首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Na+,K(+)-ATPase concentration in rat cerebral cortex was studied by vanadate-facilitated [3H]ouabain binding to intact samples and by K(+)-dependent 3-O-methylfluorescein phosphatase activity determinations in crude homogenates. Methodological errors of both methods were evaluated. [3H]Ouabain binding to cerebral cortex obtained from 12-week-old rats measured incubating samples in buffer containing [3H]ouabain, and ouabain at a final concentration of 1 x 10(-6) mol/L gave a value of 11,351 +/- 177 (n = 5) pmol/g wet weight (mean +/- SEM) without any significant variation between the lobes. Evaluation of affinity for ouabain was in agreement with a heterogeneous population of [3H]ouabain binding sites. K(+)-dependent 3-O-methylfluorescein phosphatase activity in crude cerebral homogenates of age-matched rats was 7.24 +/- 0.14 (n = 5) mumol/min/g wet weight, corresponding to a Na+,K(+)-ATPase concentration of 12,209 +/- 236 pmol/g wet weight. It was concluded that the present methods were suitable for quantitative studies of cerebral cortex Na+,K(+)-ATPase. The concentration of rat cerebral cortex Na+,K(+)-ATPase showed approximately 10-fold increase within the first 4 weeks of life to reach a plateau of approximately 11,000-12,000 pmol/g wet weight, indicating a larger synthesis of Na+,K+ pumps than tissue mass in rat cerebral cortex during the first 4 weeks of development. K+ depletion induced by K(+)-deficient fodder for 2 weeks resulted in a slight tendency toward a reduction in K+ content (6%, p > 0.5) and Na+,K(+)-ATPase concentration (3%, p > 0.4) in cerebral cortex, whereas soleus muscle K+ content and Na+,K(+)-ATPase concentration were decreased by 30 (p < 0.02) and 32% (p < 0.001), respectively. Hence, during K+ depletion, cerebral cortex can maintain almost normal K+ homeostasis, whereas K+ as well as Na+,K+ pumps are lost from skeletal muscles.  相似文献   

2.
A comparison was made between the releasability of eight neurotransmitters from eight regions of mouse brain in response to either 60 mM-K+ or 20 microM-ouabain, a specific inhibitor of the Na+,K+-ATPase. With few exceptions, all transmitters were released by either or both agents from each brain region examined. Potassium was superior in releasing the biogenic amines and acetylcholine, while the putative amino acid transmitters were generally releasable by both agents. Measurements of tissue depolarization using [3H]-tetraphenylphosphonium uptake indicated that 60 mM-K+ is capable of depolarizing brain tissue above the threshold necessary for initiating an action potential, but 20 microM-ouabain is not. The pattern of release by ouabain coupled with its failure to depolarize brain tissue at 20 microM suggests that inhibition of the Na+,K+-ATPase is capable of releasing cytoplasmic neurotransmitters in a voltage-independent manner.  相似文献   

3.
Neuroblastoma cells were used to analyze the effect of elevated glucose levels on myo-inositol metabolism and Na+/K+-pump activity. The activity of the Na+/K+ pump in neuroblastoma cells is almost totally sensitive to ouabain inhibition. Culturing neuroblastoma cells in 30 mM glucose caused a significant decrease in Na+/K+-pump activity, myo-inositol metabolism, and myo-inositol content, compared to cells grown in the presence of 30 mM fructose. Glucose supplementation also caused a large intracellular accumulation of sorbitol. The aldose reductase inhibitor sorbinil prevented the abnormalities in myo-inositol metabolism and partially restored Na+/K+-pump activity in neuroblastoma cells cultured in the presence of elevated glucose levels. These results suggest that the accumulation of sorbitol by neuroblastoma cells exposed to elevated concentrations of extracellular glucose causes a decrease in myo-inositol metabolism and these abnormalities are associated with a reduction in Na+/K+-pump activity.  相似文献   

