首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
To determine the potential role of the placenta in transmission of human immunodeficiency virus (HIV) from mother to fetus, the ability of human placental tissue to support HIV type 1 (HIV-1) infection was examined. HIV-1-seronegative first-trimester placentas were maintained in culture and infected with HIV-1. Virus production, measured by HIV-1 antigen release into the supernatant, and HIV-1 DNA, identified by polymerase chain reaction, were detected for at least 12 days postinfection. Western immunoblot analysis showed Gag proteins, precursor p55, and cleavage products p24 and p17 in HIV-1-infected tissues. Double labeling of placental villi with antibodies to CD4 and placental trophoblast-specific alkaline phosphatase indicated that trophoblasts express CD4 antigen. Additionally, immunostaining of HIV-1-infected tissues with anti-p24 antibodies demonstrated HIV-1 protein expression in placental trophoblasts. Evaluation of human chorionic gonadotropin and progesterone production by the placental cultures indicated that there was a 90% decrease in human chorionic gonadotropin and a 70% decrease in progesterone production in HIV-1-infected cultures in comparison with controls. These data demonstrate that trophoblastic cells of human placenta tissue express CD4 and are susceptible to HIV-1 infection; also, placental endocrine function is decreased by HIV-1 infection. Thus, the placenta may serve as a reservoir of HIV-1 infection during pregnancy contributing to infection of the fetus, and decreased placental hormone production may result in impaired fetal development.  相似文献   

2.
Summary The placenta consists largely of fetal tissue, yet at term it displays histological signs of deterioration not apparent in the fetus. To determine whether the apparent degeneration of the placenta is genetically determined, the life-spans of placental cell cultures and the proportion of placental cells capable of incorporating [3H]thymidine for replicative DNA synthesis in vitro were measured. Under the culture conditions employed, the placental cells were removed from the influence of many extrinsic factors thought to play a role in the degeneration of the placenta in vivo. Cultures of fibroblast-like cells derived from the placenta exhibited a reduced life-span and correspondingly reduced proportion of cells able to incorporate [3H]thymidine for DNA synthesis in comparison to cultures derived from the fetal skin and the maternal decidua. These results suggest that intrinsic cellular processes may be involved in the apparent degeneration of the placenta. This work was supported by an NIH postdoctoral fellowship (R. A. V.) and grants from the National Institutes of Health, and the National Foundation/March of Dimes.  相似文献   

3.
Paternal epigenome regulates placental and fetal growth. However, the effect of paternal obesity on placenta and its subsequent effect on the fetus via sperm remains unknown. We previously discovered abnormal methylation of imprinted genes involved in placental and fetal development in the spermatozoa of obese rats. In the present study, elaborate epigenetic characterization of sperm, placenta, and fetus was performed. For 16 weeks, male rats were fed either control or a high-fat diet. Following mating studies, sperm, placenta, and fetal tissue were collected. Significant changes were observed in placental weights, morphology, and cell populations. Methylation status of imprinted genes—Igf2, Peg3, Cdkn1c, and Gnas in spermatozoa, correlated with their expression in the placenta and fetus. Placental DNA methylating enzymes and 5-methylCytosine levels increased. Furthermore, in spermatozoa, DNA methylation of a few genes involved in pathways associated with placental endocrine function—gonadotropin-releasing hormone, prolactin, estrogen, and vascular endothelial growth factor, correlated with their expression in placenta and fetus. Changes in histone-modifying enzymes were also observed in the placenta. Histone marks H3K4me3, H3K9me3, and H4ac were downregulated, while H3K27me3 and H3ac were upregulated in placentas derived from obese male rats. This study shows that obesity-related changes in sperm methylome translate into abnormal expression in the F1-placenta fathered by the obese male, presumably affecting placental and fetal development.  相似文献   

