首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The possibility that histamine can affect both the vascular resistance and permeability of the isolated dually perfused guinea-pig placenta has been investigated. Change from control to histamine (2.7 x 10(-4)M) perfusion of the fetal circulation elicited a significant (P less than 0.01, paired 't' test) maximum increase of 1.17 +/- 0.14 (SEM) kPa in fetal perfusion pressure 3 min later, representing a 33% rise. This vasoconstriction was completely blocked by the H1 antagonist diphenhydramine (10(-4)M) but not by the H2 receptor antagonist cimetidine (10(-4)M). In the same experiments the clearance (calculated as the ratio of fetal to maternal perfusate concentration times fetal flow-rate) of a macromolecular tracer, anionic horseradish peroxidase from the maternal to fetal circulation was significantly increased (P less than 0.05, paired 't' test) when steady state (15-20 min of perfusion) values were compared, from 5.9 +/- 1.7 (SEM) microliter min-1 placenta-1 to 12.9 +/- 3.5 (SEM) microliter min-1 placenta-1 (n = 20) for control and histamine respectively. By contrast the steady state clearance (calculated as before) of a smaller hydrophilic tracer, 51Cr-EDTA, was not significantly affected, being 587 +/- 59 (SEM) microliter min-1 placenta-1 in control and 587 +/- 55 (SEM) microliter min-1 placenta-1 (n = 20) with histamine perfusion. When histamine was perfused simultaneously with an H1 or H2 antagonist there was no change in anionic horseradish peroxidase clearance. Electron microscopy of placentas perfused with histamine failed to reveal any obvious alteration in morphology or anionic horseradish peroxidase localisation as compared to placenta perfused without histamine. This study thus demonstrates that histamine may cause changes in the macromolecular permeability of the placenta as well as vasoconstriction of the placental vasculature.  相似文献   

2.
Summary Selected lobules of term human placenta were extracorporeally perfused and human immunoglobulin-G complexed to horseradish peroxidase (IgG-HRP) was added to the maternal perfusate. After different durations of perfusion IgG-HRP was visualised by use of diamino-benzidine cytochemistry. Within the first 10 min of perfusion IgG-HRP was found bound to microvilli and coated pits of the syncytiotrophoblast; internalisation into coated vesicles and tubulo-vesicular bodies was also observed. Subsequently, IgG-HRP was found in multivesicular bodies and by 30 min appeared in basal vesicles, the frequency of the latter event increasing with time. No routing of IgG-HRP into Golgi regions or lysosomes could be detected. By 60 min IgG-HRP was found in a few caveolae of fetal endothelium of both terminal and intermediate villi. IgG-HRP was not found in intercellular clefts of the endothelium. The pattern of uptake and routing observed suggests a receptor-mediated transcytosis of IgG-HRP across the syncytiotrophoblast and a transcellular pathway through the endothelium.  相似文献   

3.
Summary Isolated lobules of freshly delivered human term placenta were (a) subjected to an indirect immunoelectron ultracryo method in which the immunoreactivity of endogenous Immunoglobulin-G (IgG) to rabbit anti-human IgG antibody was localized with protein-A-colloidal gold and (b) extracorporeally perfused and human IgG molecules complexed to horseradish peroxidase (HRP) added to the maternal perfusate and the uptake of IgG-HRP over different perfusion durations visualized ultrastructurally by using diaminobenzidine cytochemistry. Immunoreactivity to anti-human IgG antibody was localized all along the apical plasmalemma, in apical coated and uncoated vesicles, in apical and juxtanuclear multivesicular bodies, and in basal vesicles of the syncytiotrophoblast layer of the placenta. The stroma separating the syncytiotrophoblast from the foetal endothelium as well as vesicles within the endothelium were immunoreactive. No immunoreactivity was localized in paracellular clefts of endothelia. A similar distribution of exogenous IgG-HRP was observed for the perfused placentae. When bovine IgG-HRP or HRP alone were used as control tracers no uptake was seen for the former whilst the latter was observed only in early endosomal vesicles of the syncytiotrophoblast. The pattern of localization visualized in both studies is consistent with receptor-mediated uptake of IgG by the syncytiotrophoblast and a vesicular transport of IgG across the foetal endothelium.  相似文献   

4.
Summary A perfusion method of incubation to show horseradish peroxidase in the bone of young mice is presented. After perfusion fixation, the incubation medium is perfused from the descending aorta into the entire lower half of the animal. From the vessels there is good penetration of the medium into all tissues. This allows the preparation of any one perfused bone to ground-, semithin-, and ultrathin sections.Differences in peroxidase distribution in the entire bone suggest regional differences in vascular supply.The tracer enzyme diffuses freely from the vessels into the extracellular fluid of bone. 3 min after injection, peroxidase is found between all bone lining cells and in osteocyte lacunae.  相似文献   

