首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The objective of this study was to define how the quality of the buffer/membrane interface influences the activity of bacterial sphingomyelinase acting at the interface. The enzyme reaction was carried out in a zero-order trough using a surface barostat. This approach allowed for proper control of the physico-chemical properties of the substrate molecules. Since the molecular area of ceramide is smaller than that of sphingomyelin, the hydrolysis reaction could be followed `on-line' from the monolayer area decrease at constant surface pressure. The hydrolysis reaction could be divided into two separate phases, the first being the lag-phase (time between enzyme addition and commencement of the monolayer area change), and the second phase being the actual hydrolysis reaction (from which a maximal degradation rate could be determined). The activity of sphingomyelinase (Staphylococcus aureus) toward bovine brain sphingomyelin (bb-SM) was markedly enhanced by Mg2+ (maximal activation at 5 mM). Mg2+ also influenced the lag-phase of the reaction (the lag-time increased markedly when the Mg2+ concentration decreased below 1 mM). Saturated sphingomyelins (bb-SM and N-palmitoyl sphingomyelin [N-P-SM]) were more slowly degraded than the mono-unsaturated N-oleoyl sphingomyelin (N-O-SM). Both bb-SM and N-P-SM monolayers underwent a phase-transition at room temperature, whereas the N-O-SM monolayer did not. The phase-transition (liquid-expanded to liquid-condensed) was observed to greatly increase the lag-time of the hydrolysis reaction. The activity of sphingomyelinase was also sensitive to the lateral surface pressure of the monolayer membrane. Maximal degradation rate was achieved at 20 mN/m (with bb-SM, 30°C); above this pressure the lag-time of the reaction increased sharply. The inclusion of 4 mol% of cholesterol into a [3H]sphingomyelin monolayer markedly increased the extent of [3H]sphingomyelin degradation, and shortened the lag-time of the reaction. The inclusion of 10 mol% of zwitterionic or negatively charged phospholipids to the [3H]sphingomyelin monolayer did not affect the sphingomyelinase reaction significantly. In conclusion, this study has demonstrated that the physico-chemical properties of the substrate molecules have a dominating influence on the activity of a bacterial sphingomyelinase acting at the buffer/membrane interface.  相似文献   

2.
The cholesterol oxidase-catalyzed oxidation of cholesterol in native low density (LDL) and high density lipoproteins (HDL3) as well as in monolayers prepared from surface lipids of these particles, has been examined. The objective of the study was to compare the oxidizability of cholesterol, and to examine the effects of lipid packing on oxidation rates. When [3H]cholesterol-labeled lipoproteins were exposed to cholesterol oxidase (Streptomyces sp.), it was observed that LDL [3H]cholesterol was oxidized much faster than HDL3 [3H]cholesterol. This was true both at equal cholesterol concentration per enzyme unit, and at equal amounts of lipoprotein particles per enzyme unit. About 95% of lipoprotein [3H]cholesterol was available for oxidation. The complete degradation of lipoprotein sphingomyelin by sphingomyelinase (Staphylococcus aureus) resulted in a 10-fold increase in the rate of LDL [3H]cholesterol oxidation, whereas the effects on rates of HDL3 [3H]cholesterol oxidation were less dramatic. A monolayer study with LDL surface lipids indicated that degradation of sphingomyelin loosened the lipid packing, because the ceramide formed occupied a smaller surface area than the parent sphingomyelin, and since the condensing effect of cholesterol on sphingomyelin packing was lost. The effects of sphingomyelin degradation on lipid packing in monolayers of HDL3-derived surface lipids were difficult to determine from monolayer experiments. Based on the finding that cholesterol oxidases are surface pressure-sensitive with regard to their catalytic activity, these were used to estimate the surface pressure of intact LDL and HDL3. The cut-off surface pressure of a Brevibacterium enzyme was 25 mN/m and 20 mN/m in monolayers of LDL and HDL3-derived surface lipids, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The model membrane approach was used to investigate the surface charge effect on the ion-antibiotic complexation process. Mixed monolayers of valinomycin and lipids were spread on subphases containing K+ or Na+. The surface charge density was modified by spreading ionizable valinomycin analogs on aqueous subphases of different pH or by changing the nature of the lipid (neutral, negatively charged) in the mixed film. Surface pressure and surface potential measurements demonstrated that a neutral lipid (phosphatidylcholine) or positively charged valinomycin analogs didn't enhance the antibiotic complexing capacity. However, a maximal complexation is reached for a critical lipid concentration in the valinomycin-phosphatidylserine mixed film. The role of the surface charge on the valinomycin complexing properties was examined in terms of the Gouy-Chapman theory. As a consequence of the negative charge of the lipid monolayer, the K+ concentration near the surface is larger than the bulk concentration, by a Boltzmann factor. A good agreement was observed between the experimental results and the theoretical predictions. Conductance measurements of asymmetric bilayers containing a neutral lipid (egg lecithin) on one side and a negatively charged lipid (phosphatidylserine) on the other, confirm the role of the surface charge. Indeed, addition of K+ to the neutral side of the bilayer containing valinomycin had no effect on the conductance whereas addition of K+ to the charged side of the bilayer caused a 80-fold conductance increase.  相似文献   

