共查询到20条相似文献,搜索用时 15 毫秒
1.
In an attempt to evaluate whether breeding and selection for high yielding capacity did change the P requirements of modern wheat cultivars, the response of two wheat cultivars to different levels of P supply was investigated. A traditional cultivar (Peragis) and a modern cultivar (Cosir) were cultivated in a C-loess low in available P and high in CaCO3 in 120 cm high PVC pots. Shoot and root growth at different developmental stages was compared. The grain yield of the modern cultivar Cosir was higher at limiting and non-limiting P supply and, therefore, this cultivar can be considered as more P-efficient than the traditional cultivar. From the results it can be concluded that the main factors contributing to the higher P efficiency of the modern cultivar are (i) efficient use of assimilates for root growth characteristics which enhance P acquisition: smaller root diameter, and longer root hairs, (ii) efficient remobilization of P from vegetative plant organs to the grains, and (iii) lower P requirement for grain yield formation because of lower ear number per plant but higher grain number per ear. 相似文献
2.
Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil 总被引:3,自引:0,他引:3
A greenhouse experiment was carried out to study the severity of phosphorus (P) deficiency symptoms on leaves, shoot dry matter
production, and shoot concentration and content (the total amount per shoot) of P in 39 bread wheat (Triticum aestivum L.) and 34 durum wheat (Triticum durum L.) genotypes grown in a severely P-deficient calcareous soil with low (20mgPkg−1 soil) and adequate (80mgPkg−1 soil) P supply for 39 days. As the seed P concentration or content can affect plant performance under P-deficient conditions,
the seeds of the genotypes used in the present study were also analyzed for P concentration. Phosphorus efficiency (relative
shoot growth) of genotypes, calculated by the ratio of shoot dry matter production under low P to that under adequate P supply,
significantly differed among the genotypes, and varied between 46.7% and 78.6%. Phosphorus efficiency ranged from 51% to 71%
with an average of 61% for bread and from 47% to 79% with an average of 66% for durum wheat genotypes. There was no correlation
between P efficiency ratio and P concentration of plants (R
2=0.0001), but P efficiency of all bread and durum wheat genotypes showed a very significant correlation with the P content
(the total amount of P per shoot) (R
2=0.333***). The relationship between the P efficiency and total amount of P per shoot was much more significant in bread (R
2=0.341***) than in durum wheat (R
2=0.135*). Like shoot P concentrations, also severity of visible leaf symptoms of P deficiency on older leaves, including leaf chlorosis
and necrosis, did not correlate with P efficiency. In most cases, genotypes showing higher P efficiency had higher absolute
shoot dry weight under P deficient conditions. Under P deficient conditions, the absolute shoot dry weight very significantly
correlated with shoot P content (R
2=0.665***), but the correlation between the absolute shoot dry weight and shoot P concentration tended to be negative. There was also
variation in native seed P reserve of the genotypes, but this variation had no influence on the P efficiency. The results
indicate that the total amount of P per shoot and shoot dry matter production at low P supply are most reliable parameters
in ranking genotypes for P efficiency at early growth stage. In wheat germplasm tested in the present study, several wheat
genotypes are available showing both very high P efficiency and very high shoot content and concentration of P suggesting
that P acquisition ability should be most important mechanism for high P efficiency in such genotypes. On the other hand,
there are also genotypes in the germplasm having more or less same P concentration or P content in shoot but differing substantially
in P efficiency, indicating importance of P utilization at cellular level in P efficiency. All these results suggest that
P efficiency mechanisms can be different from one genotype to other within a given plant species. 相似文献
3.