5.
Summary Haem proteins of different molecular sizes were perfused into the foetal circulation of the guinea-pig placenta to study the permeability of the foetal endothelium.The smallest molecules tested, microperoxidase (ae 1.0 nm) and cytochrome C (ae 1.5 nm), readily penetrated the endothelium; tracer-reaction product was found in the subendothelial space of the capillaries. However, there was no uptake of these two tracers into the syncytiotrophoblast layer of the placenta. An intermediate-sized molecule, myoglobin (ae 1.7 nm), produced only a weak reaction product in the subendothelial space even when perfused at high concentration. The largest molecule tested, haemoglobin (ae 2.8 nm), did not penetrate the foetal endothelium at any of the concentrations employed.The foetal capillary endothelium thus provided a barrier to protein penetration from the foetal circulation, dependent on molecular size. There was evidence that the site of this barrier was located in the lateral intercellular spaces between the endothelial cells.The syncytiotrophoblast of this haemomonochorial placenta provided an almost absolute barrier to protein penetration from the foetal circulation. As other workers have described maternal-to-foetal transmission of proteins across this layer in the guinea-pig, a working hypothesis of the role of endothelium and syncytiotrophoblast in maternal/foetal protein exchange is discussed.  相似文献   

6.
Transtubular transport of proteins in rabbit proximal tubules   总被引:4,自引:0,他引:4  
The purpose of the present experiments was to study possible different pathways of intracellular transport of proteins after luminal and basolateral uptake in isolated rabbit proximal tubules. Tubules were exposed to cationized ferritin (CF) in the perfusion fluid and horseradish peroxidase (HRP) in the bath simultaneously or to HRP in the bath alone for 30 min. The peritubular fluid (bath) and perfusion fluid were then exchanged and the tubules either fixed immediately or allowed to function during chase-periods for 10, 20, 30, or 60 min before fixation to follow the migration of the proteins through the cells. The proteins were to a large extent found separated in different vacuoles and lysosomes at all time periods studied, indicating separate pathways after uptake via the luminal and basolateral membranes respectively. About 0.5% of the CF taken up by the cells was transported through the cells and became located in the intercellular spaces. HRP was transported from the peritubular fluid to the apical cytoplasm of the tubules indicated by a gradual accumulation of small HRP-containing vesicles, first in the basal part of the cells and then in the apical cytoplasm. In tubules perfused with both CF and HRP in the perfusate, the CF and HRP were found together in apical vacuoles and lysosomes. After perfusion with HRP alone, this tracer was found in similar large vacuoles and lysosomes in the apical cytoplasm, in contrast to the small HRP-filled vacuoles seen after uptake from the bath.  相似文献   

7.
Summary Experiments were performed to clarify the debate over the entry of circulating proteins into the epididymal lumen by use of the marker horseradish peroxidase (HRP). Epididymal tubules from the caput epididymidis of the rat were immersed in medium TC 199 containing HRP (3.5 mg/ ml) for 5 min to 3 h at 33° C. Sections were examined for the presence of tracer within the epithelial cells by electron microscopy. From 5 min to 3 h, vesicles containing peroxidase reaction products were found throughout the cytoplasm of the principal cells. Vesicles occurred close to both the basal and apical membranes, and many were found opening into the interstitial space and lumen, depending on the length of incubation. By 5 min labelled vesicles were infrequently found in the apical part of the cells. Reaction product was observed in the epididymal lumen adhering to the microvilli from 30 min of incubation onwards. At all periods of incubation peroxidase was present at the base of the epithelium and between the cells, but it was never found within the tight junctional complexes, and no reaction deposits were found within epithelial cells of tubules incubated in the absence of peroxidase. It is concluded that large molecules leaving the capillaries may enter the epididymal lumen in the caput by means of fluid-phase endocytosis.  相似文献   