4.
The effects of nerve growth factor (NGF) on induction of Na+,K+-ATPase were examined in a rat pheochromocytoma cell line, PC12h. Na+,K+-ATPase activity in a crude particulate fraction from the cells increased from 0.37 +/- 0.02 (n = 19) to 0.55 +/- 0.02 (n = 20) (means +/- SEM, mumol Pi/min/mg of protein) when cultured with NGF for 5-11 days. The increase caused by NGF was prevented by addition of specific anti-NGF antibodies. Epidermal growth factor and insulin had only a small effect on induction of Na+,K+-ATPase. A concentration of basic fibroblast growth factor three times higher than that of NGF showed a similar potency to NGF. The molecular form of the enzyme was judged as only the alpha form in both the untreated and the NGF-treated cells by a simple pattern of low-affinity interaction with cardiotonic steroids: inhibition of enzyme activity by strophanthidin (Ki approximately 1 mM) and inhibition of Rb+ uptake by ouabain (Ki approximately 100 microM). As a consequence, during differentiation of PC12h cells to neuron-like cells, NGF increases the alpha form of Na+,K+-ATPase, but does not induce the alpha(+) form of the enzyme, which has a high sensitivity for cardiotonic steroid and is a characteristic form in neurons.  相似文献   

5.
We have tested if inhibition of protein kinase C is able to prevent and/or to restore the decrease of Na+,K(+)-ATPase activity in the sciatic nerve of alloxan-induced diabetic mice. Mice were made diabetic by subcutaneous injection of 200 mg of alloxan/kg of body weight. The activity of Na+,K(+)-ATPase decreased rapidly (43% after 3 days) and slightly thereafter (58% at 11 days). We show that intraperitoneal injection of 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7), an inhibitor of protein kinase C, prevents completely the loss of Na+,K(+)-ATPase activity produced by alloxan. Also, H7 injected into diabetic mice, 4-9 days after the injection of alloxan, restores the activity of the enzyme. The amount of activity recovered depends on the dose of H7 administered; complete recovery was reached with injection of 15 mg of H7/kg of body weight. The effect of H7 is transient, with a half-life of approximately 1 h.  相似文献   

6.
To investigate the functional role of the different Na+, K(+)-ATPase alpha (catalytic) subunit isoforms in neuronal cells, we used quantitative in situ hybridization with riboprobes specific for alpha 1, alpha 2, and alpha 3 isoforms to measure the level of alpha isoform-specific expression in the neuroendocrine cells of the supraoptic (SON) and paraventricular (PVN) nuclei of rat hypothalamus. A prolonged increase in electrical activity of these cells, achieved by 5 days of salt treatment, increased the amount of alpha 1 isoform mRNA in the SON and PVN by 50%. Levels of alpha 1 mRNA in other brain regions and levels of alpha 2 and alpha 3 mRNAs were not affected by salt treatment. We conclude that the alpha 1 isoform Na+, K(+)-ATPase may be specifically adapted to pump out Na+, which enters the cells through voltage-gated channels during neuronal depolarization.  相似文献   

7.
The distributions of alpha-subunit isoforms of the Na+,K(+)-ATPase in rat pituitary were determined by immunoblotting and immunohistochemistry. Immunoreactivity for all three forms is present in the neural lobe, whereas the anterior lobe contains only alpha 1 and alpha 2. Most areas of the intermediate lobe exhibit faint immunoreactivity for only alpha 1, but thin strands of cells which stain strongly for all three isoforms are also present in this lobe. The previously reported ouabain inhibitable Na+,K(+)-ATPase activity in the neural lobe is consistent with the presence of both alpha 2 and alpha 3 subunits.  相似文献   

8.
In order to investigate the specificity of noradrenergic effects on Na+, K+-ATPase, we infused noradrenergic agonists into the cerebral ventricles of rats, with or without depletion of forebrain norepinephrine. Infusion of norepinephrine, isoproterenol, or phenylephrine increased ouabain binding in intact rats, whereas clonidine infusion decreased binding. Depletion of forebrain norepinephrine by destruction of the dorsal noradrenergic bundle reduced ouabain binding. Norepinephrine infusion reversed the effect of dorsal bundle lesion; isoproterenol and phenylephrine increased ouabain binding in lesioned rats, but did not restore the effect of the lesions. Clonidine had no effect in lesioned rats. Effects on Na+, K+-ATPase activity were similar, but smaller. These results suggest that stimulation of both alpha 1- and beta-noradrenergic receptors may be necessary for optimal Na+, K+-ATPase, and that clonidine reduces Na+, K+-ATPase indirectly through decreased norepinephrine release.  相似文献   