Effects of phosphorus nutrition on tiller emergence in wheat 总被引:8,自引:0,他引:8
Phosphorus (P) deficiency limits the yield of wheat, particularly by reducing the number of ears per unit of area because of a poor tiller emergence. The objectives of this work were to (i) determine whether tiller emergence under low phosphorus availability is a function of the availability of assimilates for growth or a direct result of low P availability, (ii) attempt to establish a quantitative relation between an index of the availability of P in the plant and the effects of P deficiency on tiller emergence, and (iii) to provide a better understanding of the mechanisms involved in tiller emergence in field-grown wheat. Wheat (Triticum aestivum L., cv. INTA Oasis), was grown in the field under drip irrigation on a typic Argiudol, low in P (5.5 μg P g-1 soil Bray & Kurtz I) in Balcarce, Argentina. Treatments consisted of the combination of three levels of P fertilization 0, 60 and 200 kg P2O5 ha-1, and two levels of assimilate availability, a control (non-shaded) and 65% of reduction in incident irradiance from seedling emergence until the end of tillering (shaded). Phosphorus treatments significantly modified the pattern of growth and development of the plants. Shading reduced the growth and concentration of water-soluble carbohydrates in leaves and stems. Leaf photosynthetic rate at saturating irradiance was reduced by P deficiency, but was not affected by shading. At shoot P concentrations less than 4.2 g P kg-1 the heterogeneity in the plant population increased with respect to the number of plants bearing a certain tiller. At a shoot P concentration of 1.7 g P kg-1 tillering ceased completely. Phosphorus deficiency directly altered the normal pattern of tiller emergence by slowing the emergence of leaves on the main stem (i.e. increasing the phyllochron), and by reducing the maximum rate of tiller emergence for each tiller. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
4.
Sowing date and phosphorus utilization by wheat 总被引:1,自引:0,他引:1
The uptake and utilization of phosphorus (P) by cereal crops is influenced by the growing period of the crop. In this article the effect of sowing date on the utilization of P by wheat crops grown in southern NSW is reviewed. Crops sown early in the accepted sowing period require smaller inputs of P fertilizer to reach the maximum yield but produce grain with a higher concentration of P than crops sown late in the sowing season. For later sowings a higher rate of applied P is required to achieve the yield potential but this is not associated with a high grain P concentration or a high rate of removal of P from the soil. If grain with a high P concentration is required as seed for subsequent crops, then sowing early, even with little or no applied P fertilizer, is preferable, although crops sown early in the season are likely to remove more P from the soil than the amount applied in fertilizer. 相似文献
5.
Background
Low phosphorus (P) availability is a major constraint to soybean growth and production. Developing P-efficient soybean varieties that can efficiently utilize native P and added P in the soils would be a sustainable and economical approach to soybean production.Scope
This review summarizes the possible mechanisms for P efficiency and genetic strategies to improve P efficiency in soybean with examples from several case studies. It also highlights potential obstacles and depicts future perspectives in ‘root breeding’.Conclusions
This review provides new insights into the mechanisms of P efficiency and breeding strategies for this trait in soybean. Root biology is a new frontier of plant biology. Substantial efforts are now focusing on increasing soybean P efficiency through ‘root breeding’. To advance this area, additional collaborations between plant breeders and physiologists, as well as applied and theoretical research are needed to develop more soybean varieties with enhanced P efficiency through root modification, which might contribute to reduced use of P fertilizers, expanding agriculture on low-P soils, and achieving more sustainable agriculture. 相似文献6.
Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source 总被引:7,自引:1,他引:7
Pot experiments were conducted to investigate interspecific complementation in utilization of phytate and FePO4 by plants in the wheat (Triticum aestivum L.)/chickpea (Cicer arietinum L.) intercropping under sterile and non-sterile conditions. The pots were separated into two compartments by either a solid root barrier to eliminate root contact and solute movement, by a nylon mesh (30 M) to prevent root contact but permit solute exchange, or not separated between the compartments. Wheat plants were grown in one compartment and chickpea in the other. Two P sources were tested at 60 mg P kg–1 soil (sodium phytate or FePO4). Under non-sterile conditions, the biomass of wheat was significantly greater when the roots were intermingled with chickpea than when the roots were separated from chickpea roots by a solid root barrier or nylon mesh. When phytate–P was applied, P concentrations in wheat (2.9 g kg–1 in shoots and 1.4 g kg–1 in roots) without root barrier between the two species were higher than those in the treatments with nylon mesh or with the solid root barrier separation (1.9 g kg–1 in shoots and 1.0 g kg–1 in roots). In contrast, P concentrations in wheat supplied with FePO4 were similar between the root separation treatments. There was no significant difference in P uptake by chickpea between the P sources or between the root separation treatments, except that P uptake was greater in the phytate treatment with the root barrier. Total P uptake from phytate was increased by 25% without root separation compared to the root separation treatments. Under sterile conditions and supply of phytate–P, the biomass of wheat was doubled when the roots were intermingled with chickpea and increased by a third with the nylon mesh separation compared to that with the solid root barrier. Biomass production in wheat at various treatments correlated with P concentration in shoot. Biomass production and P concentration in chickpea were unaffected by root separation. Total P uptake by plants was 68% greater with root intermingling and 37% greater with nylon mesh separation than that with the solid root barrier. The results suggest that chickpea roots facilitate P utilization from the organic P by wheat. 相似文献
7.
Using the disomic wheat-rye addition lines (Triticum aestivum L., cv. Holdfast-Secale cereale L., cv. King-II) and an octoploid triticale line (xTriticosecale Wittmark L. "PlutoxFakon") as well as the respective wheat and rye parents, greenhouse experiments were carried out to study the role of rye chromosomes on the severity of Zn deficiency symptoms, shoot dry matter production, Zn efficiency, shoot Zn concentration and Zn content. Plants were grown in a Zn-deficient calcareous soil with (10 mg Zn kg-1 soil) and without Zn supply. Zinc efficiency was calculated as the ratio of dry weight produced under Zn deficiency to the dry weight produced under Zn fertilization. In the experiments with addition lines, visual Zn deficiency symptoms were slight in the rye cultivar King-II, but were severe in the wheat cultivar Holdfast. The addition of rye chromosomes, particularly 1R, 2R and 7R, into Holdfast reduced the severity of deficiency symptoms. Holdfast showed higher decreases in shoot dry matter production by Zn deficiency and thus had a low Zn efficiency (53 %), while King-II was less affected by Zn deficiency and had a higher Zn efficiency (89 %). With the exception of the 3R line, all addition lines had higher Zn efficiency than their wheat parent: the 1R line had the highest Zn efficiency (80 %). In the experiment with the triticale cultivar and its parents, rye cv. Pluto and wheat cv. Fakon, Zn deficiency symptoms were absent in Pluto, slight in triticale and very severe in Fakon. Zinc efficiency was 88 % for Pluto, 73 % for triticale and 64% for Fakon. Such differences in Zn efficiency were better related to the total amount of Zn per shoot than to the amount of Zn per unit dry weight of shoot. Only in the rye cultivars, Zn efficiency was closely related with Zn concentration. Triticale was more similar to rye than wheat regarding Zn concentration and Zn accumulation per shoot under both Zn-deficient and Zn-sufficient conditions.The results presented in this study show that rye has an exceptionally high Zn efficiency, and the rye chromosomes, particularly 1R and 7R carry the genes controlling Zn efficiency. To our knowledge, the result with triticale and its rye parents is the first report showing that the genes controlling Zn efficiency in rye are transferable into wheat and can be used for development of new wheat varieties with high Zn efficiency for severely Zn-deficient conditions. 相似文献
8.
