首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

2.
Concentrations of m-Cl-peroxy benzoic acid (CPBA) higher than 0.1 mM decrease the ATP-content of Saccharomyces cerevisiae in the presence of glucose in 1 min to less than 10% of the initial value. In the absence of glucose, 1.0 mM CPBA is necessary for a similar effect. After the rapid loss of ATP in the first min in the presence of glucose caused by 0.2 mM CPBA, the ATP-content recovers to nearly the initial value after 10 min. Aerobic glucose consumption and ethanol formation from glucose are both completely inhibited by 1.0 mM CPBA. Assays of the activities of nine different enzymes of the glycolytic pathway as well as analysis of steady state concentrations of metabolites suggest that glyceraldehyde-3-phosphate dehydrogenase is the most sensitive enzyme of glucose fermentation. Phosphofructokinase and alcohol dehydrogenase are slightly less sensitive. Incubation for 1 or 10 min with concentrations of 0.05 to 0.5 mM CPBA causes a) inhibition of glyceraldehyde-3-phosphate dehydrogenase, b) decrease of the ATP-content and c) a decrease of the colony forming capacity. From these findings it is concluded that the disturbance of the ATP-producing glycolytic metabolism by inactivation of glyceraldehyde-3-phosphate dehydrogenase may be an explanation for cell death caused by CPBA.Abbreviations CPBA m-Chloro-peroxy benzoic acid - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - F-1,6-P2 frnctose-1,6-bisphosphate - DAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - 2PGA 2-phosphoglycerate - PEP phosphoenol pyruvate - Pyr pyruvate - EtOH ethanol - PFK phosphofructokinase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - ADH alcohol dehydrogenase Dedicated to Prof. Dr. Wolfgang Gerok at the occasion of his 60th birthday  相似文献   

3.
Mark Stitt  Hans W. Heldt 《Planta》1985,164(2):179-188
The metabolite levels in the mesophyll of leaves of Zea mays L. have been compared with the regulatory properties of the cytosolic fructose-1,6-bisphosphatase from the mesophyll to show how withdrawal of triose phosphate for sucrose synthesis is reconciled with generation of the high concentrations of triose phosphate which are needed to allow intercellular diffusion of carbon during photosynthesis. i) A new technique is presented for measuring the intercellular distribution of metabolites in maize. The bundle-sheath and mesophyll tissues are partially separated by differential homogenization and filtration through nylon nets under liquid nitrogen. ii) considerable gradients of 3-phosphoglycerate, triose phosphate, malate and phosphoenolpyruvate exist between the mesophyll and bundle sheath which would allow intercellular shuttles to be driven by diffusion. These gradients could result from the distribution of electron transport and the Calvin cycle in maize leaves. iii) consequently, the mesophyll contains high concentrations of triose phosphate and fructose-1,6-bisphosphate. iv) Most of the regulator metabolite fructose-2,6-bisphosphate, is present in the mesophyll. v) The cytosolic fructose-1,6-bisphosphatase has a lower substrate affinity than that found for the enzyme from C3 species, especially in the presence of inhibitors like fructose-2,6-bisphosphate. vi) This lowered affinity for substrate makes it possible to reconcile use of triose phosphate for sucrose synthesis with the maintenance of the high concentration of triose phosphate in the mesophyll needed for operation of photosynthesis in this species.Abbreviations DHAP Dihydroxyacetonephosphate - Fru1,6-bisP fructose-1,6-bisphosphate - Fru2,6bisP fructose-2,6-bisphosphate - PEP(Case) phosphoenolpyruvate (carboxylase) - PGA 3-phosphoglycerate - Rubisco ribulose-1,5-bisphosphate carboxylase  相似文献   