9.
The effects of some gangliosides on active uptake of nonmetabolizable alpha-aminoisobutyric acid (AIB) and Na+, K+-ATPase and Ca2+, Mg2+-ATPase activities in superior cervical ganglia (SCG) and nodose ganglia (NG) excised from adult rats were examined during aerobic incubation at 37 degrees C for 2 h. In NG, amino acid uptake was greatly accelerated with the addition of galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylgluc osyl ceramide (GM1) (85%) and also with N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide (GM2) or [N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetyl- neuraminyl]-galactosylglucosyl ceramide (GD1a) (43% each) compared with a nonaddition control at a 5 nM concentration. Under identical conditions, Na+, K+-ATPase activity was strongly stimulated with GM1 (180%) and GD1a (93%), whereas Ca2+, Mg2+-ATPase activity showed no change. In SCG, on the other hand, AIB uptake was apparently inhibited (-27%) by addition of GM1, with a slight decrease in Na+, K+-ATPase but no change in Ca2+, Mg2+-ATPase activity in the tissue. Both asialo-GM1, in which N-acetylneuraminic acid is deficient, and Forssman glycolipid, which is not present in nervous tissue, failed to produce any significant increase in both SCG and NG not only in amino acid uptake, but also in Na+, K+-ATPase activity. A kinetic study of active AIB uptake showed that GM1 ganglioside produced an increase in Km with no change in Vmax in SCG, whereas it caused a decrease in Km with a slight increase in Vmax in NG. Treatment of NG and SCG with neuraminidase from Vibrio cholerae, an enzyme that split off sialic acid from polysialoganglioside, leaving GM1 intact, caused little inhibition of the amino acid uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The aim of the present experiments was to study the effects of the neurotransmitters acetylcholine, noradrenaline, 5-hydroxytryptamine, and dopamine on the Na+,K+-ATPase of rat brain synaptosomal fractions. It is shown that dopamine at low concentrations specifically inhibits the Na+,K+-ATPase of synaptic membranes from the brain regions rich in dopaminergic endings, but has no effect on the synaptosomal Na+,K+-ATPase from the other parts of brain. Acetylcholine and noradrenaline have similar specific effects on Na+,K+-ATPase from cholinergic and adrenergic synaptosomes. The Na+,K+-ATPase of synaptic membranes from the different brain regions, characterised by different distributions of cholinergic, adrenergic, and 5-hydroxytryptaminergic endings, show different reactions with neurotransmitters. These data indicate a functional significance of the effects of the neurotransmitters on the synaptosomal Na+,K+-ATPase.  相似文献   

11.
Changes in the activity of Na+,K+-ATPase and in the water, Na+, and K+ levels in the parietal cortex, hippocampus, and thalamus were investigated in rats 1, 3, 6, and 24 h following systemic kainic acid injection. An increase in Na+,K+-ATPase activity was observed in all three regions 3 h after the treatment, with a subsequent decrease in enzyme activity. The elevation in Na+,K+-ATPase activity was accompanied by an increase in the Na+ content and a decrease in the K+ content. These changes are presumed to occur because of repeated discharges and excessive prolonged depolarization in response to kainic acid. The decreases in Na+,K+-ATPase activity 6 and 24 h following kainic acid treatment coincide with neuropathological damage and edema formation, mainly in the hippocampus and thalamus.  相似文献   

12.
In search of factors mitigating the final outcome of ischemic and epileptic brain damage, we tested a novel dibenzoxazepine derivative (BY-1949), as the compound has been shown to be effective under these two conditions. First, using rat brain, we assessed whether or not BY-1949 affects the Na+,K(+)-ATPase activity. Although in vitro applications of either BY-1949 or its three major metabolites did not cause any apparent effects, both acute and chronic oral administrations of the compound (10 mg/kg) invariably increased the Na+,K(+)-ATPase activity in the synaptosomal plasma membranes by increasing Vmax values. Second, it was shown by this study that the drug treatment caused marked increases in the uptake of both glutamic acid and gamma-aminobutyric acid into the synaptosomes. These results suggest that the activity against ischemic/epileptic brain damage by BY-1949 is explicable, at least partly, in terms of improvement of ionic derangements across the neural membranes via Na+,K(+)-ATPase activation.  相似文献   