Variability of traits associated with phosphorus efficiency in wild and cultivated genotypes of common bean 总被引:1,自引:0,他引:1
Genetic variation in plant growth under limited phosphorus (P) supply is necessary to obtain more productive cultivars on low P-available soils. Two pot experiments were conducted to evaluate the variability of some traits associated with efficiency of P absorption and utilization in wild and cultivated genotypes of common bean (Phaseolus vulgaris L.) under biological N2 fixation. At two P levels (20 and 80 mg P kg-1 soil, P1 and P2, respectively), 20 wild and 6 cultivated genotypes were grown in Experiment 1, and 4 wild and 27 cultivated genotypes were grown in Experiment 2. Plants were harvested at flowering, but in Experiment 1 wild accessions that did not flower were harvested at the beginning of leaf senescence. In Experiment 1, part of the genotypic variability of wild accessions was attributed to a less homogeneous ontogenetic stage at harvest, whereas in Experiment 2 some variation in biomass production was due to distinct phenologies of cultivated genotypes. Wild lines did not seem more tolerant to low P conditions, but the genotypic variation observed suggests these materials as a source of genetic diversity. Part of the variation in the root area and root efficiency ratio (total P content:root area) was compensatory, resulting in narrow genotypic differences in the total P content. The total P content and root efficiency ratio presented a wider amplitude of variation at P2 than at P1, and P uptake was more influenced by P supply than root production. Since the genotype × P level interaction was not significant for shoot biomass and shoot P concentration in Experiment 2, P utilization efficiency may be a useful selection criterion for cultivars between limited and adequate P supply. Within the sample of genetic diversity evaluated herein, there was large genotypic variability for traits related to P efficiency among wild and cultivated genotypes of common bean. 相似文献
9.
A comparison of the total soil phosphorus (P) and extractable soil P between 224 samples of topsoil from an area of ~27 m2 within a grazed, established grass/clover sward has been made. The values of total soil P displayed an approximately normal distribution around a mean concentration of 1264 mg P kg-1 and were positively correlated to acetic-acid-extractable P which accounted for <2% of the total soil P. The amount of total water-extractable P was much smaller (~0.4% of total soil P) and was not significantly correlated with either the concentration of total soil P or acetic-acid-extractable P. A variable proportion (from less than 5 to 60%) of the total water-extractable P was present in a non-molybdate-reactive form, and there was no apparent relationship between these molybdate-reactive and molybdate-unreactive forms. All variograms showed a positive intercept on the ordinate. For acetic-acid-extractable P, the greatest proportion of variance was attributable to the molybdate-reactive P fraction, while it was equally proportioned between molybdate-reactive and -unreactive P forms in water extracts. The greatest variance usually occurred at the maximum sampling distance (18 m). However, even at the smallest distance (11 cm) the variability in total acetic-extractable P was 2.35 mg P kg-1 and water-extractable P was 0.45 mg P kg-1. Therefore the roots of individual plants within the studied pasture may encounter considerable variability in the concentration of available phosphorus. The potential variability of phosphorus found between rooting zones of different individual plants was greater than that likely to be encountered within the area exploited by any one individual root system. 相似文献
10.
Under phosphorus deficiency reductions in plant leaf area have been attributed to both direct effects of P on the individual leaf expansion rate and to a reduced availability of assimilates for leaf growth. In this work we use experimental and simulation techniques to identify and quantify these processes in wheat plants growing under P-deficient conditions. In a glasshouse experiment we studied the effects of soil P addition (0–138 kg P2O5 ha-1) on tillering, leaf emergence, leaf expansion, plant growth, and leaf photosynthesis of wheat plants (cv. INTA Oasis) that were not water stressed. Plants were grown in pots containing a P-deficient (3 mg P g-1 soil) sandy soil. Sowing and pots were arranged to simulate a crop stand of 173 plants m-2. Experimental results were integrated in a simulation model to study the relative importance of each process in determining the plant leaf area during vegetative stages of wheat. Phosphorus deficiency significantly reduced plant leaf area and dry weight production. Under P-deficient conditions the phyllochron (PHY) was increased up to a 32%, compared to that of high-P plants. In low-P plants the rate of individual leaf area expansion during the quasi-linear phase of leaf expansion (LER) was significantly reduced. The effect of P deficiency on LER was the main determinant of the final size of the individual leaves. In recently expanded leaves phosphorus deficiency reduced the photosynthesis rate per unit leaf area at high radiation (AMAX), up to 57%. Relative values of AMAX showed an hyperbolic relationship with leaf P% saturating at 0.27%. Relative values of the tillering rate showed an hyperbolic relationship with the shoot P% saturating at values above 0.38%. The value of LER was not related to the concentration of P in leaves or shoots. A morphogenetic model of leaf area development and growth was developed to quantify the effect of assimilate supply at canopy level on total leaf area expansion, and to study the sensitivity of different model variables to changes in model parameters. Simulation results indicated that under mild P stress conditions up to 80% of the observed reduction in plant leaf area was due to the effects of P deficiency on leaf emergence and tillering. Under extreme P-deficient conditions the simulation model failed to explain the experimental results indicating that other factors not taken into account by the model, i.e. direct effects of P on leaf expansion, must have been active. Possible mechanisms of action of the direct effects of P on individual leaf expansion are discussed in this work. 相似文献
11.
