首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
InlB is one of the two Listeria monocytogenes invasion proteins required for bacterial entry into mammalian cells. Entry into human epithelial cells such as Caco-2 requires InlA, whereas InlB is needed for entry into cultured hepatocytes and some epithelial or fibroblast cell lines such as Vero, HEp-2 and HeLa cells. InlB-mediated entry requires tyrosine phosphorylation, cytoskeletal rearrangements and activation of the host protein phosphoinositide (PI) 3-kinase, probably in response to engagement of a receptor. In this study, we demonstrate for the first time that InlB is sufficient to promote internalization. Indeed, coating of normally non-invasive bacteria or inert latex beads with InlB leads to internalization into mammalian cells. In addition, a soluble form of InlB also appears to promote uptake of non-invasive bacteria, albeit at a very low level. Similar to entry of L. monocytogenes , uptake of InlB-coated beads required tyrosine phosphorylation in the host cell, PI 3-kinase activity and cytoskeletal reorganization. Taken together, these data indicate that InlB is sufficient for entry of L. monocytogenes into host cells and suggest that this protein is an effector of host cell signalling pathways.  相似文献   

2.
The Gram-positive pathogen Listeria monocytogenes induces its own internalization into some non-phagocytic mammalian cells by stimulating host tyrosine phosphorylation, phosphoinositide (PI) 3-kinase activity, and rearrangements in the actin cytoskeleton. Entry into many cultured cell lines is mediated by the bacterial protein InlB. Here we investigate the role of InlB in regulating mammalian signal transduction and cytoskeletal structure. Treatment of Vero cells with purified InlB caused rapid and transient increases in the lipid products of the PI 3-kinase p85-p110, tyrosine phosphorylation of the mammalian adaptor proteins Gab1, Cbl, and Shc, and association of these proteins with p85. InlB also stimulated large scale changes in the actin cytoskeleton (membrane ruffling), which were PI 3-kinase-dependent. These results identify InlB as the first reported non-mammalian agonist of PI 3-kinase and demonstrate similarities in the signal transduction events elicited by this bacterial protein and known agonists such as epidermal growth factor.  相似文献   

3.
The intracellular bacterial pathogen Listeria monocytogenes causes food-borne illnesses leading to gastroenteritis, meningitis or abortion. Listeria induces its internalization into some mammalian cells through binding of the bacterial surface protein InlB to its host receptor, the Met Receptor Tyrosine Kinase. InlB-induced activation of Met stimulates host signal transduction pathways that culminate in cell surface changes driving pathogen engulfment. One mammalian protein with the potential to couple Met to downstream signalling is the adaptor CrkII. CrkII contains an unusual carboxyl-terminal SH3 domain (SH3C) that promotes entry of Listeria. However, binding partners or downstream effectors of SH3C remain unknown. Here, we use RNA interference and overexpression studies to demonstrate that SH3C affects bacterial uptake, at least in part, through stimulation of host phosphatidylinositide (PI) 3-kinase. Experiments with latex beads coated with InlB protein indicated that one potential role of SH3C and PI 3 kinase is to promote changes in the F-actin cytoskeleton necessary for particle engulfment. Taken together, our results indicate that the CrkII SH3C domain engages a cellular ligand that regulates PI 3 kinase activity and host cell surface rearrangements.  相似文献   

4.
InlB is a Listeria monocytogenes protein that promotes entry of the bacterium into mammalian cells by stimulating tyrosine phosphorylation of the adaptor proteins Gab1, Cbl and Shc, and activation of phosphatidyl- inositol (PI) 3-kinase. Using affinity chromatography and enzyme-linked immunosorbent assay, we demonstrate a direct interaction between InlB and the mammalian protein gC1q-R, the receptor of the globular part of the complement component C1q. Soluble C1q or anti-gC1q-R antibodies impair InlB-mediated entry. Transient transfection of GPC16 cells, which are non-permissive to InlB-mediated entry, with a plasmid-expressing human gC1q-R promotes entry of InlB-coated beads. Furthermore, several experiments indicate that membrane recruitment and activation of PI 3-kinase involve an InlB-gC1q-R interaction and that gC1q-R associates with Gab1 upon stimulation of Vero cells with InlB. Thus, gC1q-R constitutes a cellular receptor involved in InlB-mediated activation of PI 3-kinase and tyrosine phosphorylation of the adaptor protein Gab1. After E-cadherin, the receptor for internalin, gC1q-R is the second identified mammalian receptor promoting entry of L. monocytogenes into mammalian cells.  相似文献   

