首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A factorial experiment based on RCB design with three replicates was conducted to investigate changes in some physiological responses of two chickpea (Cicer arietinum L.) cultivars (Pirouz from Desi type and ILC482 from Kabuli type) to arbuscular mycorrhiza (Glomus etunicatum Becker and Gerdman) under different irrigation treatments. The experiment was carried out in the greenhouse of the Agricultural Faculty of Kurdistan University from April to August 2009. The results showed that leaf chlorophyll content of chickpea cultivars was significantly increased by arbuscular mycorrhiza (AM) under both well and limited irrigation conditions. Proline accumulation in chickpea leaves under moderate and severe drought stresses was significantly stronger than that under optimum irrigation. Inoculation of chickpea with mycorrhizal fungi caused an increase in the activities of polyphenol oxidase and peroxidase, but a decrease in the activity of catalase. Comparisons among different irrigation levels showed that chickpea plants under drought stress had the most active lipid peroxidation. Non-AM plants showed stronger lipid peroxidation under moderate and severe water stresses than AM plants. Lipid peroxidation was more active in Pirouz leaves than in ILC482 leaves. It seems that Kabuli-type cultivar responded better to mycorrhizal symbiosis under drought stress than Desitype cultivar.  相似文献   

2.
Abstract

The effects of exogenous silicon (Si) on leaf relative water content (RWC), and the growth, Si concentrations, lipid peroxidation (MDA), lipoxygenase (LOX) activity, proline and H2O2 accumulation, non-enzymatic antioxidant activity (AA) and the activity of some antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX) in shoots of ten chickpea cultivars grown under drought were investigated. Drought stress decreased the growth of all the cultivars while applied Si improved the growth at least five of the 10 chickpea cultivars. Silicon applied to the soil at 100 mg kg?1 significantly increased Si concentrations of the cultivars and counteracted the deleterious effects of drought in 5 of the ten chickpea cultivars by increasing their RWC. In most cultivars tested H2O2, proline and MDA content and LOX activity were increased by drought whereas application of Si decreased their levels. APX activity was increased by drought but it was depressed by Si. In general, SOD and CAT activities of the cultivars were decreased by drought. Depending on cultivars, the CAT activity was decreased, and increased or unchanged in response to applied Si, while the SOD activity of the cultivars increased or unchanged by Si. The non-enzymatic antioxidant activity of the cultivars was also increased by Si. These observations implied an essential role for Si in minimizing drought stress-induced limitation of the growth and oxidative membrane damage in chickpea plants.  相似文献   

3.
Drought is one of the major abiotic stresses affecting yield of dryland crops. Rhizobacterial populations of stressed soils are adapted and tolerant to stress and can be screened for isolation of efficient stress adaptive/tolerant, plant growth promoting rhizobacterial (PGPR) strains that can be used as inoculants for crops grown in stressed ecosystems. The effect of inoculation of five drought tolerant plant growth promoting Pseudomonas spp. strains namely P. entomophila strain BV-P13, P. stutzeri strain GRFHAP-P14, P. putida strain GAP-P45, P. syringae strain GRFHYTP52, and P. monteilli strain WAPP53 on growth, osmoregulation and antioxidant status of maize seedlings under drought stress conditions was investigated. Drought stress induced by withholding irrigation had drastic effects on growth of maize seedlings. However seed bacterization of maize with Pseudomonas spp. strains improved plant biomass, relative water content, leaf water potential, root adhering soil/root tissue ratio, aggregate stability and mean weight diameter and decreased leaf water loss. The inoculated plants showed higher levels of proline, sugars, free amino acids under drought stress. However protein and starch content was reduced under drought stress conditions. Inoculation decreased electrolyte leakage compared to uninoculated seedlings under drought stress. As compared to uninoculated seedlings, inoculated seedlings showed significantly lower activities of antioxidant enzymes, ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX) under drought stress, indicating that inoculated seedlings felt less stress as compared to uninoculated seedlings. The strain GAP-P45 was found to be the best in terms of influencing growth and biochemical and physiological status of the seedlings under drought stress. The study reports the potential of rhizobacteria in alleviating drought stress effects in maize.  相似文献   