4.
Platelet aggregation activity due to platelet-activating factor (PAF) was detected at high molecular weight (HMW) and low molecular weight fractions after gel-filtration chromatography of cell lysate of endothelial cells. [3H]PAF added to the cell lysate was similarly distributed after chromatography. The radioactivity associated with HMW fraction was not reduced by digesting the lysate with trypsin, suggesting that PAF was not making complexes with proteins but was included in lipid vesicles in cell lysate. Further evidence showed that an unknown specific factor(s) was needed to form these PAF-containing lipid vesicles. Radioactivity was not found in HMW fraction when [3H]PAF was mixed with cell lysate of vascular smooth muscle cells. When monomeric PAF was added to endothelial cell lysate, the specific activity of aggregation decreased to the level exerted by endogenous PAF-containing lipid vesicles due to incorporation into lipid vesicles. PAF in the form of lipid vesicles was more stable in plasma than monomeric form.  相似文献   

5.
Previously, we showed that fetal bovine cartilage contains a polypeptide that stimulates the incorporation of [35S]sulfate into proteoglycans synthesized by rat and rabbit costal chondrocytes in culture. In this paper, we report that the cartilage-derived factor (CDF) increases not only [35S]sulfate incorporation but also [3H]thymidine incorporation into rabbit chondrocytes in monolayer culture. The dose-response curve of CDF stimulation of DNA synthesis was similar in profile to that of CDF stimulation of proteoglycan synthesis. In addition, CDF markedly enhanced [3H]uridine incorporation into rabbit chondrocytes and significantly enhanced [3H]serine incorporation into total protein. These findings indicate that fetal bovine cartilage contains a factor that shows somatomedin-like activity in monolayer cultures of rabbit chondrocytes.  相似文献   

6.
Pulmonary surfactant forms a surface film that consists of a monolayer and a monolayer-associated reservoir. The extent to which surfactant components including the main component, dipalmitoylphosphatidylcholine (DPPC), are adsorbed into the monolayer, and how surfactant protein SP-A affects their adsorptions, is not clear. Transport of cholesterol to the surface region from dispersions of bovine lipid extract surfactant [BLES(chol)] with or without SP-A at 37 degrees C was studied by measuring surface radioactivities of [4-(14)C]cholesterol-labeled BLES(chol), and the Wilhelmy plate technique was used to monitor adsorption of monolayers. Results showed that transport of cholesterol was lipid concentration dependent. SP-A accelerated lipid adsorption but suppressed the final level of cholesterol in the surface. Surfactant adsorbed from a dispersion with or without SP-A was transferred via a wet filter paper to a clean surface, where the surface radioactivity and surface tension were recorded simultaneously. It was observed that 1) surface radioactivity was constant over a range of dispersion concentrations; 2) cholesterol and DPPC were transferred simultaneously; and 3) SP-A limited transfer of cholesterol.These results indicate that non-DPPC components of pulmonary surfactant can be adsorbed into the monolayer. Studies in the transfer of [1-(14)C]DPPC-labeled BLES(chol) to an equal or larger clean surface area revealed that SP-A did not increase selective adsorption of DPPC into the monolayer. Evaluation of transferred surfactant with a surface balance indicated that it equilibrated as a monolayer. Furthermore, examination of transferred surfactants from dispersions with and without prespread BLES(chol) monolayers revealed a functional contiguous association between adsorbed monolayers and reservoirs.  相似文献   

