat protein gene results in a more than 70,000-fold reduction in luciferase expression in tobacco protoplasts. RNA probes carrying the sequence GCGC in place of the central four contiguous uridines of the 8-nucleotide U-rich motif fail to bind host protein at detectable levels, and the same mutation, when introduced into the PVX reporter virus, eliminates viral multiplication. Mutations of 1 or 2 nucleotides within the same four uridines reduced both binding of host proteins and replication of reporter virus. These results indicate that the 8-nucleotide U-rich motif within the PVX 3' UTR is important for some aspect of viral multiplication and suggest that host protein binding plays a role in the process.  相似文献   

12.
The first 83 3' nucleotides of the genome RNA of the flavivirus West Nile encephalitis virus (WNV) form a stable stem-loop (SL) structure which is followed in the genome by a smaller SL. These 3' structures are highly conserved among divergent flaviviruses, suggesting that they may function as cis-acting signals for RNA replication and as such might specifically bind to cellular or viral proteins. Cellular proteins from uninfected and WNV-infected BHK-21 S100 cytoplasmic extracts formed three distinct complexes with the WNV plus-strand 3' SL [(+)3'SL] RNA in a gel mobility shift assay. Subsequent competitor gel shift analyses showed that two of these RNA-protein complexes, complexes 1 and 2, contained cell proteins that specifically bound to the WNV (+)3'SL RNA. UV-induced cross-linking and Northwestern blotting analyses detected WNV (+)3'SL RNA-binding proteins of 56, 84, and 105 kDa. When the S100 cytoplasmic extracts were partially purified by ion-exchange chromatography, a complex that comigrated with complex 1 was detected in fraction 19, while a complex that comigrated with complex 2 was detected in fraction 17. UV-induced cross-linking experiments indicated that an 84-kDa cell protein in fraction 17 and a 105-kDa protein in fraction 19 bound specifically to the WNV (+)3'SL RNA. In addition to binding to the (+)3'SL RNA, the 105-kDa protein bound to the SL structure located at the 3' end of the WNV minus-strand RNA. Initial mapping studies indicated that the 84- and 105-kDa proteins bind to different regions of the (+)3'SL RNA. The 3'-terminal SL RNA of another flavivirus, dengue virus type 3, specifically competed with the WNV (+)3'SL RNA in gel shift assays, suggesting that the host proteins identified in this study are flavivirus specific.  相似文献   

13.
14.
HIV-1 particles contain RNA species other than the unspliced viral RNA genome. For instance, viral spliced RNAs and host 7SL and U6 RNAs are natural components that are non-randomly incorporated. To understand the mechanism of packaging selectivity, we analyzed the content of a large panel of HIV-1 variants mutated either in the 5'UTR structures of the viral RNA or in the Gag-nucleocapsid protein (GagNC). In parallel, we determined whether the selection of host 7SL and U6 RNAs is dependent or not on viral RNA and/or GagNC. Our results reveal that the polyA hairpin in the 5'UTR is a major packaging determinant for both spliced and unspliced viral RNAs. In contrast, 5'UTR RNA structures have little influence on the U6 and 7SL RNAs, indicating that packaging of these host RNAs is independent of viral RNA packaging. Experiments with GagNC mutants indicated that the two zinc-fingers and N-terminal basic residues restrict the incorporation of the spliced RNAs, while favoring unspliced RNA packaging. GagNC through the zinc-finger motifs also restricts the packaging of 7SL and U6 RNAs. Thus, GagNC is a major contributor to the packaging selectivity. Altogether our results provide new molecular insight on how HIV selects distinct RNA species for incorporation into particles.  相似文献   

15.
BackgroundThere are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses) replication.Conclusions/SignificanceThe method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with DENV and reveals how DENV modulates and usurps cellular proteins for efficient amplification.  相似文献   

16.
17.
Fish <1 year old were sampled during 1 year using nets inshore at South Georgia. Some fish were kept in aquaria. Growth rates were estimated using the exponential model. During June to October 1980, field growth rates of Parachaenichthys georgianus and Champsocephalus gunnari were 0.33 and 0.48% SL day−1, respectively. Gobionotothen marionensis (1979 cohort) grew at 0.40% SL day−1 during June to November in the field, and 0.34% SL day−1 in the laboratory from September to March. Notothenia coriiceps grew at 0.28% SL day−1 in the laboratory during September to March. During November to December, Artedidraco mirus grew at 0.82% SL day−1 in the field. The 1980 cohort of G. marionensis grew at 1.39% SL day−1 during November to January in the field. During January, the field growth rate of G. gibberifrons was 1.39% SL day−1. Growth rates increased three-fold from winter to summer. Temperature can only explain one-half of this range in growth rates, whereas all of this range can be explained by food availability. Therefore, seasonal food resource limitation has a major effect on Antarctic fish growth. Received: 30 June 1997 / Accepted: 7 September 1997  相似文献   

18.
19.
20.
Vibrio alginolyticus, a Gram-negative bacterium, is one of Vibrio pathogens common to human and marine animals. Outer membrane proteins of bacteria play an important role during infection and induction of host immune response. In present research, two outer membrane protein genes (OmpK and OmpW) of V. alginolyticus were cloned and expressed. The open reading frames of OmpK and OmpW contain 846 bp and 645 bp, respectively, the mature proteins consist of 261 and 193 amino acid residues. At the signal peptides positions −3 to −1, the amino acids were V-M-A in OmpK and V-F-A in OmpW, which consistented with the observed sequence V-X-A of the signal peptides of transmembrane OMP. The alignment analysis indicated that both proteins were highly conserved, which could serve as surface antigens for vaccine candidates. SDS-PAGE indicated two genes over-expressed in E. coli BL21 (DE3). By affinity chromatography on Ni2+-nitriloaceate resin, the recombinant proteins were purified from inclusion bodies. Western blot analysis revealed that both proteins had immunoreactivity, which provided a base for further study on the evaluation of diagnostication and vaccine candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号