4.
John Kobza  Gerald E. Edwards 《Planta》1987,171(4):549-559
The photosynthetic induction response was studied in whole leaves of wheat (Triticum aestivum L.) following 5-min, 30-min and 10-h dark periods. After the 5-min dark treatment there was a rapid burst in the rate of photosynthesis upon illumination (half of maximum after 30s), followed by a slight decrease after 1.5 more min and then a gradual rise to the maximum rate. During this initial burst in photosynthesis, there was a rapid rise in the level of 3-phosphoglycerate (PGA) and a high PGA/triose-phosphate (triose-P) ratio was obtained. In addition, after the 5-min dark treatment, ribulose-1,5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39), ribulose-5-phosphate kinase (EC 2.7.1.19) and chloroplastic fructose-1,6-bisphosphatase (EC 3.1.3.11) maintained a relatively high state of activation, and maximum activation occurred within 1 min of illumination. The results indicate there is a high capacity for CO2 fixation in the cycle upon illumination but attaining maximum rates requires an increase in the ribulose-1,5-bisphosphate (RuBP) pool (adjustment in triose-P utilization for carbohydrate synthesis versus RuBP synthesis). With both the 30-min and 10-h dark pretreatments there was only a slight rise in photosynthesis upon illumination, followed by a lag, then a gradual increase to steady-state (half-maximum rate after 6 min). In contrast to the 5-min dark treatment, the level of PGA was low and actually decreased initially, whereas the level of RuBP increased and was high during induction, indicating that Rubisco is limiting. This regulation via the carboxylase was not reflected in the initial extractable activity, which reached a maximum by 1 min after illumination. The light activation of chloroplastic fructose-1,6-bisphosphatase in leaves darkened for 30 min and 10 h prior to illumination was relatively slow (reaching a maximum after 8 min). However, this was not considered to limit carbon flux through the carbon-fixation cycle during induction since RuBP was not limiting. When photosynthesis approached the maximum steady-state rate, a high PGA/triose-P ratio and a high PGA/RuBP ratio were obtained. This may allow a high rate of photosynthesis by producing a favorable mass-action ratio for the reductive phase (the conversion of PGA to triose phosphate) while stimulating starch and sucrose synthesis.Abbreviations Chl chlorophyll - FBP fructose-1,6-bisphosphate - FBPase fructose-1,6-bisphosphatase - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - PGA 3-phosphoglycerate - Pi inoganic phosphate - Rubisco RuBP carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - Ru5P ribulose-5-phosphate - triose-P triose phosphates (dihydroxyacetone phosphate+glyceraldehyde-3-phosphate)  相似文献   

5.
The activities of several enzymes, including ribulose-1,5-diphosphate (RuDP) carboxylase (EC 4.1.1.39) and phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) were measured as a function of leaf age in Z. mays. Mature leaf tissue had a RuDP-carboxylase activity of 296.7 mol CO2 g-1 fresh weight h-1 and a PEP-carboxylase activity of 660.6 mol CO2 g-1 fresh weight h-1. In young corn leaves the activity of the two enzymes was 11 and 29%, respectively, of the mature leaves. In senescent leaf tissue, RuDP carboxylase activity declined more rapidly than that of any of the other enzymes assayed. On a relative basis the activities of NADP malic enzyme (EC 1.1.1.40), aspartate (EC 2.6.1.1) and alanine aminotransferase (EC 2.6.1.2), and NAD malate dehydrogenase (EC 1.1.1.37) exceeded those of both PEP and RuDP carboxylase in young and senescent leaf tissue. Pulse-chase labeling experiments with mature and senescent leaf tissue show that the predominant C4 acid differs between the two leaf ages. Labeling of alanine in senescent tissue never exceeded 4% of the total 14C remaining during the chase period, while in mature leaf tissue alanine accounted for 20% of the total after 60 s in 12CO2. The activity of RuDP carboxylase during leaf ontogeny in Z. mays parallels the development of the activity of this enzyme in C3 plants.Abbreviations RuDP ribulose-1,5-diphosphate - PEP phosphoenol pyruvate - PGA 3-phosphoglycerate  相似文献   