4.
The effects of ethephon, an ethylene generating compound, and 2,5-norbornadiene (NBD), an inhibitor of ethylene action, on peroxidase (POD; EC 1.11.1.7), catalase (CAT; EC 1.11.1.6), polyphenol oxidase (PPO; EC 1.14.18.1) activities and proline content in salt-stressed spinach leaves were investigated. POD and PPO activities were increased by NaCl + ethephon + NBD combination and reduced by NBD. Also, ethephon increased the CAT activity while ethephon + NBD reduced CAT activity. NaCl + ethephon increased proline content. The antagonistic effect of ethephon and NBD was seen on POD and PPO activity and proline accumulation, but was not on CAT activity.  相似文献   

5.
Accumulation of proline in response to environmental stresses seems tobe widespread among plants. To elucidate the role of proline in plantresponses,in vivo and in vitro, we studied theeffect of proline on catalase (CAT; EC 1.11.1.6), peroxidase (POD; EC 1.11.1.7)and polyphenol oxidase (PPO; EC 1.14.18.1). In vivo, thesethree enzymes were activated by proline, while CAT and POD were activated andPPO was inactivated by NaCl. In vitro, CAT and POD wereactivated and PPO was inactivated by proline. Proline appeared to protect thesethree enzyme activities. The significance of these findings with regard toenvironmental stress-induced proline accumulation in vivois discussed. The ability of proline to activate the enzymes may suggest alimited conformational change. These results are important for characterisationof metabolic responses to environmental stresses and can be used as a stressindicator.  相似文献   

6.
Drought stress has become more common in recent years as a result of climate change impacts on the production of banana crops and other fruit trees. The growth and productivity of Musa spp are severely impacted by the gradual degradation of water resources and the erratic distribution pattern of annual precipitation amount. The aim of the work includes increased drought tolerance in light of water scarcity in the world as a result of the bananas’ being gluttonous for water needs. This investigation was carried out from 2019 to 2020 to study the effect of potassium silicate on morphological growth and biochemical parameters of Musa acuminata L under drought stress by PEG. As a result, drought stress reduced the morphological characteristics such as shoots number, shoot length, roots number, and survival percentage and biochemical characteristics such as chlorophyll a, b, carotenoids, stomatal status, and RWC. While proline content increased in the leaf of M. acuminata L. Media complemented with K2SiO3 (2 to 6 mM) either individually or in combination with PEG led to an improvement in all morphological and biochemical characteristics. The activities of CAT, POD, and PPO enzymes increased signifi- cantly compared to control. Furthermore, the lowest PPO, CAT, and POD activity were achieved. Additionally, K2SiO3 treatments under drought stress successfully enhanced the leaf stomatal behavior. Our results suggest that K2SiO3 can help to maintain plant integrity in the tested cultivar under drought stress.  相似文献   

7.
Chickpea plants were inoculated with two strains of Mesorhizobium ciceri: local strain (C-15) and non-local strain (CP-36) in order to evaluate plant growth parameters, activities of nitrogenase and antioxidant enzymes under drought stress as well as control condition within 15 days of imposition of drought stress. Biomass production, nodulation, nitrogen fixation and antioxidant enzyme activities under drought condition were compared. Under control condition, symbiotic efficiency in symbiosis formed by C-15 was higher than that in symbiosis derived by CP-36. Although drought stress decreased shoot dry weight, root dry weight, nodule dry weight and nitrogen fixation in both symbioses, the rate of decline in plants inoculated with CP-36 was higher than that in symbiosis chickpea with C-15. Therefore, symbioses showed different tolerance level under drought condition which was essentially correlated with symbiotic performance at non-stressful conditions. Under drought stress, nodular peroxidase (POX) activity increased in both symbioses but was higher in nodules produced by C-15. Ascorbate peroxidase (APX) increased significantly in nodules of symbiosis of chickpea with C-15. Catalase (CAT) and glutation reductase (GR) declined in both symbioses which decline extent in symbiosis with C-15 was lower than that in the nodules of CP-36. These results suggested contribution of rhizobial partner in enhancing the tolerance of symbioses to drought stress, which was related with the increase of antioxidant enzyme activities (APX and POX) under drought conditions.  相似文献   

8.
The effects of putrescine and ethephon on peroxidase (POD; EC 1.11.1.7), polyphenol oxidase (PPO; EC 1.14.18.1), catalase (CAT; EC 1.11.1.6) activities and proline content in spinach leaves under saline stress were investigated. In control conditions, putrescine increased PPO and CAT activities and proline content, but decreased POD activity. Ethephon increased these three enzyme activities but did not affect proline content. In saline conditions, putrescine increased POD and CAT activities and proline content, while it decreased PPO activity. Ethephon increased both PPO and CAT activities and proline content, but decreased POD activity. Putrescine and ethephon have opposite effects on the enzyme activities and proline accumulation because they acts as antagonists.  相似文献   

