首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we use the bacterium Escherichia coli to examine evolutionary responses to environmental acidity fluctuating temporally among pH 5.3, 6.3, 7.0, and 7.8 (5,000-15 nM [H(+)]). Two experimental protocols of temporal variation were used. One group (six replicate lines) of populations evolved for 2,000 generations during exposure to a cycled regime fluctuating daily between pH 5.3 and 7.8. The other group (also in six replicate lines) evolved during exposure for 2,000 generations to a randomly shifting regime fluctuating stochastically each day among pH 5.3, 6.3, 7.0, and 7.8. Adaptation to these fluctuating acidity regimes was measured as a change in fitness relative to the common ancestor by direct competition experiments in both constant and fluctuating pH regimes. For comparisons with constant pH evolution, a group evolved at a constant pH of 5.3 and another group evolved at pH 7.8 were also tested. This study initiated the first long-term laboratory natural selection experiment on adaptation to variable acidity and addressed key questions concerning patterns of adaptation (trade-offs, specialists, generalists, plasticity, transitions, and acclimation) in temporally fluctuating environments.  相似文献   

2.
Natural environments are rarely static; rather selection can fluctuate on timescales ranging from hours to centuries. However, it is unclear how adaptation to fluctuating environments differs from adaptation to constant environments at the genetic level. For bacteria, one key axis of environmental variation is selection for planktonic or biofilm modes of growth. We conducted an evolution experiment with Burkholderia cenocepacia, comparing the evolutionary dynamics of populations evolving under constant selection for either biofilm formation or planktonic growth with populations in which selection fluctuated between the two environments on a weekly basis. Populations evolved in the fluctuating environment shared many of the same genetic targets of selection as those evolved in constant biofilm selection, but were genetically distinct from the constant planktonic populations. In the fluctuating environment, mutations in the biofilm‐regulating genes wspA and rpfR rose to high frequency in all replicate populations. A mutation in wspA first rose rapidly and nearly fixed during the initial biofilm phase but was subsequently displaced by a collection of rpfR mutants upon the shift to the planktonic phase. The wspA and rpfR genotypes coexisted via negative frequency‐dependent selection around an equilibrium frequency that shifted between the environments. The maintenance of coexisting genotypes in the fluctuating environment was unexpected. Under temporally fluctuating environments, coexistence of two genotypes is only predicted under a narrow range of conditions, but the frequency‐dependent interactions we observed provide a mechanism that can increase the likelihood of coexistence in fluctuating environments.  相似文献   

3.
The ability to predict the consequences of fluctuating environments on species distribution and extinction often relies on determining the tolerances of species or genotypes in different constant environments (i.e. determining tolerance curves). However, very little is known about the suitability of measurements made in constant environments to predict the level of adaptation to rapidly fluctuating environments. To explore this question, we used bacterial clones adapted to constant or fluctuating temperatures and found that measurements across a range of constant temperatures did not indicate any adaptation to fluctuating temperatures. However, adaptation to fluctuating temperatures was only apparent if growth was measured during thermal fluctuation. Thus, tolerance curves based on measurements in constant environments can be misleading in predicting the ability to tolerate fast environmental fluctuations. Such complications could lead to false estimates of the genetic merits of genotypes and extinction risks of species due to climate change‐induced thermal fluctuations.  相似文献   

4.
Across species, there is usually a positive relationship between sperm competition level and male reproductive effort on ejaculates, typically measured using relative testes size (RTS). Within populations, demographic and ecological processes may drastically alter the level of sperm competition and thus, potentially affect the evolution of testes size. Here, we use longitudinal records (across 38 years) from wild sympatric Fennoscandian populations of five species of voles to investigate whether RTS responds to natural fluctuations in population density, i.e. variation in sperm competition risk. We show that for some species RTS increases with density. However, our results also show that this relationship can be reversed in populations with large-scale between-year differences in density. Multiple mechanisms are suggested to explain the negative RTS–density relationship, including testes size response to density-dependent species interactions, an evolutionary response to sperm competition levels that is lagged when density fluctuations are over a certain threshold, or differing investment in pre- and post-copulatory competition at different densities. The results emphasize that our understanding of sperm competition in fluctuating environments is still very limited.  相似文献   