5.
6.
The signalling pathway for the hepatocyte growth factor receptor, Met/HGF-R, is hijacked by the bacterial surface protein InlB to induce Listeria monocytogenes entry into non-phagocytic cells. We previously showed that Listeria invades host cells by interacting with specialized microdomains of the host plasma membrane called lipid rafts. In this study, we analysed in living cells signalling events that are crucial for Listeria entry using a fluorescence resonance energy transfer-based microscopic method. Phosphoinositide (PI) 3-kinase activity and Rac1 signalling induced by Listeria interacting with epithelial cells were monitored as well as signalling induced by soluble InlB and the Met natural ligand HGF. We found that InlB and HGF induced similar kinetics of PI 3-kinase and Rac1 activation. PI 3-kinase activation was upstream and independent of Rac1 activation. Cholesterol-depletion experiments were performed to address the role of lipid rafts in Met signalling. The amount of 3'-phosphoinositides produced by PI 3-kinase was not affected by cholesterol depletion, while their membrane dynamic was cholesterol-dependent. Rac1 activation, downstream from PI 3-kinase, was cholesterol-dependent suggesting that the spatial distribution of 3'-phosphoinositides within membrane microdomains is critical for Rac1 activation and consequently for F-actin assembly at bacterial entry site.  相似文献   

7.
Interaction of the Listeria surface protein InlB with the hepatocyte growth factor receptor Met activates signalling events that trigger bacterial internalization into mammalian epithelial cells. We show here that purified phagosomes containing InlB-coated beads display type II phosphatidylinositol 4-kinase (PI4K) activity. In human epithelial HeLa cells, both PI4KIIalpha and PI4KIIbeta isoforms are corecruited with Met around InlB-coated beads or wild-type Listeria during the early steps of internalization, and phosphatidylinositol 4-phosphate [PI(4)P] is detected at the entry site. We demonstrate that PI4KIIalpha or PI4KIIbeta knockdown, but not type III PI4Kbeta knockdown, inhibits Listeria internalization. Production of PI(4)P derivatives such as phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P(3)] upon InlB stimulation is not affected by PI4KIIalpha or beta knockdown, suggesting that these phosphoinositides are generated by a type III PI4K. Strikingly, knockdown of the PI(4)P ligand and clathrin adaptor AP-1 strongly inhibits bacterial entry. Together, our results reveal a yet non-described role for type II PI4Ks in phagocytosis.  相似文献   

8.
Internalin B (InlB) is a protein present on the surface of Listeria monocytogenes that mediates bacterial entry into mammalian cells. It is thought that InlB acts by binding directly to the hepatocyte growth factor (HGF) receptor, present on the surface of host cells. Binding of InlB to the HGF receptor results in mitogen-activated protein (MAP) kinase and phosphoinositide 3-kinase activation, followed by changes in the organization of the actin cytoskeleton. Here we have compared signaling by HGF and InlB. Whereas stimulation with equivalent concentrations of HGF and InlB elicits similar activation of the HGF receptor, we observed striking differences in downstream activation of MAP kinase. InlB leads to a greater activation of the Ras-MAP kinase pathway than does HGF. The leucine-rich repeat region, which was previously shown to be sufficient for binding and activation of the HGF receptor, lacks the ability to super-activate the Ras-MAP kinase pathway. Analysis of a series of deletion mutants suggests that it is the B repeat region between the leucine-rich repeat and GW domains that endows InlB with an increased ability to turn on the Ras-MAP kinase pathway. These unexpected observations suggest that HGF and InlB use alternative mechanisms to turn on cellular signaling pathways.  相似文献   