6.
The effects of cold hypoxia were examined during a time-course at 2 °C on levels of glycolytic metabolites: glycogen, glucose, glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate, phosphoenolpyruvate, pyruvate, lactate and energetics (ATP, ADP, AMP) of livers from rats and columbian ground squirrels. Responses of adenylate pools reflected the energy imbalance created during cold hypoxia in both rat and ground squirrel liver within minutes of organ isolation. In rat, ATP levels and energy charge values for freshly isolated livers were 2.54 mol·g-1 and 0.70, respectively. Within 5 min of cold hypoxia, ATP levels had dropped well below control values and by 8 h storage, ATP, AMP, and energy charge values were 0.21 mol·g-1, 2.01 mol·g-1, and 0.17, respectively. In columbian ground squirrels the patterns of rapid ATP depletion and AMP accumulation were similar to those found in rat. In rat liver, enzymatic regulatory control of glycolysis appeared to be extremely sensitive to the decline in cellular energy levels. After 8 h cold hypoxia levels of fructose-6-phosphate decreased and fructose-1,6-bisphosphate increased, thus reflecting an activation of glycolysis at the regulatory step catalysed by phospho-fructokinase fructose-1,6-bisphosphatase. Despite an initial increase in flux through glycolysis over the first 2 min (lactate levels increased 3.7 mol·g-1), further flux through the pathway was not permitted even though glycolysis was activated at the phosphofructokinase/fructose-1,6-bisphosphatase locus at 8 h, since supplies of phosphorylated substrate glucose-1-phosphate or glucose-6-phosphate remained low throughout the duration of the 24-h period. Conversely, livers of Columbian ground squirrels exhibited no activation or inactivation of two key glycolytic regulatory loci, phosphofructokinase/fructose-1,6-bisphosphatase and pyruvate kinase/phosphoenolpyruvate carboxykinase and pyruvate carboxylase. Although previous studies have shown similar allosteric sensitivities to adenylates to rat liver phospho-fructokinase, there was no evidence of an activation of the pathway as a result of decreasing high energy adenylate, ATP or increasing AMP levels. The lack of any apparent regulatory control of glycosis during cold hypoxia may be related to hibernator-specific metabolic adaptations that are key to the survival of hypothermia during natural bouts of hibernation.Abbreviations DHAP dihydroxyacetonephosphate - EC energy charge - F1,6P2 fructose-1,6-bisphosphate - F2,6P2 fructose-2,6-bisphosphate - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphatase - G1P glucose-1-phosphate - G6P glucose-6-phosphate - GAP glyceraldehyde-3-phosphate - GAPDH glyceraldehyde-3-phosphate dehydrogenase - L/R lactobionate/raffinose-based solution - MR metabolic rate - PDH pyruvate dehydrogenase - PEP phosphoenolpyruvate - PEPCK & PC phosphoenolpyruvate carboxykinase and pyruvate carboxylase - PFK phosphofructokinase; PK, pyruvate kinase - Q 10 the effect of a 10 °C drop in temperature on reaction rates (generally, Q 10=2–3) - TA total adenylates - UW solution University of Wisconsin solution (L/R-based)  相似文献   

7.
The localization of phosphoenol pyruvate carboxylase (EC 4.1.1.3.1.) in the leaf cells of Sorghum vulgare was investigated by using three techniques: the conventional aqueous and non aqueous methods gave conflicting results; the immunocytochemical techniques clearly showed that the enzyme is predominantly located in the cytoplasm of mesophyll cells.Abbreviations PEP phosphoenol pyruvate - PAG polyacrylamide gel - NADP MDH NADP malate dehydrogenase - FITC fluorescein isothiocyanate - SAB serum albumine bovine - DTT dithiothreitol - MDH malate dehydrogenase - ME malic enzyme - PBS phosphate buffer saline - PAP peroxidase anti-peroxidase  相似文献   

8.
Pyruvate kinase (ATP: pyruvate phosphotransferase (EC 2.7.1.40) was partially purified from both autotrophically and heterotrophycally grown Paracoccus denitrificans. The organism grown under heterotrophic conditions contains four times more pyruvate kinase than under autotrophic conditions. The enzyme isolated from both sources exhibited sigmoidal kinetics for both phosphoenolpyruvate (PEP) and ADP. The apparent M m for ADP and PEP in the autotrophic enzyme were 0.63 mM ADP and 0.25 mM PEP. The effect of several low molecular weight metabolites on the pyruvate kinase activity was investigated. Ribose-5-phosphate, glucose-6-phosphate and AMP stimulated the reaction at low ADP levels; this stimulation was brought about by an alteration in the apparent K m for ADP. The pyruvate kinases differ in their response to adenine nucleotides, but both preparations seem to be under adenylate control. The results are discussed in relation to the role of pyruvate kinase as a regulatory enzyme in P. denitrificans grown under both autotrophic and heterotrophic conditions.Non-Common Abbreviations PEP phosphoenolpyruvate - R-5-P ribose-5-phosphate - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate  相似文献   