5.
Selfing species are prone to extinction, possibly because highly selfing populations can suffer from a continuous accumulation of deleterious mutations, a process analogous to Muller's ratchet in asexual populations. However, current theory provides little insight into which types of genes are most likely to accumulate deleterious alleles and what environmental circumstances may accelerate genomic degradation. Here, we investigate temporal changes in the environment that cause fluctuations in the strength of purifying selection. We simulate selfing populations with genomes containing a mixture of loci experiencing constant selection and loci experiencing selection that fluctuates in strength (but not direction). Even when both types of loci experience the same average strength of selection, loci under fluctuating selection contribute disproportionately more to deleterious mutation accumulation. Moreover, the presence of loci experiencing fluctuating selection in the genome increases the deleterious fixation rate at loci under constant selection; under most realistic scenarios, this effect of linked selection can be attributed to a reduction in Ne. Fluctuating selection is particularly injurious when selective environments are strongly autocorrelated over time and when selection is concentrated into rare bouts of strong selection. These results imply that loci under fluctuating selection are likely important drivers of extinction in selfing species.  相似文献   

6.
Rapid environmental fluctuations are ubiquitous in the wild, yet majority of experimental studies mostly consider effects of slow fluctuations on organism. To test the evolutionary consequences of fast fluctuations, we conducted nine independent experimental evolution experiments with bacteria. Experimental conditions were same for all species, and we allowed them to evolve either in fluctuating temperature alternating rapidly between 20°C and 40°C or at constant 30°C temperature. After experimental evolution, we tested the performance of the clones in both rapid fluctuation and in constant environments (20°C, 30°C and 40°C). Results from experiments on these nine species were combined meta‐analytically. We found that overall the clones evolved in the fluctuating environment had evolved better efficiency in tolerating fluctuations (i.e., they had higher yield in fluctuating conditions) than the clones evolved in the constant environment. However, we did not find any evidence that fluctuation‐adapted clones would have evolved better tolerance to any measured constant environments (20°C, 30°C, and 40°C). Our results back up recent empirical findings reporting that it is hard to predict adaptations to fast fluctuations using tolerance curves.  相似文献   

7.
Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria–ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions.  相似文献   

8.
Most natural environments exhibit a substantial component of random variation, with a degree of temporal autocorrelation that defines the color of environmental noise. Such environmental fluctuations cause random fluctuations in natural selection, affecting the predictability of evolution. But despite long-standing theoretical interest in population genetics in stochastic environments, there is a dearth of empirical estimation of underlying parameters of this theory. More importantly, it is still an open question whether evolution in fluctuating environments can be predicted indirectly using simpler measures, which combine environmental time series with population estimates in constant environments. Here we address these questions by using an automated experimental evolution approach. We used a liquid-handling robot to expose over a hundred lines of the micro-alga Dunaliella salina to randomly fluctuating salinity over a continuous range, with controlled mean, variance, and autocorrelation. We then tracked the frequencies of two competing strains through amplicon sequencing of nuclear and choloroplastic barcode sequences. We show that the magnitude of environmental fluctuations (determined by their variance), but also their predictability (determined by their autocorrelation), had large impacts on the average selection coefficient. The variance in frequency change, which quantifies randomness in population genetics, was substantially higher in a fluctuating environment. The reaction norm of selection coefficients against constant salinity yielded accurate predictions for the mean selection coefficient in a fluctuating environment. This selection reaction norm was in turn well predicted by environmental tolerance curves, with population growth rate against salinity. However, both the selection reaction norm and tolerance curves underestimated the variance in selection caused by random environmental fluctuations. Overall, our results provide exceptional insights into the prospects for understanding and predicting genetic evolution in randomly fluctuating environments.  相似文献   