9.
The paper studied the effects of drought stress, selenium (Se) supply and their combination on growth and physiological characteristics of wheat (Triticum aestivum L. cv Shijiazhuang NO. 8) seedlings. The experimental design included two water treatments (well-watered, 75% of maximum field capacity; drought stress, 30% of maximum field capacity) and two Se levels (0; 0.5 mg/kg) to determine whether Se can modify the negative impacts of drought stress on seedling growth and physiological traits. Drought stress caused a marked decline in growth parameters and soluble protein content, whereas it induced an increase in root activity, proline content and the activities of peroxidase (POD) and catalase (CAT) of leaf tissue. On the other hand, Se supply induced an increase in biomass accumulation only under well-watered condition. Under drought stress, Se supply increased free proline content, root activity and the activities of POD and CAT in leaf tissue, but did not significantly affect on growth parameters. These results implied that drought stress brought harmful effects on wheat seedlings, and that Se supply was favorable for biomass accumulation of wheat seedlings under well-watered condition. However, it did not significantly affect on biomass accumulation under drought stress, although it increased root activity and activities of some antioxidant index in experimental periods.  相似文献   

10.
Cuttings of Populus kangdingensis and Populus cathayana, originating from high and low altitudes in the eastern Himalaya, respectively, were examined during one growing season in a greenhouse to determine their responses to drought stress (soil moisture decreased from 100 to 55 or 25 % field capacity). Compared to control plants grown under 100 % field capacity, those poplars grown under 55 and 25 % field capacity possessed lower increases in height and stem diameter, and higher contents of soluble sugars, free proline, malondialdehyde (MDA) and hydrogen peroxide, and higher activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and glutathione reductase (GR). Compared with P. cathayana with greater leaf area, P. kangdingensis with greater root/shoot ratio exhibited lower MDA and H2O2 contents, higher soluble sugar and free proline contents, and higher activities of CAT, SOD, POD, APX and GR. These results suggested that P. kangdingensis was more drought tolerant than P. cathayana.  相似文献   

11.
Drought is a severe environmental constraint, causing a significant reduction in crop productivity across the world. Salicylic acid (SA) is an important plant growth regulator that helps plants cope with the adverse effects induced by various abiotic stresses. The current study investigated the potential effects of SA on drought tolerance efficacy in two barley (Hordeum vulgare) genotypes, namely BARI barley 5 and BARI barley 7. Ten-day-old barley seedlings were exposed to drought stress by maintaining 7.5% soil moisture content in the absence or presence of 0.5, 1.0 and 1.5 mM SA. Drought exposure led to severe damage to both genotypes, as indicated by phenotypic aberrations and reduction of dry biomass. On the other hand, the application of SA to drought-stressed plants protected both barley genotypes from the adverse effects of drought, which was reflected in the improvement of phenotypes and biomass production. SA supplementation improved relative water content and proline levels in drought-stressed barley genotypes, indicating the osmotic adjustment functions of SA under water-deficit conditions. Drought stress induced the accumulation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) and superoxide (O2 •− ), and the lipid peroxidation product malondialdehyde (MDA) in the leaves of barley plants. Exogenous supply of SA reduced oxidative damage by restricting the accumulation of ROS through the stimulation of the activities of key antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GPX). Among the three-applied concentrations of SA, 0.5 mM SA exhibited better mitigating effects against drought stress considering the phenotypic performance and biochemical data. Furthermore, BARI barley 5 showed better performance under drought stress than BARI barley 7 in the presence of SA application. Collectively, our results suggest that SA played a crucial role in improving water status and antioxidant defense strategy to protect barley plants from the deleterious effects of water deficiency.  相似文献   