9.
Cell-free extracts of d-fructose grown cells of marine species of Alcaligenes as well as Pseudomonas marina contained an activity which catalyzed a P-enolpyruvate-dependent phosphorylation of d-fructose in the 1-position as well as activities of the following enzymes: 1-P-fructokinase, fructose-1,6-P2 aldolase, PPi-dependent 6-P-fructokinase, fructokinase, glucokinase, P-hexose isomerase, glucose-6-P dehydrogenase, 6-P-gluconate dehydrase, and 2-keto-3-deoxy-6-P-gluconate aldolase. The presence of these enzyme activities would allow d-fructose to be degraded by the Embden-Meyerhof pathway and/or the Entner-Doudoroff pathway. In cell-free extracts of d-glucose grown cells, the activity catalyzing a P-enolpyruvate-dependent phosphorylation of d-fructose as well as 1-P-fructokinase activity were reduced or absent while the remaining enzymes were present at levels similar to those found in d-fructose grown cells. Radiolabeling experiments suggested that both d-fructose and d-glucose were utilized primarily via the Entner-Doudoroff pathway. Alteromonas communis, a marine species lacking 1-P-fructokinase and the PPi-dependent 6-P-fructokinase, contained all the enzyme activities necessary for the catabolism of d-fructose and d-glucose by the Entner-Doudoroff pathway; the involvement of this pathway was also consistent with the results of the radiolabeling experiments.Non-Standard Abbreviations EDP Entner-Doudoroff pathway - EMP Embden-Meyerhof pathway - FDP fructose-1,6-P2 - FDPase FDP phosphatase - F-1-P fructose-1-P - F-6-P fructose-6-P - FPTS PEP: d-fructose phosphotransferase system - PPi-6-PFK PPi dependent 6-PFK - G-6-P glucose-6-P - KDPG 2-keto-3-deoxy-6-P-gluconate - PEP P-enolpyruvate - 1-PFK 1-P-fructokinase - 6-PFK 6-P-fructokinase - 6-PGA 6-P-gluconate  相似文献   

10.
S. Boag  A. R. Portis Jr. 《Planta》1985,165(3):416-423
The levels of stromal photosynthetic intermediates were measured in isolated intact spinach (Spinacia oleracea L.) chloroplasts exposed to reduced osmotic potentials. Stressed chloroplasts showed slower rates of metabolite accumulation upon illumination than controls. Relative to other metabolites sedoheptulose-1,7-bisphosphate (SBP) and fructose-1,6-bisphosphate (FBP) accumulated in the stroma in the stressed treatments. Under these conditions 3-phosphoglycerate (3-PGA) efflux to the medium was restricted. Chloroplasts previously incubated with [32P]KH2PO4 and [32P]dihydroxyacetone phosphate ([32P]DAP) in the dark were characterized by very high FBP and SBP levels prior to illumination. Metabolism of these pools upon illumination increased with increasing pH of the medium but was consistently inhibited in osmotically stressed chloroplasts. The responses of stromal FBP and SBP pools under hypertonic conditions are discussed in terms of both inhibited light activation of fructose-1,6-bisphosphatase (EC 3.1.3.11) and sedoheptulose-1,7-bisphosphatase (EC 3.1.3.37), and likely increases in stromal ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) active-site concentrations.Abbreviations and symbols DAP dihydroxyacetone phosphate - FBP fructose-1,6-bisphosphate - PGA 3-phosphoglycerate - RuBP ribulose-1,5-bisphosphate - SBP sedoheptulose-1,7-bisphosphate - s osmotic potential  相似文献   

11.
The Clarke-Carbon clone bank carrying ColE1-Escherichia coli DNA has been screened by conjugation for complementation of glycolysis and hexose monophosphate shunt mutations. Plasmids were identified for phosphofructokinase (pfkA), triose phosphate isomerase (tpi), phosphoglucose isomerase (pgi), glucose-6-phosphate dehydrogenase (zwf), gluconate-6-phosphate dehydrogenase (gnd), enolase (eno), phosphoglycerate kinase (pgk), and fructose-1,6-P2 aldolase (fda). Enzyme levels for the plasmid-carried gene ranged, for the various plasmids, from 4- to 25-fold the normal level.  相似文献   