4.
The placenta as a site of cytomegalovirus infection in guinea pigs.   总被引:2,自引:0,他引:2       下载免费PDF全文
The development of cytomegalovirus (CMV) infection in the placenta was studied in Hartley guinea pigs inoculated at midgestation, and its role in determining the outcome of fetal CMV infection was assessed. A hematogenous spread of CMV from the mother to the placenta occurred early during the course of the infection. However, the virus remained present in placental tissues long after CMV had been cleared from maternal blood (i.e., 3 and 4 weeks postinoculation). At that time, the virus was able to replicate in placental tissues in the presence of specific maternal antibodies. Viral nucleocapsids were seen within nuclei of trophoblastic cells, and virions were present surrounding infected cells. In addition, typical CMV-induced histopathological lesions bearing CMV antigens were consistently localized at the transitional zone between the capillarized labyrinth and the noncapillarized interlobium. Whenever CMV infection of the fetus occurred, virus was isolated from the associated placenta. Among placental-fetal units with CMV-infected placentas, only 27% of the fetuses were found to be infected. In addition, there was a delay in the establishment of the infection in the fetus in relation to the placenta, although frequencies of virus isolation in placental and fetal tissues peaked at 3 weeks after CMV inoculation. These results suggest that during primary CMV infection of pregnant guinea pigs, the placenta not only serves as a reservoir for CMV but also acts to limit transmission of the virus to the fetus.  相似文献   

5.
Expressed sequence tags (ESTs) generated based on characterization of clones isolated randomly from cDNA libraries are used to study gene expression profiles in specific tissues and to provide useful information for characterizing tissue physiology. In this study, two directionally cloned cDNA libraries were constructed from 60 day-old bovine whole fetus and fetal placenta. We have characterized 5357 and 1126 clones, and then identified 3464 and 795 unique sequences for the fetus and placenta cDNA libraries: 1851 and 504 showed homology to already identified genes, and 1613 and 291 showed no significant matches to any of the sequences in DNA databases, respectively. Further, we found 94 unique sequences overlapping in both the fetus and the placenta, leading to a catalog of 4165 genes expressed in 60 day-old fetus and placenta. The catalog is used to examine expression profile of genes in 60 day-old bovine fetus and placenta.  相似文献   

6.
We have characterized a high-affinity folate receptor in human molar placenta tissue. Radioligand binding exhibited characteristics typical of other high-affinity folate binding proteins. Those included, positive cooperativity, a tendency to increased binding affinity with decreasing receptor concentration, a slow ligand dissociation at pH 7.4 becoming rapid at pH 3.5, and inhibition by folate analogues. The folate receptor cross-reacted with antibodies against human milk folate binding protein, e.g. the syncytothrophoblastic layer of molar placenta tissue sections showed strongly positive immunostaining. The gel filtration profile contained two radioligand-bound peaks (25 and 100 kDa), however, with considerable overlap. Only a single band of 70 kDa was seen on SDS-PAGE immunoblotting. The folate receptor in placental tissue may play a crucial role in the transfer of folate from maternal circulation to the fetus.  相似文献   

7.
Sulfate transport in isolated placental brush-border membrane vesicles has properties consistent with an anion exchange process. To ascertain the relevance of this finding to sulfate accumulation by the fetus and placenta in vivo, we examined sulfate transport in human placental tissue slices, comparing sulfate uptake with that of a non-metabolizable amino acid marker, alpha-aminoisobutyrate (AIB). In contrast to AIB, which was actively concentrated from physiological media, sulfate uptake by the placenta slice was concentrative only in the absence of sodium and at low pH. Uptake of sulfate reached a steady state after 60 min. It was blocked by DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonate), a specific inhibitor of anion transport, but not by ouabain. We found no evidence for Na(+)-dependent uptake of sulfate in incubated placental tissue. It seems unlikely that Na(+)-dependent sulfate transport by the placenta can be responsible for net sulfate accumulation by the human fetus.  相似文献   