9.
Internalization of Listeria monocytogenes into non-phagocytic cells is mediated by the interactions between the two bacterial invasion proteins InlA (internalin) and InlB and their cellular surface receptors E-cadherin and c-Met. To get an insight into all the cellular components necessary for uptake and early intracellular life, we undertook a global proteomic characterization of the early listerial phagosome in the human epithelial cell line LoVo. First, we proceeded to an immunocytochemical characterization of intracellular marker recruitment to phagosomes containing latex beads coated with InlA or InlB. E-cadherin and c-Met were, as expected, rapidly recruited to the phagosomal formation site. Phagosomes subsequently acquired the early endosomal antigen 1 (EEA1) and the lysosomal-associated membrane protein 1 (LAMP1), while presenting a more delayed enrichment of the lysosomal hydrolase cathepsin D. Early phagosomes devoid of lysosomal, endoplasmic reticulum and Golgi enzymatic activities could then be isolated by subcellular fractionation of LoVo cells. Two-dimensional gel electrophoresis (2DPAGE) revealed differences between the protein profiles of InlA- or InlB-phagosomes and those of early/late endosomes or lysosomes of naive LoVo cells. One major protein specifically recruited on the InlB-phagosomes was identified by mass spectrometry as MSF, a previously reported member of the septin family of GTPases. MSF forms filaments that co-localize with the actin cytoskeleton in resting cells and it is recruited to the entry site of InlB-coated beads. These results suggest that MSF is a putative effector of the InlB-mediated internalization of L. monocytogenes into host cells.  相似文献   

10.
Listeria monocytogenes , a Gram-positive bacterium, is the causative agent for the disease called listeriosis. This pathogen utilizes host cell surface proteins such as E-cadherin or c-Met in order to invade eukaryotic cells. The invasion via c-Met depends on the bacterial protein InlB that activates c-Met phosphorylation and internalization mimicking in many regards HGF, the authentic c-Met ligand. In this paper, we demonstrate that the activation of c-Met induced by InlB is dependent on CD44v6, a member of the CD44 family of transmembrane glycoproteins. Inhibiting CD44v6 by means of a blocking peptide, a CD44v6 antibody or CD44v6-specific siRNA prevents the activation of c-Met induced by InlB. Subsequently, signalling, scattering and the entry of InlB-coated beads into host cells are also impaired by CD44v6 blocking reagents. For the entry process, ezrin, a protein that links the CD44v6 cytoplasmic domain to the cytoskeleton, is required as well. Most importantly, this collaboration between c-Met and CD44v6 contributes to the invasion of L. monocytogenes into target cells as demonstrated by a drastic decrease in bacterial invasion in the presence of blocking agents such as the CD44v6 peptide or antibody.  相似文献   

11.
Activation of c-Met, the hepatocyte growth factor (HGF)/scatter factor receptor induces reorganization of the actin cytoskeleton, which drives epithelial cell scattering and motility and is exploited by pathogenic Listeria monocytogenes to invade nonepithelial cells. However, the precise contributions of distinct Rho-GTPases, the phosphatidylinositol 3-kinases, and actin assembly regulators to c-Met-mediated actin reorganization are still elusive. Here we report that HGF-induced membrane ruffling and Listeria invasion mediated by the bacterial c-Met ligand internalin B (InlB) were significantly impaired but not abrogated upon genetic removal of either Cdc42 or pharmacological inhibition of phosphoinositide 3-kinase (PI3-kinase). While loss of Cdc42 or PI3-kinase function correlated with reduced HGF- and InlB-triggered Rac activation, complete abolishment of actin reorganization and Rac activation required the simultaneous inactivation of both Cdc42 and PI3-kinase signaling. Moreover, Cdc42 activation was fully independent of PI3-kinase activity, whereas the latter partly depended on Cdc42. Finally, Cdc42 function did not require its interaction with the actin nucleation-promoting factor N-WASP. Instead, actin polymerization was driven by Arp2/3 complex activation through the WAVE complex downstream of Rac. Together, our data establish an intricate signaling network comprising as key molecules Cdc42 and PI3-kinase, which converge on Rac-mediated actin reorganization essential for Listeria invasion and membrane ruffling downstream of c-Met.  相似文献   

12.
InlB is a Listeria monocytogenes protein that is sufficient to promote entry in a variety of mammalian cells. The last 232-amino-acid domain (Csa) of InlB has been shown to mediate attachment on the listerial surface, although its sequence does not suggest any known mechanism of association to the bacterial surface. InlB is present both on the bacterial surface and in culture supernatants. As has been recently demonstrated, both forms of InlB, soluble and surface-bound, can trigger signalling in host cells. To elucidate the specific role of each of the two forms, it was important to understand how InlB associates with the bacterial surface. Using microscopy, we find evidence that InlB is partially buried in the cell wall layer, and using fractionation experiments we demonstrate that InlB associates with the bacterial cytoplasmic membrane. Moreover, using purified lipoteichoic acid (LTA) and the three polypeptides InlB, Csa, or InlBDeltaCsa (InlB lacking the last 232 amino acids), we demonstrate that LTA is a ligand for the Csa domain of InlB. These results provide the first evidence of an interaction between lipoteichoic acids and a bacterial protein involved in adhesion and signalling, and highlight a new mechanism of protein association on the surface of Gram-positive bacteria.  相似文献   