小麦转基因方法及其评述 总被引:4,自引:0,他引:4
小麦是遗传转化比较困难的作物之一。为了克服小麦基因工程育种和功能基因组学研究的障碍,人们分别尝试利用基因枪、花粉管通道、超声波、离子束注入、激光微束穿刺、PEG(Polyethylene glycol)、电击和农杆菌等方法转化小麦,涉及的受体材料包括幼胚、成熟胚、花药愈伤组织、幼穗、芽尖和花器官。文章对小麦主要遗传转化方法及其应用进行了介绍、回顾和评述,分析、比较了获得安全型转基因小麦的几种策略,以期增强读者对小麦转基因技术和进展的了解,促进小麦转化技术的持续改进和提高。 相似文献
12.
Defining phosphorus efficiency in plants 总被引:6,自引:0,他引:6
The many different definitions for "nutrient efficiency" make the use of the term ambiguous. We evaluated nutrient efficiency using data from a study of response to phosphorus (P) supply in white clover (Trifolium repens L.) and lucerne (Medicago sativa L.). Application of various criteria identified in the literature as measures of nutrient efficiency did not clarify differences between purportedly P efficient and inefficient germplasm. Germplasm differed in maximum shoot and total dry mass and in solution P concentration ([P]s) required to achieve 80% maximum yield, but not in P concentration of tissue ([P]t), internal P utilization, or P uptake per unit of fine root dry mass. Differences in yield may have resulted from factors other than efficient use of P. To reduce the confounding effects that other factors have on nutrient efficiency, it is essential that equivalent yields of germplasm be demonstrated where nutrients are not limiting. Mechanisms that enable enhanced nutrient efficiency can be identified less ambiguously using this approach.Joint contribution of the Minn. Agric. Exp. Stn. and the USDA-ARS 相似文献
13.
小麦氮素利用效率的基因型差异 总被引:7,自引:0,他引:7
通过土培盆栽试验,研究了130份小麦材料在相同氮素水平下生物量、氮素积累量、氮素生产效率的基因型差异,旨在筛选具有高效利用氮素能力的小麦基因型,为氮高效小麦育种提供种质资源.结果表明:拔节期、抽穗期和成熟期供试小麦单株生物量变幅分别为1.06~3.08 g、1.88~9.05 g和2.64~13.75 g,单株籽粒产量变幅为1.38~9.90 g.拔节期、抽穗期氮素干物质生产效率变幅分别为25.62~65.41 g.g-1 N(F=5.099**)和35.79~88.70 g·g-1 N(F=5.325**),成熟期氮素籽粒生产效率变幅为19.06~38.54 g.g-1 N(F=4.669**).不同氮素生产效率小麦基因型拔节期氮素干物质生产效率(F=637.941**)、抽穗期氮素干物质生产效率(F=201.173**)及成熟期氮素籽粒生产效率(F=443.450**)存在极显著差异.不同氮素生产效率小麦基因型拔节期、抽穗期及成熟期生物量差异显著,有效分蘖数与穗数差异不显著.氮素生产效率高的基因型具有无效分蘖少、抽穗期前氮素利用能力强、抽穗期-成熟期氮素吸收与再利用能力强等特点.典型氮高效基因型小麦省CX... 相似文献
14.