8.
6-Phosphofructo-1-kinase (PFK) of rat placenta was purified to homogeneity with a recovery of 56% of the enzyme activity in the original extract. The purified enzyme is a tetramer and the Mr value of the subunit is 85000 ± 1500 as shown by gel filtration and sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Considering the properties of the native rat placental PFK isoenzyme, it is clear that this tissue is a complex mixture of homotetramer and heterotetramer. Purified placenta PFK displayed little cooperativity at pH 7.0 with respect to fructose 6-phosphate and was markedly inhibited with high concentrations of ATP. The affinity of the enzyme for fructose 6-phosphate was increased by fructose 2,6-biphosphate. The purified enzyme was highly inhibited by citrate, whereas it was only slightly inhibited by phospho enolpyruvate. ADP, AMP and fructose 2,6-biphosphate showed little stimulation towards placental PFK. The present study suggests that the placental PFK is a relatively active enzymic form and it is also probably characterized with a high rate of glycolysis possibly because this tissue requires a high energy production for the development and maintenance of the fetus as the placenta tends to be a semipermeable membrane through which substances are exchanged between mother and fetus.  相似文献   

9.
The contribution of matrix metalloproteinases (MMP) to timely discharge of the placenta from bovine uterus at parturition is yet inconclusive, partly because of the presence of multiple MMP forms in situ. In the current study, the expression of different gelatinase subtypes on non-retaining placentas of Holstein cows was fingerprinted by using gelatin zymography. Different topographic regions on the placenta were measured separately, including the placentome-like structure and the fetal and maternal sides of interplacentomal placenta, all sampled from the central and peripheral areas of the placenta, respectively. The spontaneously ruptured umbilical cords were cross-sectioned as fetus end, middle and placenta end also for separate measurement. Body fluids including blood samples from the parturient cows, their neonatal calves and umbilical cord, as well as fetal fluids and the first colostrum were measured concomitantly. Results showed multiple forms of gelatinases subtypes in the placenta tissues and body fluids, including neutrophil gelatinase-associated lipocalin (NGAL)-MMP-9 complex, both the latent and active forms of MMP-2 and MMP-9; of them, the latent forms were much more abundantly and frequently expressed than the active forms. NGAL-MMP-9 complex was more prevalently present in the body fluids than in the placenta tissues. No distinguishable pattern of the expression of any gelatinase subtype was observed among the placentome-like structure, interplacentomal placenta and umbilical cord, or between fetal and maternal sides. Nonetheless, for interplacentomal placenta, proMMP-9 expression was higher in the central than in the peripheral area. In addition, proMMP-2 expression was higher in the rupture end (fetus end) than the placenta end of the umbilical cord. In conclusion, the current validated gelatin zymography detected a gradient proMMP-9 expression on the non-retaining placenta of cows in reverse to the proximity to the umbilical insertion point, and a gradient proMMP-2 expression on a section of the umbilical cord in reverse to the proximity to the rupture site, suggesting roles played by gelatinases in normal discharge of the placenta at term.  相似文献   

10.
Maternal and fetal plasma concentrations of free fatty acids, triacylglycerols and phospholipids and the profile of their fatty acids were measured in three catheterized and unanaesthetized sheep. Fetal concentrations of all three lipid fractions were low and did not correlate with maternal concentrations. There were no measurable umbilical venous-arterial differences. Linoleic acid concentrations were low in both mother and fetus. The fatty acid composition of fetal adipose tissue, liver, lung and cerebellum of five animals was analysed. Again linoleic acid levels were very low, but phospholipids contained 2-8% arachidonic acid. [14C] linoleic acid and [3H] palmitic acid were infused intravenously into three ewes. Only trace amounts of labelled fatty acids were found in fetal plasma and these were confined to the free fatty acids. 14C-label was incorporated into fetal tissue lipids, but most of this probably was due to fetal lipid synthesis from [14C] acetate or other water-soluble products of maternal [14C] linoleic acid catabolism. It is concluded that only trace amounts of fatty acids cross the sheep placenta. They are derived mainly from the maternal plasma free fatty acids and might just be sufficient to be the source of the small amounts of essential fatty acids found in the lamb fetus, but are insignificant in terms of energy supply or lipid storage.  相似文献   