13.
Listeria monocytogenes is a bacterial pathogen that induces its own entry into a broad range of mammalian cells through interaction of the bacterial surface protein InlB with the cellular receptor Met, promoting an actin polymerization/depolymerization process that leads to pathogen engulfment. Phosphatidylinositol bisphosphate (PI[4,5]P(2)) and trisphosphate (PI[3,4,5]P(3)) are two major phosphoinositide species that function as molecular scaffolds, recruiting cellular effectors that regulate actin dynamics during L. monocytogenes infection. Because the phosphatidylinositol 5'-phosphatase OCRL dephosphorylates PI(4,5)P(2) and to a lesser extent PI(3,4,5)P(3), we investigated whether this phosphatase modulates cell invasion by L. monocytogenes. Inactivation of OCRL by small interfering RNA (siRNA) leads to an increase in the internalization levels of L. monocytogenes in HeLa cells. Interestingly, OCRL depletion does not increase but rather decreases the surface expression of the receptor Met, suggesting that OCRL controls bacterial internalization by modulating signaling cascades downstream of Met. Immuno-fluorescence microscopy reveals that endogenous and overexpressed OCRL are present at L. monocytogenes invasion foci; live-cell imaging additionally shows that actin depolymerization coincides with EGFP-OCRL-a accumulation around invading bacteria. Together, these observations suggest that OCRL promotes actin depolymerization during L. monocytogenes infection; in agreement with this hypothesis, OCRL depletion leads to an increase in actin, PI(4,5)P(2), and PI(3,4,5)P(3) levels at bacterial internalization foci. Furthermore, in cells knocked down for OCRL, transfection of enzymatically active EGFP-OCRL-a (but not of a phosphatase-dead enzyme) decreases the levels of intracellular L. monocytogenes and of actin associated with invading bacteria. These results demonstrate that through its phosphatase activity, OCRL restricts L. monocytogenes invasion by modulating actin dynamics at bacterial internalization sites.  相似文献   

14.
The surface protein InlB of the pathogen Listeria monocytogenes promotes invasion of this bacterium into host cells by binding to and activating the receptor tyrosine kinase Met. The curved leucine-rich repeat (LRR) domain of InlB, which is essential for this process, contains a string of five surface-exposed aromatic amino acid residues positioned along its concave face. Here, we show that the replacement of four of these residues (F104, W124, Y170 or Y214) by serine leads to a complete loss of uptake of latex beads coated with InlB', a truncated functional variant of InlB. The mutants correspondingly display severely reduced binding to Met. To abrogate fully invasion of bacteria expressing full-length InlB, exchange of at least four aromatic amino acids is required. We conclude that InlB binds to Met through its concave surface of the LRR domain, and that aromatic amino acids are critical for binding and signalling before invasion.  相似文献   

15.
The bacterial surface protein InlB mediates internalisation of Listeria monocytogenes into human cells through interaction with the host receptor tyrosine kinase, Met. InlB‐mediated entry requires localised polymerisation of the host actin cytoskeleton. Apart from actin polymerisation, roles for other host processes in Listeria entry are unknown. Here, we demonstrate that exocytosis in the human cell promotes InlB‐dependent internalisation. Using a probe consisting of VAMP3 with an exofacial green fluorescent protein tag, focal exocytosis was detected during InlB‐mediated entry. Exocytosis was dependent on Met tyrosine kinase activity and the GTPase RalA. Depletion of SNARE proteins by small interfering RNA demonstrated an important role for exocytosis in Listeria internalisation. Depletion of SNARE proteins failed to affect actin filaments during internalisation, suggesting that actin polymerisation and exocytosis are separable host responses. SNARE proteins were required for delivery of the human GTPase Dynamin 2, which promotes InlB‐mediated entry. Our results identify exocytosis as a novel host process exploited by Listeria for infection.  相似文献   