7.
The reconstitution of solubilized bovine atrial cholinergic muscarinic receptor into liposomes made of exogenous lipids has been achieved by polyethyleneglycol precipitation. Of the different lipid mixtures used, soybean lecithins were shown to be the best on the basis of receptor recovery. The receptor reconsituted into soybean lecithins liposomes exhibited ligand binding properties very similar to those of the native receptor. The dissociation constant of [3H]-N-methyl-scopolamine ([3H]NMS) was 0.46 and 0.30 nM as determined by equilibrium and kinetics experiments respectively. The potency of a range of muscarinic ligands in displacing [3H]NMS binding was atropine > methyl-atropine > scopolamine > pirenzepine oxotremorine > gallamine > carbamylcholine > pilocarpine bethanechol. The Hill slopes of the displacement curves were near 1 for the antagonists and smaller than 1 for the agonists and for gallamine. The agonist binding may be modulated by guanine nucleotides. These results indicate that soybean lecithins fulfill the lipid requirements for the reconstitution of the atrial muscarinic receptor.  相似文献   

8.
Lipid-protein films at the air-water interface were generated from a variety of native vesicles and from vesicles derived from lipid extracts. A technique is described which is particularly suitable for the generation of films from small amounts of material at high yield and velocity. In all instances, 10 l vesicle suspensions containing 25 g protein yield at least 50 cm2 film area at a constant surface pressure of 12 mN/m within minutes. Upon formation, surface films are separated from vesicles by use of shear forces. Complete separation is demonstrated by electron microscopy and surface pressure-area diagrams. The latter confirms previous conclusions that surface films generated from lipid vesicles are organized as a monolayer. Analysis of lipid-protein surface layers reveals that their lipid to protein ratios match those of the vesicles used, within a factor of two, irrespective of whether films are generated at high or low surface pressure. Surface denaturation of membrane proteins is shown to be effectively prevented when the film is generated and held at high surface pressure ( 15 mN/m). Upon surface pressure jumps from high to low values, denaturation kinetics revealed activation areas of 1.5 (±0.2) nm2. Offprint requests to: H. Schindler  相似文献   

9.
The activity of phospholipase C from Clostridium perfringens on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) as a monolayer at an air/water interface was examined. With a pure POPC monolayer, sharp cut-off of the enzyme activity was observed on increase in surface pressure. However, this cut-off disappeared on addition of a 0.3 molar fraction of 1,2-dioleoylglycerol (1,2-DO) to the monolayer. An abrupt change in the enzyme activity was observed with molar fractions of between 0.2 and 0.3 1,2-DO in the POPC monolayer at an initial surface pressure of 35 mN/m. For examination of the effect of 1,2-DO on the phospholipase C activity, the quantity of [125I]phospholipase C adsorbed to the surface was determined. The enzyme was found to be adsorbed nonspecifically to all lipid films except that of POPC only. The adsorption of enzyme was not affected by the presence or absence of Ca2+ and Zn2+. The rate constant for enzyme adsorption to a 1,2-DO film was 4.5 times that for its adsorption to a POPC film. The adsorption decreased linearly with increase in the surface concentration of POPC, and increased with increase in the surface concentration of 1,2-DO. These data suggest that 1,2-DO (a reaction product) regulates the interaction of phospholipase C with films containing substrate and may also regulate the enzyme activity.  相似文献   

10.
Solubilization and Characterization of Striatal Dopamine Receptors   总被引:5,自引:5,他引:0  
Abstract: Dopamine receptor binding proteins were sol-ubilized with the detergent 3–(3–cholamidopropyl) dimethylammonio - 2 - hydroxy - 1– propanesulfonate (CHAPSO) from bovine and rat striatal membranes. The binding of the dopamine antagonist [3H]spiroperidol ([3H]Spi) to the solubilized dopamine receptors was determined by the polyethyleneglycol method. The CHAPSO-solubilized dopamine receptor binding proteins remain in the supernatant fraction following centrifuga-tion at 100,000 ×g for 2 h. The CHAPSO-solubilized dopamine receptor proteins, as well as the prelabeled [3H]Spi-receptor protein complex, bind specifically to wheat germ agglutinin (WGA)-agarose columns, which is consistent with an identification as glycoproteins. HPLC analysis of the CHAPSO-solubilized, prelabeled [3H]Spi-receptor protein complex (CHAPSO preparation) reveals association with a high molecular weight form, indicating the formation of aggregates and/or micelles. Treatment of the WGA-agarose-bound [3H]Spi-receptor protein complex with digitonin (CHAPSO-digitonin preparation) results in dissociation of the high molecular weight form into lower molecular weight forms. The HPLC profile of the prelabeled [3H]Spi-receptor complex in the CHAPSO-digitonin preparation reveals two radioactive peaks. The major peak had a retention time of 16 min, corresponding to an apparent MW of 175,000, whereas the minor peak had a retention time of 21 min, corresponding to an apparent MW of 49,000. The CHAPSO-solubilized dopamine receptor binding proteins are sensitive to modulation by GTP, indicating that the association with the GTP binding component is preserved in the “soluble” state. The potencies of dopamine antagonists and agonists for inhibiting the binding of [3H]Spi to CHAPSO-solubilized dopamine receptor proteins are similar to those for membrane-bound proteins. Chronic treatment with haloperidol increases the Bmax, and does not change the KD for [3H]Spi in the CHAPSO-solubilized and in the membrane-bound preparations. Thus, the CHAPSO-solubilized dopamine receptor proteins retain the binding characteristics of the supersensitive membrane-bound dopamine receptors.  相似文献   