9.
A fluctuating environment may be perceived as a composition of different environments, or as an environment per se, in which it is the fluctuation itself that poses a selection pressure. If so, then organisms may adapt to this alternation. We tested this using experimental populations of spider mites that have been evolving for 45 generations in a homogeneous environment (pepper or tomato plants), or in a heterogeneous environment composed of an alternation of these two plants approximately at each generation. The performance (daily oviposition rate and juvenile survival) of individuals from these populations was tested in each of the homogeneous environments, and in two alternating environments, one every 3 days and the other between generations. To discriminate between potential genetic interactions between alleles conferring adaptation to each host plant and environmental effects of evolving in a fluctuating environment, we compared the performance of all lines with that of a cross between tomato and pepper lines. As a control, two lines within each selection regime were also crossed. We found that crosses between alternating lines and between pepper and tomato lines performed worse than crosses between lines evolving in homogeneous environments when tested in that environment. In contrast, alternating lines performed either better or similarly to lines evolving in homogeneous environments when tested in a fluctuating environment. Our results suggest that fluctuating environments are more than the juxtaposition of two environments. Hence, tests for adaptation of organisms evolving in such environments should be carried out in fluctuating conditions.  相似文献   

10.
Diversity generally increases ecosystem productivity over short timescales. Over longer timescales, both ecological and evolutionary responses to new environments could alter productivity and diversity–productivity relationships. In turn, diversity might affect how component species adapt to new conditions. We tested these ideas by culturing artificial microbial communities containing between 1 and 12 species in three different environments for ∼60 generations. The relationship between community yields and diversity became steeper over time in one environment. This occurred despite a general tendency for the separate yields of isolates of constituent species to be lower at the end if they had evolved in a more diverse community. Statistical comparisons of community and species yields showed that species interactions had evolved to be less negative over time, especially in more diverse communities. Diversity and evolution therefore interacted to enhance community productivity in a new environment.  相似文献   

11.
Traits do not evolve independently. To understand how trait changes under selection might constrain adaptive changes, phenotypic and genetic correlations are typically considered within species, but these capture constraints across a few generations rather than evolutionary time. For longer-term constraints, comparisons are needed across species but associations may arise because of correlated selection pressures rather than genetic interactions. Implementing a unique approach, we use known patterns of selection to separate likely trait correlations arising due to correlated selection from those reflecting genetic constraints. We examined the evolution of stress resistance in >90 Drosophila species adapted to a range of environments, while controlling for phylogeny. Initially we examined the role of climate and phylogeny in shaping the evolution of starvation and body size, two traits previously not examined in this context. Following correction for phylogeny only a weak relationship between climate and starvation resistance was detected, while all of the variation in the relationship between body size and climate could be attributed to phylogeny. Species were divided into three environmental groups (hot and dry, hot and wet, cold) with the expectation that, if genetic correlations underpin trait correlations, these would persist irrespective of the environment, whereas selection-driven evolution should produce correlations dependent on the environment. We found positive associations between most traits in hot and dry environments coupled with high trait means. In contrast few trait correlations were observed in hot/wet and cold environments. These results suggest trait associations are primarily driven by correlated selection rather than genetic interactions, highlighting that such interactions are unlikely to limit evolution of stress resistance.  相似文献   

12.
13.
Although phenotypic plasticity can be advantageous in fluctuating environments, it may come too late if the environment changes fast. Complementary chromatic adaptation is a colorful form of phenotypic plasticity, where cyanobacteria tune their pigmentation to the prevailing light spectrum. Here, we study the timescale of chromatic adaptation and its impact on competition among phytoplankton species exposed to fluctuating light colors. We parameterized a resource competition model using monoculture experiments with green and red picocyanobacteria and the cyanobacterium Pseudanabaena, which can change its color within approximately 7 days by chromatic adaptation. The model predictions were tested in competition experiments, where the incident light color switched between red and green at different frequencies (slow, intermediate, and fast). Pseudanabaena (the flexible phenotype) competitively excluded the green and red picocyanobacteria in all competition experiments. Strikingly, the rate of competitive exclusion was much faster when the flexible phenotype had sufficient time to fully adjust its pigmentation. Thus, the flexible phenotype benefited from its phenotypic plasticity if fluctuations in light color were relatively slow, corresponding to slow mixing processes or infrequent storms in their natural habitat. This shows that the timescale of phenotypic plasticity plays a key role during species interactions in fluctuating environments.  相似文献   