Leonardo S. Vanzetti Nadia Yerkovich Eugenia Chialvo Lucio Lombardo Luis Vaschetto Marcelo Helguera 《Genetics and molecular biology》2013,36(3):391-399
The identification of genetically homogeneous groups of individuals is an ancient issue in population genetics and in the case of crops like wheat, it can be valuable information for breeding programs, genetic mapping and germplasm resources. In this work we determined the genetic structure of a set of 102 Argentinean bread wheat (Triticum aestivum L.) elite cultivars using 38 biochemical and molecular markers (functional, closely linked to genes and neutral ones) distributed throughout 18 wheat chromosomes. Genetic relationships among these lines were examined using model-based clustering methods. In the analysis three subpopulations were identified which correspond largely to the origin of the germplasm used by the main breeding programs in Argentina. 相似文献
15.
16.
Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China 总被引:2,自引:0,他引:2
Wuyun Yang Dengcai Liu Jun Li Lianquan Zhang Huiting Wei Xiaorong Hu Youliang Zheng Zhouhu He Yuchun Zou 《遗传学报》2009,36(9):539-546
Synthetic hexaploid wheat (Triticum turgidum x Aegilops tauschii) was created to explore for novel genes from T. turgidum and Ae. tauschii that can be used for common wheat improvement. In the present paper, research advances on the utilization of synthetic hexaploid wheat for wheat genetic improvement in China are reviewed. Over 200 synthetic hexaploid wheat (SHW) accessions from the International Maize and Wheat Improvement Centre (CIMMYT) were introduced into China since 1995. Four cultivars derived from these, Chuanmai 38, Chuanmai 42, Chuanmai 43 and Chuanmai 47, have been released in China. Of these, Chuanmai 42, with large kernels and resistance to stripe rust, had the highest average yield (〉 6 t/ha) among all cultivars over two years in Sichuan provincial yield trials, outyielding the commercial check cultivar Chuanmai 107 by 22,7%. Meanwhile, by either artificial chromosome doubling via colchicine treatment or spontaneous chromosome doubling via a union of unreduced gametes (2n) from T. turgidum-Ae, tauschii hybrids, new SHW lines were produced in China. Mitotic-like meiosis might be the cytological mechanism of spontaneous chromosome doubling. SHW lines with genes for spontaneous chromosome doubling may be useful for producing new SHW-alien amphidiploids and double haploid in wheat genetic improvement. 相似文献
17.
HAO Chenyang WANG Lanfen ZHANG Xueyong YOU Guangxia DONG Yushen JIA Jizeng LIU Xu SHANG Xunwu LIU Sancai CAO Yongsheng 《中国科学C辑(英文版)》2006,49(3):218-226
Genetic diversity of 1680 modern varieties in Chinese candidate core collections was analyzed at 78 SSR loci by fluorescence
detection system. A total of 1336 alleles were detected, of which 1253 alleles could be annotated into 71 loci. For these
71 loci, the alleles ranged from 4 to 44 with an average of 17.6, and the PIC values changed from 0.19 to 0.89 with an average of 0.69. (1) In the three genomes of wheat, the average genetic richness
was B>A>D, and the genetic diversity indexes were B>D>A. (2) Among the seven homoeologous groups, the average genetic richness was 2=7>3>4>6>5>1, and the genetic diversity indexes
were 7>3>2>4>6>5>1. As a whole, group 7 possessed the highest genetic diversity, while groups 1 and 5 were the lowest. (3)
In the 21 wheat chromosomes, 7A, 3B and 2D possessed much higher genetic diversity, while 2A, 1B, 4D, 5D and 1D were the lowest. (4) The highest average genetic diversity index existed in varieties bred in the 1950s, and then it declined
continually. However, the change tendency of genetic diversity among decades was not greatly sharp. This was further illustrated
by changes of the average genetic distance between varieties. In the 1950s it was the largest (0.731). Since the 1960s, it
has decreased gradually (0.711, 0.706, 0.696, 0.695). The genetic base of modern varieties is becoming narrower and narrower.