12.
Day — and night-forms of phosphoenolpyruvate carboxylase (EC 4.1.1.31) (PEP-C) were extracted from leaves of the CAM plant Kalanchoë daigremontiana. During storage after extraction, the day-form spontaneously lost its sensitivity towards the allosteric inhibitor l -malate. This effect was accelerated by inorganic phosphate, PEP, 3-PGA and G-6-P. l -Malate however stabilized the malate sensitivity of the day-form of PEP-C. Crude desalted extracts of the day-form and of the night-form of PEP-C were subjected to ultracentrifugation on a continuous sucrose gradient in the presence of malate and of marker enzymes. Both forms of PEP-C were found to have relative molecular masses of about 200,000. This suggests that both forms represent the dimers of the enzyme protein. The result also suggests that reversible dissociation and association of enzyme subunits is not the mechanism which brings about the interconversion of the two PEP-C forms during the diurnal CAM cycle in vivo.  相似文献   

13.
The patterns of seasonal variation of enzyme levels in the brown alga Laminaria hyperborea (Gunn.) Fosl. have been investigated for the following enzymes: Ribulosebisphosphate-carboxylase (EC 4.1.1.39), phosphoenolpyruvate-carboxykinase (EC 4.1.1.32), glyceraldehyde-3-phosphate-dehydrogenase (NADP dep., EC 1.2.1.12), malate-dehydrogenase (NAD dep., EC 1.1.1.37), L-aspartate-2-oxoglutarate aminotransferase (EC 2.6.1.1), and mannitol-l-phosphate-dehydrogenase (EC 1.1.1.17). The first four enzymes exhibit a circannual periodicity, characterized by a pronounced spring-maximum of enzyme activity in April and May. As a consequence, the phylloid can maintain high metabolic rates from early spring on, although water temperature has then only slightly risen above the annual minimum. This findings is discussed in relationship to the growth- and developmental cycle of L. hyperborea and to the seasonal variation of photosynthesis and light-independent CO2-fixation. The seasonal pattern, outlined above, correlates well with the circannual fluctuations of the nitrogen content of the sea and with the variation of the internal nitrogen- and nitrate-content of the alga. This coincidence may indicate that nitrogen levels play an important role in the regulation of enzyme activities and, hence, the metabolic capacities of L. hyperborea.Abbreviations PEPCK phosphoenolpyruvate carboxykinase (EC 4.1.1.32) - RUBPC ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - GAPDH (NADP dep.) glyceraldehyde-3-phosphate dehydrogenase (NADP dependent) (EC 1.2.1.12) - MDH (NAD dep.) malate dehydrogenase (NAD dependent) (EC 1.1.1.37) - AAT L-aspartate-2-oxoglutarate aminotransferase (EC 2.6.1.1) - Mannitol-1-P DH mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) - LIF lightindependent CO2-fixation - DHAP dihydroacetone phosphate - PEP phosphoenolpyruvate - 3-PGA 3-phosphoglycerate - OAA oxaloacetate  相似文献   

14.
The presence of the glycolytic enzymes from hexokinase to pyruvate kinase in plastids of seedling pea (Pisum sativum L.) roots was investigated. The recoveries, latencies and specific activities of each enzyme in different fractions was compared with those of organelle marker enzymes. Tryptic-digestion experiments were performed on each enzyme to determine whether activities were bound within membranes. The results indicate that hexokinase (EC 2.7.1.2) and phosphoglyceromutase (EC 5.4.2.1) are absent from pea root plastids. The possible function of the remaining enzymes is considered.Abbreviations GADPH glyceraldehyde 3-phosphate dehydrogenase - PFK phosphofructokinase - PFP pyrophosphate: fructose 6-phosphate 1-phosphotransferase Bronwen A. Trimming gratefully acknowledges the award of a studentship from the Science and Engineering Research Council  相似文献   