12.
不同沙地共有种沙生植物对环境的生理适应机理   总被引:2,自引:0,他引:2  
选择3个温带沙地(松嫩沙地、呼伦贝尔沙地、科尔沁沙地)4个共有种沙生植物(黄柳(Salix gordejevii)、差巴嘎蒿(Artimisia halodendron)、扁蓿豆(Melissitus ruthenica),猪毛菜(Salsola collina),通过自然状况下其叶片抗氧化酶活力和渗透调节物及丙二醛(MDA)含量日变化分析,探讨抗氧化酶活力和渗透调节物在沙生植物适应沙漠环境强光辐射和温度日变化中的作用,以及不同科属沙生植物抗逆生理调控机理的差异。结果表明:(1)不同沙地的4个共有沙生植物种可通过自身快速生理代谢调解,积累渗透调节物、提高抗氧化酶活力应对沙漠环境强光辐射和温度日变化,但生理调控幅度较小。(2)3个沙地不同科属的4个共有种在渗透调节物含量和抗氧化酶活力及种类上存在差异。扁蓿豆叶片日均MDA含量、POD(peroxidase)活力、CAT(catalase)活力、脯氨酸含量均最高,分别较其它3个种平均高2、10、2和2.5倍。黄柳叶片日均MDA含量较高,SOD(superoxide dismutase)活力和可溶性糖含量最高,分别较其它3个种高1.2和3倍。差巴嘎蒿和猪毛菜叶内MDA含量较低,POD、CAT、SOD活力和脯氨酸、可溶性糖含量均最低。沙生植物细胞中膜脂过氧化程度和抗氧化酶活力及渗透调节物含量呈正相关。自然状况下3个沙地的扁蓿豆和黄柳通过生理代谢调节维持细胞水分和氧自由基代谢平衡适应沙漠环境,差巴嘎蒿和猪毛菜依靠特殊的叶片形态结构变异减少光辐射吸收、降低水分蒸腾、维持叶片水分平衡、降低细胞膜脂过氧化。因此不同科属沙生植物维持叶片水分和氧自由基代谢平衡可能是其适应沙漠环境生存的重要生理调控机理。由于不同科属沙生植物种对沙漠环境适应的生理调节机理的不同,在未来农作物、林木抗逆育种中,根据具体科属植物选择合适的沙生植物作为亲本对提高抗逆育种效率是十分重要的。  相似文献   

13.
为了探索24表油菜素内酯(24-EBL)对盐胁迫下油菜生长的调节效应和植物色素在油菜耐盐性中的作用,采用盆栽实验,在盐胁迫下外源喷施1 000、10、0.1、0.001 nmol·L-1 24-EBL处理油菜幼苗,测定植株的生物量、电解质渗漏率(ELP)、净光合速率(Pn)、光合色素、酚类、类黄酮、花青素含量以及抗氧化能力(T-AOC).结果显示:(1) 24-EBL可显著缓解盐胁迫对油菜幼苗的氧化伤害,提高盐渍下油菜幼苗Pn和光合色素含量,并以0.1nmol·L-1 24 EBL(EBL3)对生长的调控效应最佳.(2)盐胁迫下,植株不同部位叶片的β-胡萝卜素(β-Car)和叶黄素(Lut)含量均显著下降,EBL3处理可显著提高其上部叶的β-Car含量,以及上部和中部叶的Lut含量;EBL3处理可显著提高盐胁迫下油菜所有叶片和叶柄的酚类含量,以及叶柄中类黄酮含量;EBL3处理可显著提高盐胁迫下油菜幼苗所有器官的花青素含量.(3) EBL3仅能够诱导上部叶和中部叶类胡萝卜素(Car)提取液的抗氧化能力(T-AOC)提高,但可诱导植株所有器官的酚类提取液的T-AOC提高.(4)不同部位的叶片Car、β-Car和Lut含量均与其Car提取液的T-AOC呈极显著正相关;而上部叶的总酚和花青素含量、中部叶和叶柄的花青素含量及茎秆中总酚、类黄酮和花青素含量与各自的酚类提取液的T-AOC呈极显著正相关.研究表明,外源喷施适宜浓度的24-EBL能够显著促进盐渍条件下油菜幼苗的光合能力,提高其抗氧化能力,从而增强其对盐渍胁迫的适应性,而光合色素和花青素水平被24-EBL诱导上升在油菜幼苗抗氧化过程中起着重要的作用.  相似文献   