This should be given enough attention by breeders and policy makers. 相似文献
18.
Arabidopsis thaliana root hairs grow longer and denser in response to low-phosphorus availability. In addition, plants with the root hair response acquire more phosphorus than mutants that have root hairs that do not respond to phosphorus limiting conditions. The purpose of this experiment was to determine the efficiency of root hairs in phosphorus acquisition at high- and low-phosphorus availability. Root hair growth, root growth, root respiration, plant phosphorus uptake, and plant phosphorus content of 3-wk-old wild-type Arabidopsis (WS) were compared to two root hair mutants (rhd6 and rhd2) under high (54 mmol/m) and low (0.4 mmol/m) phosphorus availability. A cost-benefit analysis was constructed from the measurements to determine root hair efficiency. Under high-phosphorus availability, root hairs did not have an effect on any of the parameters measured. Under low-phosphorus availability, wild-type Arabidopsis had greater total root surface area, shoot biomass, phosphorus per root length, and specific phosphorus uptake. The cost-benefit analysis shows that under low phosphorus, wild-type roots acquire more phosphorus for every unit of carbon respired or unit of phosphorus invested into the roots than the mutants. We conclude that the response of root hairs to low-phosphorus availability is an efficient strategy for phosphorus acquisition. 相似文献
19.
A review and reassessment of lake phosphorus retention and the nutrient loading concept 总被引:3,自引:0,他引:3
1. We conducted a statistical reassessment of data previously reported in the lake total phosphorus (TP) input/output literature (n = 305) to determine which lake characteristics are most strongly associated with lake phosphorus concentration and retention. We tested five different hypotheses for predicting lake TP concentrations and phosphorus retention. 2. The Vollenweider phosphorus mass loading model can be expressed as: TPout = TPin/(1 + στw), where TPin is the flow‐weighted input TP concentration, τw is the lake hydraulic retention time and σ is a first‐order rate constant for phosphorus loss. 3. The inflow‐weighted TP input concentration is a moderately strong predictor (r2 = 0.71) of lake phosphorus concentrations when using log–log transformed data. Lake TP retention is negatively correlated with lake hydraulic retention time (r2 = 0.35). 4. Of the approaches tested, the best fit to observed data was obtained by estimating σ as an inverse function of the lake's hydraulic retention time. Although this mass balance approach explained 84% of the variability in log–log transformed data, the prediction error for individual lakes was quite high. 5. Estimating σ as the ratio of a putative particle settling velocity to the mean lake depth yielded poorer predictions of lake TP (r2 = 0.77) than the approach described above, and in fact did not improve model performance compared with simply assuming that σ is a constant for all lakes. 6. Our results also demonstrate that changing the flow‐weighted input concentration should always have a directly proportionate impact on lake phosphorus concentrations, provided the type of phosphorus loaded (e.g. dissolved or particulate) does not vary. 相似文献
20.
We used l6 soils to compare the Hedley method for soil phosphorus fractionation to an alternative method recently developed by Ruttenberg to differentiate among P fractions in marine sediments. For forms of labile and Fe-bound P in soils, these methods were poorly correlated, with the Hedley fractionation showing a greater ability to discriminate among variations in plant-available P. For Ca-bound P, total organic P, and total P, the methods were well correlated (r2 = 0.93, 0.48, 0.74, respectively), although the sum of P measured in the Ruttenberg extractions is only 45% of the total P recovered by the Hedley fractionation. The Hedley fractionation seems superior when an index of plant-available phosphorus and a separation of organic and inorganic forms is needed, whereas the Ruttenberg method allows a separation of CaCO3-bound P from apatite-P, which is potentially useful in calcareous soils. 相似文献