16.
Shen Y  Naujokas M  Park M  Ireton K 《Cell》2000,103(3):501-510
The Listeria monocytogenes surface protein InlB promotes bacterial entry into mammalian cells. Here, we identify a cellular surface receptor required for InlB-mediated entry. Treatment of mammalian cells with InlB protein or infection with L. monocytogenes induces rapid tyrosine phosphorylation of Met, a receptor tyrosine kinase (RTK) for which the only known ligand is Hepatocyte Growth Factor (HGF). Like HGF, InlB binds to the extracellular domain of Met and induces "scattering" of epithelial cells. Experiments with Met-positive and Met-deficient cell lines demonstrate that Met is required for InlB-dependent entry of L. monocytogenes. InlB is a novel Met agonist that induces bacterial entry through exploitation of a host RTK pathway.  相似文献   

17.
The bacterial surface protein InlB mediates internalization of Listeria monocytogenes into mammalian cells through interaction with the host receptor tyrosine kinase, Met. InlB/Met interaction results in activation of the host phosphoinositide (PI) 3-kinase p85-p110, an event required for bacterial entry. p85-p110 activation coincides with tyrosine phosphorylation of the host adaptor Gab1, and formation of complexes between Gab1 and the p85 regulatory subunit of PI 3-kinase. When phosphorylated in response to agonists, Gab1 is known to recruit several Src-homology 2 (SH2) domain-containing proteins including p85, the tyrosine phosphatase Shp2 and the adaptor CrkII. Here, we demonstrate that Gab1.p85 and Gab1.CrkII complexes promote entry of Listeria. Overexpression of wild-type Gab1 stimulated entry, whereas Gab1 alleles unable to recruit all SH2 proteins known to bind wild-type Gab1 inhibited internalization. Further analysis with Gab1 alleles defective in binding individual effectors suggested that recruitment of p85 and CrkII are critical for entry. Consistent with this data, overexpression of wild-type CrkII stimulated bacterial uptake. Experiments with mutant CrkII alleles indicated that both the first and second SH3 domains of this adaptor participate in entry, with the second domain playing the most critical role. Taken together, these findings demonstrate novel roles for Gab1 and CrkII in Listeria internalization.  相似文献   

18.
19.
Listeria monocytogenes surface proteins internalin (Inl)A and InlB interact with the junctional protein E-cadherin and the hepatocyte growth factor (HGF) receptor Met, respectively, on the surface of epithelial cells to mediate bacterial entry. Here we show that InlA triggers two successive E-cadherin post-translational modifications, i.e. the Src-mediated tyrosine phosphorylation of E-cadherin followed by its ubiquitination by the ubiquitin-ligase Hakai. E-cadherin ubiquitination induces the recruitment of clathrin that is required for optimal bacterial internalization. We also show that the initial clustering of E-cadherin at the bacterial entry site requires caveolin, a protein normally involved in clathrin-independent endocytosis. Strikingly clathrin and caveolin are also recruited at the site of entry of E-cadherin-coated sepharose beads and functional experiments demonstrate that these two proteins are required for bead entry. Together these results not only document how the endocytosis machinery is recruited and involved in the internalization of a zippering bacterium, but also strongly suggest a functional link between E-cadherin endocytosis and the formation of adherens junctions in epithelial cells.  相似文献   

20.
Internalin B (InlB), a surface protein of the human pathogen Listeria monocytogenes, promotes invasion into various host cell types by inducing phagocytosis of the entire bacterium. The N-terminal half of InlB (residues 36-321, InlB321), which is sufficient for this process, contains a central leucine-rich repeat (LRR) domain that is flanked by a small alpha-helical cap and an immunoglobulin (Ig)-like domain. Here we investigated the spectroscopic properties, stability and folding of InlB321 and of a shorter variant lacking the Ig-like domain (InlB248). The circular dichroism spectra of both protein variants in the far ultraviolet region are very similar, with a characteristic minimum found at approximately 200 nm, possibly resulting from the high 3(10)-helical content in the LRR domain. Upon addition of chemical denaturants, both variants unfold in single transitions with unusually high cooperativity that are fully reversible and best described by two-state equilibria. The free energies of GdmCl-induced unfolding determined from transitions at 20 degrees C are 9.9(+/-0.8)kcal/mol for InlB321 and 5.4(+/-0.4)kcal/mol for InlB248. InlB321 is also more stable against thermal denaturation, as observed by scanning calorimetry. This suggests, that the Ig-like domain, which presumably does not directly interact with the host cell receptor during bacterial invasion, plays a critical role for the in vivo stability of InlB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号