14.
水分胁迫下AM真菌对沙打旺生长和抗旱性的影响   总被引:7,自引:0,他引:7  
郭辉娟  贺学礼 《生态学报》2010,30(21):5933-5940
利用盆栽试验研究了水分胁迫条件下接种AM真菌对优良牧草和固沙植物沙打旺(Astragalus adsurgens Pall.)生长和抗旱性的影响。在土壤相对含水量为70%、50%和30%条件下,分别接种摩西球囊霉(Glomus mosseae)和沙打旺根际土著菌,不接种处理作为对照。结果表明,水分胁迫显著降低了沙打旺植株(无论接种AM真菌与否)的株高、分枝数、地上部干重和地下部干重,并显著提高了土著AM真菌的侵染率,对摩西球囊霉的侵染率无显著影响。接种AM真菌可以促进沙打旺生长和提高植株抗旱性,但促进效应因土壤含水量和菌种不同而存在差异。不同水分条件下,接种AM真菌显著提高了植株菌根侵染率、根系活力、地下部全N含量和叶片CAT活性。土壤相对含水量为30%和50%时,接种株地上部全N、叶片叶绿素、可溶性蛋白、脯氨酸含量和POD活性显著高于未接种株;接种AM真菌显著降低了叶片MDA含量;接种土著AM真菌的植株株高、分枝数、地上部和地下部干重显著高于未接种株。土壤相对含水量为30%时,接种AM真菌显著增加了地上部全P含量和叶片相对含水量;接种摩西球囊霉的植株株高、分枝数、地上部和地下部干重显著高于未接种株。水分胁迫40d,接种AM真菌显著提高了叶片可溶性糖含量。水分胁迫80d,接种株叶片SOD活性显著增加。菌根依赖性随水分胁迫程度增加而提高。沙打旺根际土著菌接种效果优于摩西球囊霉。水分胁迫和AM真菌的交互作用对分枝数、菌根侵染率、叶片SOD、CAT和POD活性、叶绿素、脯氨酸、可溶性蛋白、地上部全N和全P、地下部全N和根系活力有极显著影响,对叶片丙二醛和地下部全P有显著影响。AM真菌促进根系对土壤水分和矿质营养的吸收,改善植物生理代谢活动,从而提高沙打旺抗旱性,促进其生长。试验结果为筛选优良抗旱菌种,充分利用AM真菌资源促进荒漠植物生长和植被恢复提供了依据。  相似文献   

15.
The combined effects of drought and low light on biomass partition, foliar nitrogen concentration, membrane stability and active oxygen species (AOS) and antioxidant system were investigated in dragon spruce (Picea asperata Mast.) seedlings grown at two watering regimes (well-watered, 100% of field capacity and drought, 30% of field capacity) and light availabilities (HL, 100% of full sunlight and low light, 15% of full sunlight). Under high light condition drought not only reduced foliar nitrogen concentration (Nmass) and membrane stability index (MSI) but also significantly increased biomass partitioning to roots, AOS, ascorbic acid (AsA) content and antioxidant enzyme activities including superoxide dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase(GR, EC 1.6.4.2). However, no prominently drought-induced differences in biomass partitioning to root, SOD, GR activities, hydrogen peroxide (H2O2) and MSI were observed in low light seedlings. On the other hand, significant interaction of drought and low light was found on MSI, the antioxidant enzymes activities (SOD, POD, CAT, APX, GR), H2O2 and superoxide radical (O2 ). These results suggested that seedlings grown at the understory were more sensitive to drought than low light.  相似文献   

16.
Bacterial spot disease caused by Xanthomonas campestris pv. vesicatoria is one of the most important destructive diseases of tomato in many parts of the agricultural world. Therefore, the present study aims to determine the effects of Bacillus subtilis CBR05 inoculation on bacterial spot disease severity and the induction of defence-related enzymes response in tomato. Tomato leaves were evaluated to determine the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and polyphenol oxidase (PPO)) and the content of malondialdehyde (MDA). A reduction in bacterial spot severity was observed in plants inoculated with B. subtilis, compared with those of uninoculated controls. A significant increase in SOD, CAT, POD, and PPO activities was observed in plants treated with B. subtilis after 24?h inoculation compared with non-inoculated pathogen control and mock-inoculated controls. Moreover, the MDA content was induced by pathogen infection, and its amount in B. subtilis inoculated plants was significantly lower than that in pathogen control. Our results suggest that early increases in antioxidant enzymes and the reduction in MDA content with B. subtilis inoculation may play a pivotal role in mitigating oxidative stress, thereby induced systemic resistance against bacterial spot disease in tomato.  相似文献   