14.
As climate regimes shift in many ecosystems worldwide, evolution may be a critical process allowing persistence in rapidly changing environments. Organisms regularly interact with other species, yet whether climate-mediated evolution can occur in the context of species interactions is not well understood. We tested whether a species interaction could modify evolutionary responses to temperature. We demonstrate that predation pressure by Dipteran larvae (Chaoborus americanus) modified the evolutionary response of a freshwater crustacean (Daphnia pulex) to its thermal environment over approximately seven generations in laboratory conditions. Daphnia kept at 21°C evolved higher population growth rates than those kept at 18°C, but only in those populations that were also reared with predators. Furthermore, predator-mediated selection resulted in the evolution of elevated Daphnia thermal plasticity. This laboratory natural selection experiment demonstrates that biotic interactions can modify evolutionary adaptation to temperature. Understanding the interplay between multiple selective forces can improve predictions of ecological and evolutionary responses of organisms to rapid environmental change.  相似文献   

15.
Two approaches based on regression models are proposed to estimate competition from census data. The "static" approach is based on censuses of population sizes among species at one point in time over many sites. The "dynamic" approach relies on a time series of species abundance data to examine whether per capita changes in one species are associated with the abundance of other species. We estimated competition interactions in a Negev rodent community consisting of 10 species using both approaches, basing on 8 years (16 half-year periods) of observations. The static approach revealed significant competitive interactions in four of 45 pairs of species, whereas the dynamic approach did so in the same four plus two more pairs. For each species pair, both approaches revealed significant negative interactions in only 1–4 of 16 seasons. The static approach provided nearly symmetric estimations of competition, whereas estimations of dynamic approach were asymmetric. Moreover, estimations of the two approaches did not coincide in time. Cases of negative interactions recorded by the static approach were more frequent at peak and increase phases of population density dynamics, whereas those recorded by the dynamic approach were more frequent at peak and decline phases. Results of field removal experiments with Mus musculus and Gerbillus dasyurus supported predictions of dynamic but not static approaches. We hypothesized that in harsh and fluctuating desert environments that disrupt equilibrium, the dynamic approach indicates true (exploitation) competition, whereas the static approach reflects negative interspecific spatial association (interference).  相似文献   

16.
Microbial communities in fluctuating environments, such as oceans or the human gut, contain a wealth of diversity. This diversity contributes to the stability of communities and the functions they have in their hosts and ecosystems. To improve stability and increase production of beneficial compounds, we need to understand the underlying mechanisms causing this diversity. When nutrient levels fluctuate over time, one possibly relevant mechanism is coexistence between specialists on low and specialists on high nutrient levels. The relevance of this process is supported by the observations of coexistence in the laboratory, and by simple models, which show that negative frequency dependence of two such specialists can stabilize coexistence. However, as microbial populations are often large and fast growing, they evolve rapidly. Our aim is to determine what happens when species can evolve; whether evolutionary branching can create diversity or whether evolution will destabilize coexistence. We derive an analytical expression of the invasion fitness in fluctuating environments and use adaptive dynamics techniques to find that evolutionarily stable coexistence requires a special type of trade-off between growth at low and high nutrients. We do not find support for the necessary evolutionary trade-off in data available for the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae on glucose. However, this type of data is scarce and might exist for other species or in different conditions. Moreover, we do find evidence for evolutionarily stable coexistence of the two species together. Since we find this coexistence in the scarce data that are available, we predict that specialization on resource level is a relevant mechanism for species diversity in microbial communities in fluctuating environments in natural settings.  相似文献   

17.
Theory predicts the emergence of generalists in variable environments and antagonistic pleiotropy to favour specialists in constant environments, but empirical data seldom support such generalist–specialist trade‐offs. We selected for generalists and specialists in the dung fly Sepsis punctum (Diptera: Sepsidae) under conditions that we predicted would reveal antagonistic pleiotropy and multivariate trade‐offs underlying thermal reaction norms for juvenile development. We performed replicated laboratory evolution using four treatments: adaptation at a hot (31 °C) or a cold (15 °C) temperature, or under regimes fluctuating between these temperatures, either within or between generations. After 20 generations, we assessed parental effects and genetic responses of thermal reaction norms for three correlated life‐history traits: size at maturity, juvenile growth rate and juvenile survival. We find evidence for antagonistic pleiotropy for performance at hot and cold temperatures, and a temperature‐mediated trade‐off between juvenile survival and size at maturity, suggesting that trade‐offs associated with environmental tolerance can arise via intensified evolutionary compromises between genetically correlated traits. However, despite this antagonistic pleiotropy, we found no support for the evolution of increased thermal tolerance breadth at the expense of reduced maximal performance, suggesting low genetic variance in the generalist–specialist dimension.  相似文献   