11.
The pulmonary surfactant lines as a complex monolayer of lipids and proteins the alveolar epithelial surface. The monolayer dynamically adapts the surface tension of this interface to the varying surface areas during inhalation and exhalation. Its presence in the alveoli is thus a prerequisite for a proper lung function. The lipid moiety represents about 90% of the surfactant and contains mainly dipalmitoylphosphatidylcholine (DPPC) and phosphatidylglycerol (PG). The surfactant proteins involved in the surface tension adaption are called SP-A, SP-B and SP-C. The aim of the present investigation is to analyse the properties of monolayer films made from pure SP-C and from mixtures of DPPC, DPPG and SP-C in order to mimic the surfactant monolayer with minimal compositional requirement. Pressure-area diagrams were taken. Ellipsometric measurements at the air-water interface of a Langmuir film balance allowed measurement of the changes in monolayer thickness upon compression. Isotherms of pure SP-C monolayers exhibit a plateau between 22 and 25 mN/m. A further plateau is reached at higher compression. Structures of the monolayer formed during compression are reversible during expansion. Together with ellipsometric data which show a stepwise increase in film thickness (coverage) during compression, we conclude that pure SP-C films rearrange reversibly into multilayers of homogenous thickness.

Lipid monolayers collapse locally and irreversibly if films are compressed to approximately 0–4 nm2/molecule. In contrast, mixed DPPG/SP-C monolayers with less than 5 mol% protein collapse in a controlled and reversible way. The pressure-area diagrams exhibit a plateau at 20 mN/m, indicating partial demixing of SP-C and DPPG. The thickness isotherm obtained by ellipsometry indicates a transformation into multilayer structures. In DPPC/DPPG/SP-C mixtures again a reversible collapse was observed but without a drastic increase in surface layer thickness which may be due to the formation of protrusion under the surface. Thus lipid monolayers containing small amounts of SP-C may mimic the lung surfactant.  相似文献   

12.
The 14 and 18 S forms of acetylcholinesterase from the electric organ of Electrophorus electricus were purified by chromatography on an N-methyl-3-aminopyridinium derivative of Affi-Gel 202. a further increase in purity was seen when these forms were separated by density gradient sedimentation subsequent to the affinity step. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate demonstrated that the 14 and 18 S forms were highly purified following these procedures. Using [3H]diisopropyl fluorophosphate labeling and separation of labeled enzyme from unreacted [3H]diisopropyl fluorophosphate by gel filtration, active site numbers of 8.3 and 11.4 were determined for the 14 and 18 S forms, respectively. These numbers compare to 4.2 active sites determined for the 11.8 S globular form of acetylcholinesterase. These results are in accord with a proposed model of two and three tetrameric structures comprising the head groups of the 14 and 18 S forms of electric tissue acetylcholinesterase.  相似文献   

13.
Receptor proteins for [3H] retinol and [3H] retinoic acid in cultured human retinoblastoma cells have been separated rapidly and reproducibly by two different methods. By isoelectric focusing, the isoelectric point of the retinol receptor is at pH 4.0; the retinoic acid receptor has a higher isoelectric point of 4.3. Polyacrylamide slab gel electrophoresis revealed a slower migration rate for the [3H] retinoic acid receptor compared to the [3H] retinol receptor. The separate nature of the two proteins has thus been established in this unique human cell line.  相似文献   