15.
Two novel procedures have been used to regulate, in vivo, the formation of phosphoenolpyruvate (PEP) from glycolysis in Streptococcus lactis ML3. In the first procedure, glucose metabolism was specifically inhibited by p-chloromercuribenzoate. Autoradiographic and enzymatic analyses showed that the cells contained glucose 6-phosphate, fructose 6-phosphate, fructose-1,6-diphosphate, and triose phosphates.Dithiothreitol reversed the p-chloromercuribenzoate inhibition, and these intermediates were rapidly and quantitatively transformed into 3- and 2-phosphoglycerates plus PEP. The three intermediates were not further metabolized and constituted the intracellular PEP potential. The second procedure simply involved starvation of the organisms. The starved cells were devoid of glucose 6-phosphate, fructose 6-phosphate, fructose- 1,6-diphosphate, and triose phosphates but contained high levels of 3- and 2-phosphoglycerates and PEP (ca. 40 mM in total). The capacity to regulate PEP formation in vivo permitted the characterization of glucose and lactose phosphotransferase systems in physiologically intact cells. Evidence has been obtained for "feed forward" activation of pyruvate kinase in vivo by phosphorylated intermediates formed before the glyceraldehyde-3-phosphate dehydrogenase reaction in the glycolytic sequence. The data suggest that pyruvate kinase (an allosteric enzyme) plays a key role in the regulation of glycolysis and phosphotransferase system functions in S. lactis ML3.  相似文献   

16.
Metabolic alterations mediated by 2-ketobutyrate in Escherichia coli K12   总被引:9,自引:0,他引:9  
Summary We have previously proposed that 2-ketobutyrate is an alarmone in Escherichia coli. Circumstantial evidence suggested that the target of 2-ketobutyrate was the phosphoenol pyruvate: glycose phosphotransferase system (PTS). We demonstrate here that the phosphorylated metabolites of the glycolytic pathway experience a dramatic downshift upon addition of 2-ketobutyrate (or its analogues). In particular, fructose-1,6-diphosphate, glucose-6-phosphate, fructose-6-phosphate and acetyl-CoA concentrations drop by a factor of 10, 3, 4, and 5 respectively. This result is consistent with (i) an inhibition of the PTS by 2-ketobutyrate, (ii) a control of metabolism by fructose-1,6-diphosphate. Since fructose-1,6-diphosphate is an activator of phosphoenol pyruvate carboxylase and of pyruvate kinase, the concentration of their common substrate, phosphoenol pyruvate, does not decrease in parallel.Abbreviations G1P glucose-1-phosphate - G6P glucose-6-phosphate - F6P fructose-6-phosphate - F1-6DP fructose-1,6-diphosphate - PEP phosphoenol pyruvate  相似文献   

17.
The nonglycolytic, anaerobic organism Veillonella parvula M4 has been shown to contain an active pyruvate kinase. The enzyme was purified 126-fold and was shown by disc-gel electrophoresis to contain only two faint contaminating bands. The purified enzyme had a pH optimum of 7.0 in the forward direction and exhibited sigmoidal kinetics at varying concentrations o-f phosphoenol pyruvate (PEP), adenosine 5'-monophosphate (AMP), and Mg-2+ ions with S0.5 values of 1.5, 2.0, and 2.4 mM, respectively. Substrate inhibition was observed above 4 m PEP. Hill plots gave slope values (n) of 4.4 (PEP), 2.8 (adenosine 5'-diphosphate), and 2.0 (Mg-2+), indicating a high degree of cooperativity. The enzyme was inhibited non-competitively by adenosine 5'-triphosphate (Ki = 3.4 mM), and this inhibition was only slightly affected by increasing concentration of Mg-2+ ions to 30 mM. Competitive inhibition was observed with 3-phosphoglycerate, malate, and 2,3-diphosphoglycerate but only at higher inhibitor concentrations. The enzyme was activated by glucose-6-phosphate (P), fructose-6-P, fructose-1,6-diphosphate (P2), dihydroxyacetone-P, and AMP; the Hill coefficients were 2.2, 1.8, 1.5, 2.1, and 2.0, respectively. The presence of each these metabolites caused substrate velocity curves to change from sigmoidal to hyperbolic curves, and each was accompanied by an increase in the maximum activity, e.g., AMP greater than fructose-1,6-P2 greater than dihydroxyacetone-P greater than glucose-6-P greater than fructose-6-P. The activation constants for fructose-1,6-P2, AMP, and glucose-6-P were 0.3, 1.1, and 5.3 mM, respectively. The effect of 5 mM fructose-1,6-P2 was significantly different from the other compounds in that this metabolite was inhibitory between 1.2 and 3 mM PEP. Above this concentration, fructose-1,6-P2 activated the enzyme and abolished substrate inhibition by PEP. The enzyme was not affected by glucose, glyceraldehyde-3-P, 2-phosphoglycerate, lactate, malate, fumerate, succinate, and cyclic AMP. The results suggest that the pyruvate kinase from V. parvula M4 plays a central role in the control of gluconeogenesis in this organism by regulating the concentration of PEP.  相似文献   