11.
Different cellular fractions of guinea-pig placenta were incubated in the presence of (7n-3H) testosterone. Microsomal aromatization of 3H-testosterone into estrone and estradiol-17β was demonstrated in the presence of NADPH. The predominance of estrone after incubation with 17β-hydroxylated precursors, (7n-3H) testosterone and (6,7-3H) estradiol-17β, indicate that there is a microsomal 17β-hydroxysterold dehydrogenase activity. In this report, cytosolic sulfurylation of estrogens is demonstrated. This latter activity represents a quite original characteristic of the placental metabolism of estrogens in guinea-pigs. In contrast with the human placenta where there is considerable sulfatase activity, the guinea-pig placenta can sulfurylate estrogens.  相似文献   

12.
The activity of steroid 21-sulfatase, the enzyme that catalyzes the hydrolysis of deoxycorticosterone sulfate (DOC-SO4) is demonstrable in human placenta. Thus, it is possible that this placental enzyme, by way of the hydrolysis of either DOC-SO4 or 21-hydroxypregnenolone mono- or di-sulfate of fetal origin, may be important in the biosynthesis of DOC, which is present in the plasma of pregnant women in high concentration. To investigate this issue further, we evaluated steroid 21-sulfatase activity in microsomal preparations of a sulfatase-deficient placenta. Immediately after delivery, at term, of a living male fetus with sulfatase deficiency, a microsome-enriched fraction of placental tissue was prepared; sulfatase activity was evaluated by use of three substrates, viz. dehydroisoandrosterone sulfate (DS), estrone sulfate (E1-SO4), and DOC-SO4, in various concentrations. Similar incubations were conducted with aliquots of a microsome-enriched fraction prepared from placental tissue of a normal fetus that was delivered, at term, within minutes of the time of delivery of the infant with sulfatase deficiency. In microsomal fractions from the normal placenta, each of the steroid sulfates was hydrolyzed. In the absence of microsomes, and in the presence of microsomal fractions from the sulfatase-deficient placenta, the hydrolysis of DOC-SO4 and DS was not detected. Moreover, in microsomes prepared from the sulfatase-deficient placenta, E1-SO4 was hydrolyzed at a rate that was only 10% of that in incubations with microsomal preparations of the normal placenta. We conclude that with sulfatase deficiency, the placenta is deficient not only in sulfatase activity for steroid-3-sulfates but for steroid 21-sulfates, e.g. DOC-SO4, as well.  相似文献   

13.
The placenta serves, in part, as a barrier to exclude noxious substances from the fetus. In humans, a single-layered syncytium of polarized trophoblast cells and the fetal capillary endothelium separate the maternal and fetal circulations. P-glycoprotein is present in the syncytiotrophoblast throughout gestation, consistent with a protective role that limits exposure of the fetus to hydrophobic and cationic xenobiotics. We have examined whether members of the multidrug resistance protein (MRP) family are expressed in term placenta. After screening a placenta cDNA library, partial clones of MRP1, MRP2, and MRP3 were identified. Immunofluorescence and immunoblotting studies demonstrated that MRP2 was localized to the apical syncytiotrophoblast membrane. MRP1 and MRP3 were predominantly expressed in blood vessel endothelia with some evidence for expression in the apical syncytiotrophoblast. ATP-dependent transport of the anionic substrates dinitrophenyl-glutathione and estradiol-17-beta-glucuronide was also demonstrated in apical syncytiotrophoblast membranes. Given the cellular distribution of these transporters, we hypothesize that MRP isoforms serve to protect fetal blood from entry of organic anions and to promote the excretion of glutathione/glucuronide metabolites in the maternal circulation.  相似文献   