13.
GM1 ganglioside binding to the crude mitochondrial fraction of rat brain and its effect on (Na+, K+)-ATPase were studied, the following results being obtained: (a) the binding process followed a biphasic kinetics with a break at 50 nM-GM1; GM1 at concentrations below the break was stably associated, while over the break it was loosely associated; (b) stably bound GM1 activated (Na+, K+)-ATPase up to a maximum of 43%; (c) the activation was dependent upon the amount of bound GM1 and was highest at the critical concentration of 20 pmol bound GM1 X mg protein-1; (d) loosely bound GM1 suppressed the activating effect on (Na+, K+)-ATPase elicited by firmly bound GM1; (e) GM1-activated (Na+, K+)-ATPase had the same pH optimum and apparent Km (for ATP) as normal (Na+, K+)-ATPase but a greater apparent Vmax; (f) under identical binding conditions (2 h, 37 degrees C, with 40 nM substance) all tested gangliosides (GM1, GD1a, GD1b, GT1b) activated (Na+, K+)-ATPase (from 26-43%); NeuNAc, sodium dodecylsulphate, sulphatide and cerebroside had only a very slight effect. It is suggested that the ganglioside activation of (Na+-K+)-ATPase is a specific phenomenon not related to the amphiphilic and ionic properties of gangliosides, but due to modifications of the membrane lipid environment surrounding the enzyme.  相似文献   

14.
We used postembedding electron microscopic immunocytochemistry with colloidal gold to determine the ultrastructural distribution of Na+,K(+)-ATPase in the sciatic and optic nerves of the rat. Using a polyclonal antiserum raised against the denatured catalytic subunit of brain Na+,K(+)-ATPase, we found immunoreactivity along the internodal axolemma of myelinated fibers in both nerves. This antiserum did not produce labeling of nodal axolemma. These results suggest that an important site of energy-dependent sodium-potassium exchange is along the internodal axolemma of myelinated fibers in the mammalian CNS and PNS and that there may be differences between the internodal and nodal forms of the enzyme.  相似文献   

15.
Abstract: The activities of certain properties of sodium, potassium-activated adenosine triphosphatase (Na +, K+- ATPase; EC 3.6.1.3) were examined in cultures and peri- karya fractions enriched in rat cerebellar nerve cells or astrocytes, in comparison with preparations from whole immature and adult rat cerebellum and derived synapto- somal fractions, as well as nonneural tissue such as the kidney. The specific activity of Na +, K+-ATPase was markedly higher in the freshly isolated astrocytes than in the nerve cells (3–15-fold greater depending on neuronal cell type). In contrast, the specific activity of the enzyme was about twice as high in the primary neuronal as in the a'strocytic cultures after 14 days in vitro. In membrane preparations from the whole cerebellum, synaptosomal fractions, and total perikarya suspensions the inhibition of enzyme activity by ouabain indicated complex kinetics, which were consistent with the presence of two forms of the Na +, K+-ATPase (apparent Aj values of about 10–7M and 10–4-10–5M, respectively), the high- affinity form accounting for 60–75% of the total activity. The interaction of the enzyme with ouabain was apparently similar in perikarya preparations of granule neurones, Purkinje cells, and astrocytes. Differences were, however, observed in the properties of the Na +,K + - ATPase of cultured neurones and astrocytes. The latter contained predominantly, but not exclusively, an Na+,K+-ATPase with low affinity for ouabain (73% of the total) that is similar to the single enzyme form in the kidney. This form constituted a significantly smaller proportion of the Na +, K+-ATPase in the cultured neuronal preparations (55%). It would appear, therefore, that in membrane fractions from preparations enriched in different separated and cultured neural cell types both the high- and the low-affinity forms of the enzyme, in terms of interaction with ouabain, are expressed. Depending on the class of cells these enzyme forms constituted a different proportion of the total activity, but both forms seemed to be present in every type of cell examined, even after taking into acc.ount the contribution in the enriched preparations of the contaminating cell types. In contrast with the results on the Na+, K+-ATPase activity determined under optimal conditions in preparations derived from disrupted cells, differences could not be detected between the cultured cell types when the effect of ouabain on the uptake of 86Rb into “live cells” was estimated as a measure of in situ ion pump activity. Besides the interaction with ouabain, the K+ dependence of the Na+, K+-ATPase activity was also investigated in crude particulate preparations from cultured cerebellar neurones and astrocytes. Differences were observed as nearly maximal enzyme activity was obtained in the as- trocyte preparations at 1 mM KCl, when only about one- third of the maximal activity was displayed by the cultured nerve cells.  相似文献   

16.
The effect of alloxan diabetes on the activities of Na+,K+-ATPase and Mg2+-ATPase was studied in three regions of rat brain at various time intervals after the onset of diabetes. It was observed that Na+,K+-ATPase activity increased at early time intervals after diabetes, followed by a recovery to near control levels in all three regions of the brain. There was an overall increase in Mg2+-ATPase activity in all the regions. A reversal of the effect was observed with insulin administration to the diabetic rats.  相似文献   