18.
Kay Denyer  Alison M. Smith 《Planta》1988,173(2):172-182
In order to determine whether the enzymes required to convert triose phosphate to acetyl CoA were present in pea (Pisum sativum L.) seed plastids, a rapid, mechanical technique was used to isolate plastids from developing cotyledons. The plastids were intact and the extraplastidial contamination was low. The following glycolytic enzymes, though predominantly cytosolic, were found to be present in plastids: glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12), phosphoglycerate kinase (EC 2.7.2.3), and pyruvate kinase(EC 2.7.1.40). Evidence is presented which indicates that plastids also contained low activities of enolase (EC 4.2.1.11) and phosphoglycerate mutase (EC 2.7.5.3). Pyruvate dehydrogenase, although predominantly mitochondrial, was also present in plastids. The plastidial activities of the above enzymes were high enough to account for the rate of lipid synthesis observed in vivo.Abbreviations FPLC fast protein liquid chromatography - PPi pyrophosphate  相似文献   

19.
Otto  Roel 《Archives of microbiology》1984,140(2-3):225-230
In lactose and leucine-limited continuous cultures of Streptococcus cremoris a linear relationship exists between specific rate of lactate production and specific growth rate. The rate of acid production in leucine-limited cultures is much higher than in lactose-limited cultures, indicating that under these conditions metabolic energy production is not coupled to growth and that metabolic energy has to be dissipated S. cremoris contains phosphofructokinase and fructose-1,6-diphosphatase, joint action of these two enzymes results in an ATP consuming futile cycle. Analyses of intracellular metabolite pools suggested that AMP and phosphoenolpyruvate play important roles in the regulation of the activity of this futile cycle.Abbreviations PEP Phosphoenolpyruvate - PFK phosphofructokinase (EC 2.7.1.11) - FBPase fructose-1,6-bisphosphatase (EC 3.1.3.11)  相似文献   

20.
Cell-free extracts of d-fructose grown cells of Pseudomonas putida, P. fluorescens, P. aeruginosa, P. stutzeri, P. mendocina, P. acidovorans and P. maltophila catalyzed a P-enolpyruvate-dependent phosphorylation of d-fructose and contained 1-P-fructokinase activity suggesting that in these species fructuse-1-P and fructose-1,6-P2 were intermediates of d-fructose catabolism. Neither the 1-P-fructokinase nor the activity catalyzing a P-enolpyruvate-dependent phosphorylation of d-fructose was present in significant amounts in succinate-grown cells indicating that both activities were inducible. Cell-free extracts also contained activities of fructose-1,6-P2 aldolase, fructose-1,6-P2 phosphatase, and P-hexose isomerase which could convert fructose-1,6-P2 to intermediates of either the Embden-Meyerhof pathway or Entner-Doudoroff pathway. Radiolabeling experiments with 1-14C-d-fructose suggested that in P. putida, P. aeruginosa, P. stutzeri, and P. acidovorans most of the alanine was made via the Entner-Doudoroff pathway with a minor portion being made via the Embden-meyerhof pathway. An edd - mutant of P. putida which lacked a functional Entner-Doudoroff pathway but was able to grow on d-fructose appeared to make alanine solely via the Embden-Meyerhof pathway.Non-Standard Abbreviations cpm counts per min - edd - mutant lacking Entner-Doudoroff dehydrase (6-PGA dehydrase) - EDP Entner-Doudoroff pathway - EMP Embden-Meyerhof pathway - FDP fructose-1,6-P2 - FDPase FDP phosphatase - F-1-P fructose-1-P - F-6-P fructose-6-P - FPTs PEP: d-fructose phosphotransferase system - G-6-P glucose-6-P - KDPG 2-keto-3-deoxy-6-P-gluconate - PEP P-enolpyruvate - 1-PFK 1-P-fructokinase - 6-PFK 6-P-fructokinase - 6-PGA 6-P-gluconate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号