18.
In natural ecosystems, hundreds of species typically share the same environment and are connected by a dense network of interactions such as predation or competition for resources. Much is known about how fixed ecological niches can determine species abundances in such systems, but far less attention has been paid to patterns of abundances in randomly varying environments. Here, we study this question in a simple model of competition between many species in a patchy ecosystem with randomly fluctuating environmental conditions. Paradoxically, we find that introducing noise can actually induce ordered patterns of abundance-fluctuations, leading to a distinct periodic variation in the correlations between species as a function of the phenotypic distance between them; here, difference in growth rate. This is further accompanied by the formation of discrete, dynamic clusters of abundant species along this otherwise continuous phenotypic axis. These ordered patterns depend on the collective behavior of many species; they disappear when only individual or pairs of species are considered in isolation. We show that they arise from a balance between the tendency of shared environmental noise to synchronize species abundances and the tendency for competition among species to make them fluctuate out of step. Our results demonstrate that in highly interconnected ecosystems, noise can act as an ordering force, dynamically generating ecological patterns even in environments lacking explicit niches.  相似文献   

19.
Populations of Brassica rapa were grown for three generations in each of two environments: intraspecific competition, with four surrounding Brassica rapa neighbors per pot, and interspecific competition, with two Raphanus sativus neighbors per pot. In each environment, the largest (by flower number) 10% of the plants were outcrossed and provided seeds for the next generation. As a control, a randomly chosen 10% of the plants in each environment were outcrossed to produce seed for the next generation. Each of these four treatments, the selected lines in intra- and interspecific competition and the corresponding control lines, was maintained for three generations. After a single generation of growth in a common, no-competition environment, replicate plants from each treatment were grown with no competition and with intra- and interspecific competition for determination of growth responses. After two generations of selection, flower number in the intraspecific-selection line had increased by more than 50% over that in the control line and by more than 19% over that under interspecific selection. After a common-environment generation, plants from the intraspecific-selection line were shown to have significantly faster growth in height and flower number as seedlings. Plants in the interspecific-selection line showed similar but nonsignificant trends. No differences in seed mass, emergence time, or photosynthetic rate were found between control and selected lines in either intra- or interspecific competition. Some differences between control and selected lines were noted in biomass allocation related to differences in phenology. The results demonstrate that performance in competitive environments can evolve through changes in plant development but that rates of evolution will differ in intra- and interspecific competition.  相似文献   

20.
A central problem in ecology is relating the interactions of individuals-described in terms of competition, predation, interference, etc.-to the dynamics of the populations of these individuals-in terms of change in numbers of individuals over time. Here, we address this problem for a class of site-based ecological models, where local interactions between individuals take place at a finite number of discrete resource sites over non-overlapping generations and, between generations, individuals move randomly between sites over the entire system. Such site-based models have previously been applied to a wide range of ecological systems: from those involving contest or scramble competition for resources to host-parasite interactions and meta-populations. We show how the population dynamics of site-based models can be accurately approximated by and understood through deterministic and stochastic difference equations. Conversely, we use the inverse of this approximation to show what implicit assumptions are made about individual interactions by modelling of population dynamics in terms of difference equations. To this end, we prove a useful and general theorem: that any model in our class of site-based models has a corresponding stochastic difference equation population model, by which it can be approximated. This theorem allows us to calculate long-term population dynamics, evolutionary stable strategies and, by extending our theory to account for large deviations, extinction probabilities for a wide range of site-based systems. Our methodology is then illustrated to various examples of between species competition, predator-prey interactions and co-operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号