17.
Na+-dependent uptake of dicarboxylic amino acids in membrane saccules, due to exchange diffusion and independent of ion gradients, was highly sensitive to inhibition by K+. The IC50 was 1-2 mM under a variety of conditions (i.e., whole tissue or synaptic membranes, frozen/thawed or fresh, D-[3H]aspartate (10-1000 nM) or L-[3H]glutamate (100 nM), phosphate or Tris buffer, NaCl or Na acetate, presence or absence of Ca2+ and Mg2+). The degree of inhibition by K+ was also not affected on removal of ion gradients by ionophores, or by extensive washing with H2O and reloading of membrane saccules with glutamate and incubation medium in the presence or absence of K+ (3 mM, i.e., IC70). Rb+, NH4+, and, to a lesser degree Cs+, but not Li+, could substitute for K+. [K+] showed a competitive relationship to [Na+]2. Incubation with K+ before or after uptake suggested that the ion acts in part by allowing net efflux, thus reducing the internal pool of amino acid against which D-[3H]aspartate exchanges, and in part by inhibiting the interaction of Na+ and D-[3H]aspartate with the transporter. The current model of the Na+-dependent high-affinity acidic amino acid transport carrier allows the observations to be explained and reconciled with previous seemingly conflicting reports on stimulation of acidic amino acid uptake by low concentrations of K+. The findings correct the interpretation of recent reports on a K+-induced inhibition of Na+-dependent "binding" of glutamate and aspartate, and partly elucidate the mechanism of action.  相似文献   

18.
The Na+,K(+)-ATPase alpha 3 isoform has recently been demonstrated immunochemically in human brain. Conclusive biochemical evidence, however, is still lacking. In this study, a unique 50-kDa polypeptide, which is known to be specific to the rat alpha 3 isoform, has been found in human brainstem Na+,K(+)-ATPase following formic acid treatment of the purified alpha isoform proteins. Human alpha 3 Na+,K(+)-ATPase is also highly sensitive to ouabain inhibition, with a 50% ouabain inhibition value of 1.0 x 10(-7) M. These results provide clear and direct evidence for the existence of the alpha 3 isoform in human brain.  相似文献   

19.
Analysis of purified Na+,K+-ATPase from cat and human cortex by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals two large catalytic subunits called alpha (-) (lower molecular weight) and alpha (+) (higher molecular weight). Differences in K+ dephosphorylation of these two molecular forms have been investigated by measuring the phosphorylation level of each protein after their separation on sodium dodecyl sulfate gels. In the presence of Na+, Mg2+, and ATP, both subunits are phosphorylated. Increasing concentrations (from 0 to 3 mM) of K+ induce progressive dephosphorylation of both alpha-subunits, although the phosphoprotein content of alpha (-) is decreased significantly less than that of alpha (+). Ka values of alpha (-) for K+ are 40% and 50% greater in cat and human cortex, respectively, than values of alpha (+). alpha (-) and alpha (+) are thought to be localized in specific cell types of the brain: alpha (-) is the exclusive form of nonneuronal cells (astrocytes), whereas alpha (+) is the only form of axolemma. Our results support the hypothesis that glial and neuronal Na+,K+-ATPases are different molecular entities differing at least by their K+ sensitivity. Results are discussed in relation to the role of glial cells in the regulation of extracellular K+ in brain.  相似文献   

20.
Kinetic studies on the action of monoamine oxidase (MAO) in the regulation of Na+,K+-ATPase were performed using 3-methoxy-4-hydroxybenzaldehyde (MHB), which is an analogue of 3-methoxy-4-hydroxy-phenylacetylaldehyde (product of MAO-catalysed reaction with dopamine as substrate). It was observed that at 2.6 microM MHB, the activation of Na+,K+-ATPase may be the result of the removal of the inhibitory Ca2+, thereby increasing the Vmax. Double-reciprocal plots of Pi versus MHB showed that Ca2+ counteracted the effect of the aldehyde not by changing the Km, but be decreasing the Vmax of the Na+,K+-ATPase stimulation. The removal of 3',5'-cyclic AMP-dependent protein kinase from the microsomes by sodium dodecyl sulphate treatment abolished the activation and/or inhibition of the Na+,K+-ATPase by aldehyde; it can therefore be inferred that 3',5'-cyclic AMP-dependent protein kinase is involved in the regulation of Na+,K+-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号