14.
We investigated the dynamic expression of calcium transporters, TRPV5 and TRPV6, in placenta and bone to determine their role in maternal and fetal calcium balance during gestation. In placenta, TRPV5 was expressed predominantly in syncytiotrophoblasts of the labyrinthine zone, whereas TRPV6 was expressed in spongiotrophoblasts of the junction zone. In bone, the two transporters were found in osteoblasts, osteoclasts, cartilage and bone matrices. During the first half of gestation, TRPV5 and TRPV6 levels in bone were increased on pregnancy day (P) 0.5, then decreased on P3.5 followed by a slight increase on P6.5. During the second half of pregnancy, both the proteins and their mRNAs gradually increased from P9.5 to P15.5?P17.5 in both bone and placenta, followed at parturition by relatively high amounts in placenta, but markedly decreased amounts in bone. The expression pattern is likely related to the fetal and maternal calcium requirement during gestation, which may be regulated by estrogen and other hormones, because the fetal demand for calcium is greatest during the last few days of gestation for rats; maternal calcium metabolism is designed to meet the calcium needs of the fetus during this period. We found that TRPV5 and TRPV6 are involved in calcium transport in the placenta and bone, and therefore play a role in calcium homeostasis during embryonic and fetal development.  相似文献   

15.
The [32P]phosphoamino acids in proteins of first trimester and term-cultured human placentas have been separated and their relative amounts were measured. A significant phosphorylation of tyrosine residues could be detected in the cultured placental tissue at different stages of gestation. The phosphotyrosine accounts for 2–4% of the total acid-stable phosphate in the phosphoamino acids after partial acid hydrolysis. The difference in the extent of [32P]tyrosine in various placentas seems to be a function of biological variation of the individual placentas, rather than a function of placental age and stage of gestation. In contrast, a significant difference in the phosphorylation ratio of serine and threonine could be measured between first trimester and term placentas. As more evidence is accumulating that protein phosphorylation of tyrosine is involved in the processes of cellular growth and proliferation, our findings of the relatively high tyrosine phosphorylation in human placenta strongly suggest that this type of protein phosphorylation may play an important role in the placental growth and development. Furthermore, these findings may correlate with the existence of the endogenous RNA virus-like particles found in normal human placenta.  相似文献   

16.
Supply of lipids from the mother is essential for fetal growth and development. In mice, disruption of yolk sac cell secretion of apolipoprotein (apo) B-containing lipoproteins results in embryonic lethality. In humans, the yolk sac is vestigial. Nutritional functions are instead established very early during pregnancy in the placenta. To examine whether the human placenta produces lipoproteins, we examined apoB and microsomal triglyceride transfer protein (MTP) mRNA expression in placental biopsies. ApoB and MTP are mandatory for assembly and secretion of apoB-containing lipoproteins. Both genes were expressed in placenta and microsomal extracts from human placenta contained triglyceride transfer activity, indicating expression of bioactive MTP. To detect lipoprotein secretion, biopsies from term placentas were placed in medium with [(35)S]methionine and [(35)S]cysteine for 3-24 h. Upon sucrose gradient ultracentrifugation of the labeled medium, fractions were analyzed by apoB-immunoprecipitation. (35)S-labeled apoB-100 was recovered in d approximately 1.02-1.04 g/ml particles (i.e. similar to the density of plasma low density lipoproteins). Electron microscopy of negatively stained lipoproteins secreted from placental tissue showed spherical particles with a diameter of 47 +/- 10 nm. These results demonstrate that human placenta expresses both apoB and MTP and consequently synthesize and secrete apoB-100-containing lipoproteins. Placental lipoprotein formation constitutes a novel pathway of lipid transfer from the mother to the developing fetus.  相似文献   

17.
To investigate the possible role of nitric oxide (NO) produced locally or intramurally in the quiescence of the pregnant myometrium, nitric oxide synthase (NOS) activity was measured in samples from first trimester (villous, and non villous-trophoblast), term placenta and pregnant myometrium. Trophoblast tissue was obtained from psychosocial termination of pregnancy (9 – 12 weeks' gestation) whereas placenta and myometrium, from the same patient, at deliveries by Caesarean section. NOS activity was measured in both cytosolic and particulate fractions by the formation of 14C-citrulline from 14C-arginine. Western immunoblotting was used to identify the endothelial NOS (eNOS) and neuronal (nNOS) isoforms. The activity of NOS in particulate fractions from all preparations was considerably higher than the cytosolic fractions. Activity in all fractions except the myometrium was highly Ca-dependent. More than 50% of particulate NOS from the myometrium was Ca-independent. NOS activity was highest in the villous trophoblast and there was a significant difference between the villous and non-villous trophoblast. In placenta and myometrium, NOS was 2–4 fold and 20–28-fold lower than the villous trophoblast, respectively. Western blot analysis showed clearly eNOS in the particulate fraction and a weak eNOS band in the cytosolic fractions, whereas nNOS was not detectable in any of the fractions. In view of the marginal activity of NOS in the myometrium, NO produced by the trophoblast and placenta could play a significant role in maintaining uterine quiescence by paracrine effect.  相似文献   