14.
The accumulation of [3H]leucine- and [3H]fucose-labelled axonal proteins, acetyl-CoA : choline O-acetyltransferase (ChAc, EC 2.3.1.6) and acetylcholinesterase (AChE, EC 3.1.1.7) was studied proximal to a ligature applied to the hypoglossal nerve of the rabbit at different phases of nerve regeneration. After 1 week of regeneration, the accumulation of rapidly migrating [3H]leucine-labelled proteins, ChAc and AChE was reduced as compared to that of the contralateral nerve. In contrast, the accumulation of [3H]fucose-labelled glycoproteins was markedly increased. After a regeneration period of 4-6 weeks, the accumulation of proteins and glycoproteins in the regenerating nerve was increased whereas the accumulation of ChAc and AChE was almost normal. The results indicate an initial depression of the synthesis and axonal transport of the bulk of rapidly migrating proteins, ChAc and AChE in the chromatolytic hypoglossal neurons whereas the synthesis and transport of rapidly migrating glycoproteins is increased. These initial changes are less pronounced during the subsequent regeneration period.  相似文献   

15.
Fractional [3H]acetylcholine (ACh) release and regulation of release process by muscarinic receptors were studied in corpus striatum of young and aged rat brains. [3H] Quinuclidinyl benzilate (QNB) binding and carbachol stimulated phosphoinositide turnover, on the other hand, were compared in striatal, hippocampal and cortical tissues. High potassium (10 mM)-induced fractional [3H]ACh release from striatal slices was reduced by aging. Although inhibition of acetylcholinesterase with eserine (20 M) significantly decreased stimulation-induced fractional [3H]ACh release in two groups of rats, this inhibition slightly lessened with aging. Incubation of striatal slices with muscarinic antagonists reversed eserine-induced inhibition in fractional [3H]ACh release with a similar order of potency (atropine = 4-DAMP > AF-DX 116 > pirenzepine) in young and aged rat striatum, but age-induced difference in stimulated ACh release was not abolish by muscarinic antagonists. These results suggested that fractional [3H]ACh release from striatum of both age groups is modulated mainly by M3 muscarinic receptor subtype. Although both muscarinic receptor density and labeling of inositol lipids with [myo-3H]inositol decreased with aging, carbachol-stimulated [3H]myo inositol-1-fosfat (IP1) accumulation was found similar in striatal, cortical and hippocampal slices.  相似文献   

16.
Male rats were treated for 10 days with the organophosphorus insecticide, acetylcholinesterase inhibitor, O,O-diethyl S-[2-(ethylthio)ethyl]phosphorodithioate (disulfoton, 2 mg/kg/day by gavage). At the end of the treatment, binding of [3H]quinuclidinyl benzilate ([3H]QNB) to cholinergic muscarinic receptors and cholinesterase (ChE) activity were assayed in the pancreas. Functional activity of pancreatic muscarinic receptor was investigated by determining carbachol-stimulated secretion of α-amylase in vitro. ChE activity and [3H]QNB binding were significantly decreased in the pancreas from disulfoton-treated rats. The alteration of [3H]QNB binding was due to a decrease in muscarinic receptor density with no change in the affinity. Basal secretion of amylase from pancreas in vitro was not altered, but carbachol-stimulated secretion was decreased. The effect appeared to be specific since pancreozymin was able to induce the same amylase release from pancreases of control and treated rats. The results suggest that repeated exposures to sublethal doses of an organophosphorus insecticide lead to a biochemical and functional alteration of cholinergic muscarinic receptors in the pancreas.  相似文献   

17.
The binding of cytochrome c to an insoluble monolayer of chlorophyll a was studied. Surface pressure (II), surface potential (delta V) and [14C]cytochrome c surface-concentration (gamma) isotherms were measured versus molecular area (sigma) in mixed films. Compared to the successive-addition method, this procedure allows the formation of homogeneous mixed films. The cytochrome c is incorporated into a chlorophyll a monolayer, compressed at a surface pressure of 20 mN.m-1. On expansion, the quantity of protein incorporated into the monolayer gradually increases. Subsequent compression-expansion cycles result in similar isotherms, distinct from that measured during the first expansion. All surface properties measured, but more specifically the surface radioactivity of [14C]cytochrome c, indicate the irreversibility of protein incorporation into the chlorophyll a monolayer. In fact, surface properties of the binary film are completely different from the properties of either of the pure components. As a result, calculated values of surface potentials for mixed films using the additivity law deviate from experimentally measured potentials. The absorption and fluorescence spectra of mixed films transferred onto a solid substrate by the Langmuir-Blodgett technique, indicate a dilution effect of chlorophyll a by cytochrome c. However, the dilution effect cannot be detected by the fluorescence lifetimes of pure chlorophyll a and mixed chlorophyll a-cytochrome c films, both shorter than 0.2 ns. This provides support for the existence of an energy-transfer mechanism between chlorophyll a monomer and chlorophyll a aggregates which could serve as an energy trap. The role of the protein could be related to that of the matrix.  相似文献   