17.
Eight somaclonal variants with enhanced drought tolerance were isolated from regenerated plants of triploid bermudagrass (Cynodon dactylon × Cynodon transvaalensis cv., TifEagle). Three of them (10-17, 89-02, 117-08) with strong drought tolerance were selected for investigations of physiological responses to drought stress. Compared to the parent control, TifEagle, the somaclonal variants had higher relative water contents and relative growth, and lower ion leakages in the greenhouse tests, while no difference in evapotranspirational water losses and soil water contents was observed between the variants and TifEagle. The variants also had less leaf firing in the field tests under drought stress. Superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities decreased gradually in responses to drought stress in all plants and exhibited negative correlations with ion leakage, indicating that the declined activities of these antioxidant enzymes were associated with drought injury in the triploid bermudagrass. However, CAT activities were significantly higher in all three variants than in TifEagle during drought stress. Two variants, 10-17 and 89-02, also had significantly higher APX activities than TifEagle before and during the first 4 days of drought treatments. These two lines also showed higher SOD activities after prolonged drought stress. Proline, total soluble sugars and sucrose were accumulated under drought stress in all plants and exhibited positive correlations with ion leakage. More proline and sugars were accumulated in TifEagle than in the variants. The results indicated that higher activities of the antioxidant enzymes in the variants during drought stress are associated with their increased drought tolerance.  相似文献   

18.
In the phytotron experiment, the effect of elevated atmospheric CO2 (EC, 750 μmol mol?1) on the drought tolerance was studied in two winter varieties (Mv Mambo, tolerant; Mv Regiment, moderately tolerant) and in one spring variety of wheat (Lona, sensitive to drought). Changes in net photosynthetic rate (P N), stomatal conductance, transpiration, wateruse efficiency, effective quantum yield of photosystem II, and activities of glutathione reductase (GR), glutathione-Stransferase (GST), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were monitored during water withdrawal. Drought caused a faster decline of P N at EC, leading to the lower assimilation rates under severe drought compared with ambient CO2 (NC). In the sensitive variety, P N remained high for a longer period at EC. The growth at EC resulted in a more relaxed activation level of the antioxidant enzyme system in all three varieties, with very low activities of GR, GST, APX, and POD. The similar, low values were due to decreases in the varieties which had higher ambient values. A parallel increase of CAT was, however, recorded in two varieties. As the decline in P N was faster at EC under drought but there was no change in the rate of electron transport compared to NC values, a higher level of oxidative stress was induced. This triggered a more pronounced, general response in the antioxidant enzyme system at EC, leading to very high activities of APX, CAT, and GST in all three varieties. The results indicated that EC had generally favourable effects on the development and stress tolerance of plants, although bigger foliage made the plants more prone to the water loss. The relaxation of the defence mechanisms increased potentially the risk of damage due to the higher level of oxidative stress at EC under severe drought compared with NC.  相似文献   

19.
A pot-culture experiment was conducted to estimate the ameliorating effect of triadimefon (TDM) on drought stress in sunflower (Helianthus annuus L.) plants. The plants were subjected to 3-, 6-, and 9-day-interval drought (DID) stress and drought stress with TDM @ 15 mg l(-1) and 15 mg l(-1) TDM alone from the 30th day after sowing (DAS). One-day-interval irrigation was kept as control. The plant samples were collected on and separated into root, stem and leaf for estimating the amino acid (AA), proline (PRO) and glycine betaine (GB) contents and the activities of antioxidant enzymes. Individual and combined drought stress and TDM treatments increased AA, PRO and GB contents, superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and polyphenol oxidase (PPO) activities when compared to control. From the results of this investigation, it can be concluded that the application of TDM caused a partial amelioration of the adverse effects of drought stress by its influence on quaternary ammonium compounds and antioxidant potentials in H. annuus plants.  相似文献   

20.
The effect of hydrogen cyanamide (HC) on dormancy release, antioxidant enzyme’s activity and proline and free polyamine contents were investigated in ‘Superior Seedless’ grapevine buds. HC application caused a sharp decrease of catalase (CAT, EC 1.11.1.6) activity and a transient stimulation during the 5 days following treatment of peroxidase (POD, EC 1.11.1.7) and ascorbate peroxidase (APX, EC 1.11.1.11) activities. This coincided with an accumulation of total free polyamines, especially putrescine (Put). Proline content increased dramatically. There was a strong correlation between APX and POD activities and total free PAs and Put contents implying a possible stimulating effect of the latter compounds on these enzymes. These observations indicate that HC triggers an oxidative stress leading to bud endodormancy release. Afterward, as budbreak started, we observed a rapid proline and Put degradation; this could be responsible for reactivation of growth. Indeed, the decline in Put to (Spd + Spm) ratio, reported here, may be considered as a reliable biochemical marker of bud growth resumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号