18.
Glutamine plays a vital role in fetal carbon and nitrogen metabolism and exhibits the highest fetal:maternal plasma ratio among all amino acids in pigs. Such disparate glutamine levels between mother and fetus suggest that glutamine may be actively synthesized and released into the fetal circulation by the porcine placenta. We hypothesized that branched-chain amino acid (BCAA) metabolism in the placenta plays an important role in placental glutamine synthesis. This hypothesis was tested by studying conceptuses from gilts on Days 20, 30, 35, 40, 45, 50, 60, 90, or 110 of gestation (n = 6 per day). Placental tissue was analyzed for amino acid concentrations, BCAA transport, BCAA degradation, and glutamine synthesis as well as the activities of related enzymes (including BCAA transaminase, branched-chain alpha-ketoacid dehydrogenase, glutamine synthetase, glutamate-pyruvate transaminase, and glutaminase). On all days of gestation, rates of BCAA transamination were much greater than rates of branched-chain alpha-ketoacid decarboxylation. The glutamate generated from BCAA transamination was primarily directed to glutamine synthesis and, to a much lesser extent, alanine production. Placental BCAA transport, BCAA transamination, glutamine synthesis, and activities of related enzymes increased markedly between Days 20 and 40 of gestation, as did glutamine in fetal allantoic fluid. Accordingly, placental BCAA levels decreased after Day 20 of gestation in association with a marked increase in BCAA catabolism and concentrations of glutamine. There was no detectable catabolism of glutamine in pig placenta throughout pregnancy, which would ensure maximum output of glutamine by this tissue. These novel results demonstrate glutamine synthesis from BCAAs in pig placentae, aid in explaining the abundance of glutamine in the fetus, and provide valuable insight into the dynamic role of the placenta in fetal metabolism and nutrition.  相似文献   

19.
The [32P]phosphoamino acids in proteins of first-trimester and term-cultured human placentas have been separated and their relative amounts have been measured. Significant phosphorylation of tyrosine residues could be detected in the cultured placental tissue at different stages of gestation. The phosphotyrosine accounts for 2–4% of the total acid-stable phosphate in the phosphoamino acids after partial acid hydrolysis. The difference in the extent of [32P]tyrosine in various placentas seems to be a function of biological variation of the individual placentas, rather than a function of placental age and stage of gestation. In contrast, a significant difference in the phosphorylation ratio of serine and threonine could be measured between first-trimester and term placentas. As more evidence is accumulating that protein phosphorylation of tyrosine is involved in the processes of cellular growth and proliferation, our findings of the relatively high tyrosine phosphorylation in human placenta strongly suggest that this type of protein phosphorylation may play an important role in the placental growth and development. Furthermore, these findings may correlate with the existence of the endogenous RNA virus-like particles found in normal human placenta.  相似文献   

20.
Amino acids are transported across the human placenta mediated by transporter proteins that differ in structure, mechanism and substrate specificity. Some of them are Na+-dependent systems, whereas others are Na+-independent. Among these there are transporters composed of a heavy chain, a glycoprotein, and a light chain. Moreover, they can be differently distributed in the two membranes forming the syncytiotrophoblast. The transport mechanisms involved and their regulation are only partially known. In the placenta itself, part of the amino acids is metabolized to form other compounds important for the fetus. This occurs for instance for arginine, which gives rise to polyamines and to NO. Interconversion occurs among few other amino acids Transport is altered in pregnancy complications, such as restricted fetal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号