18.
Detergent binding studies indicated that the neural enzyme, acetylcholinesterase, did not exhibit the properties of an integral membrane protein. The 11S form was isolated by affinity chromatography from a tryptic digest and the 14S and 18S forms in like manner from an undigested preparation. Studies were performed with [3H]TX-100 to determine the extent of binding by these forms and with catalase and human low density lipoprotein as reference proteins. All forms of the enzyme bound less than 0.04 mg TX-100/mg protein which is only slightly higher than binding by catalase and about 25 fold lower than the binding exhibited by low density lipoprotein.  相似文献   

19.
Abstract: Assessing the function of the phosphoinositide signal transduction system in membranes prepared from postmortem human brain by measuring the hydrolysis of exogenous labeled phosphoinositides has been applied to studies of a variety of CNS disorders in recent years. Two issues concerning such studies were addressed in the current investigation: how do [3H]phosphatidylinositol and [3H]phosphatidylinositol 4,5-bisphosphate compare as substrates, and how do dopamine D1 receptors influence phosphoinositide signaling? Comparisons of [3H]phosphatidylinositol and [3H]phosphatidylinositol 4,5-bisphosphate hydrolysis stimulated by guanosine-5′-O-(3-thiotriphosphate)-activated G proteins and by several receptor agonists demonstrated that in most cases each substrate gave similar relative results in membranes prepared from prefrontal cortices of six individuals. However, using optimal assay conditions, [3H]phosphatidylinositol produced a greater signal-to-noise ratio compared with [3H]phosphatidylinositol 4,5-bisphosphate. Dopamine D1 receptors were demonstrated to be directly coupled to phosphoinositide hydrolysis in human brain membranes, and this response was shown to be mediated by the Gq/11 G protein subtype and by the β-subtype of phospholipase C. Therefore, these results demonstrate that [3H]phosphatidylinositol is a suitable substrate to measure phosphoinositide hydrolysis in human brain membranes and that dopamine D1 receptors directly stimulate this signaling system.  相似文献   

20.
Mean molecular area vs. lateral surface pressure isotherms were determined for monolayers containing cholesterol, 4-cholesten-3-one (cholestenone), or binary mixtures of the two. At all lateral surface pressures examined, cholestenone had a larger mean molecular area requirement than cholesterol. Results with the binary mixtures of cholesterol and cholestenone suggested that the sterols did not mix ideally (non additive mean molecular area) with each other in the monolayer; the observed mean molecular area for mixtures was less than would be expected based on ideal mixing. The mixed sterol monolayers also displayed a reduction in the lateral collapse pressure which appeared to be a linear function of the mole fraction of cholestenone in the monolayer, suggesting that cholesterol and cholestenone were completely miscible in the mixed monolayer. The pure cholesterol monolayer was next used to examine the cholesterol oxidase-catalyzed (Brevibacterium sp.) oxidation of cholesterol to cholestenone at different lateral surface pressures at 22 degrees C. The difference in mean molecular area requirements of cholesterol and cholestenone was directly used to convert monolayer area changes (at constant lateral surface pressure) into average reaction rates. It was observed that the average catalytic activity of cholesterol oxidase increased linearly with increased lateral surface pressure in the range of 1 to 20 mN/m. In addition, the enzyme was capable to oxidize cholesterol in monolayers with a lateral surface pressure close to the collapse pressure of cholesterol monolayers (collapse pressure 45 mN/m; oxidation was observed at 40 mN/m). The adsorption of cholesterol oxidase to an inert sterol monolayer film at low surface pressures (around 9 mN/m) was marginal, although clearly detectable at very low (0.5-4 mN/m) lateral surface pressures, suggesting that the enzyme did not penetrate deeply into the monolayer in order to reach the 3 beta-hydroxy group of cholesterol. This interpretation is further supported by the finding that a maximally compressed cholesterol monolayer (40 mN/m) was readily susceptible to enzyme-catalyzed oxidation. It is concluded that cholesterol oxidase is capable of oxidizing cholesterol in laterally expanded monolayers as well as in tightly packed monolayers, where the lateral surface pressure is close to the collapse pressure. The kinetic results suggested that the rate-limiting step in the overall process was the substrate availability per surface area (or surface concentration) at the water/lipid interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号