8.
The present study aims to experimentally elucidate subtle structural features of the rat valve leaflet and the related nature of macromolecular transport across its endothelium and in its subendothelial space, information necessary to construct a rational theoretical model that can explain observation. After intravenous injection of horseradish peroxidase (HRP), we perfusion-fixed the aortic valve of normal Sprague-Dawley rats and found under light microscopy that HRP leaked through the leaflet's endothelium at very few localized brown spots, rather than uniformly. These spots grew nearly as rapidly with HRP circulation time before euthanasia as aortic spots, particularly when the time axis only included the time the valve was closed. These results suggest that macromolecular transport in heart valves depends not only on the direction normal to, but also parallel to, the endothelial surface and that convection, as well as molecular diffusion, plays an important role in macromolecular transport in heart valves. Transmission electron microscopy of traverse leaflet sections after 4-min HRP circulation showed a very thin ( approximately 150 nm), sparse layer immediately beneath the endothelium where the HRP concentration was much higher than that in the matrix below it. Nievelstein-Post et al.'s (Nievelstein-Post P, Mottino G, Fogelman A, Frank J. Arterioscler Thromb 14: 1151-1161, 1994) ultrarapid freezing/rotary shadow etching of the normal rabbit valve's subendothelial space supports the existence of this very thin, very sparse "valvular subendothelial intima," in analogy to the vascular subendothelial intima.  相似文献   

9.
Summary Aortic endothelium presents a continuous barrier to diffusion of macromolecules. The cell margins overlap for long distances and there are multiple points of contact between the cell membranes at which the intercellular cleft is reduced to 30–40 Å or less, and free diffusion of lanthanum is impeded at some points of apposition. Macromolecular transport through the endothelium of mouse aorta was studied with the help of horseradish peroxidase (HRP) and bovine milk lactoperoxidase. Following injection of 0.25–0.5 mg of HRP no tracer was detected in the intercellular clefts even though it was seen in plasmalemmal vesicles and subendothelial space. However, when 5 mg of HRP was injected in either 0.05 or 0.5 ml of saline, transport of the enzyme occurred through both the intercellular clefts and via the plasmalemmal vesicles. On the other hand, lactoperoxidase of m.w. 82000 was transported through the plasmalemmal vesicles only. The findings were discussed with reference to the transport of serum lipoproteins and it was suggested that low and high density lipoproteins would be transported via the plasmalemmal vesicles.The excellent technical help of Miss R. Ben-Moshe and Mrs. A. Mandeles is gratefully acknowledged. This study was supported in part by a grant from the Myra Kurland Heart Fund, Chicago, Ill., and by a grant 06-101-1 of the National Institute of Health, United States Public Health Service.  相似文献   

10.
The effects of insulin, prostaglandin E1 (PGE1) and uptake inhibitors on unidirectional D-glucose influx at brush border (maternal) and basal (fetal) sides of the guinea-pig syncytotrophoblast were investigated in the intact, perfused guinea-pig placenta by rapid, paired-tracer dilution. Experiments were performed in either an in situ preparation artificially perfused through the umbilical vessels (intact maternal circulation) or in the fully isolated dually-perfused placenta in which both interfaces were studied simultaneously. Kinetic characterization of unidirectional D-glucose influx gave apparent Km values (mean +/- SEM) at maternal and fetal sides of 70 +/- 6 and 87 +/- 16 mM respectively; corresponding Vmax values were 53 +/- 3 and 82 +/- 6 mumol min-1g-1. At the fetal side (singly-perfused placenta) cytochalasin B (50 microM), ethylidene-D-glucose (100 mM) and PGE1 (1 microM) partially inhibited D-glucose uptake whereas cortisol (50 microM) and progesterone (100 microM) had no effect. Abolition of the sodium gradient across the fetal interface did not modulate the kinetics of influx. In the presence of 150 mu units ml-1 insulin (dually-perfused placenta), unidirectional uptake into the trophoblast and transplacental D-[3H]glucose transfer were unaltered. In contrast, prostaglandin E1 (1 microM) markedly reduced the Km and Vmax for D-glucose at both interfaces and the inhibitory effect was reflected in a reduction in specific transplacental D-glucose transfer. Further experiments showed that the isolated placenta releases prostaglandins (PGE; PGF2 alpha) into both circulations. Bilateral insulin perfusion did not affect either lactate release by the placenta or rapid metabolism of D-[14C]glucose to [3H]lactate (usually less than 10% effluent [14C]lactate in 5 min). An asymmetric degradation of exogenous insulin was observed in the dually-perfused placenta: uterine venous samples contained 24 +/- 7 microunits ml-1 immunoreactive insulin when compared to the arterial concentration (151 +/- 3 microU ml-1 perfusate) while no change was measureable in the fetal circulation within the same time period (152 +/- 5 microU ml-1). This asymmetry was confirmed in experiments employing [125I]insulin. These results demonstrate that glucose transport in the intact guinea-pig placenta occurs by a sodium-independent, cytochalasin B-inhibitable system which is insulin-insensitive. Prostaglandin E1 appeared to be a potent transport inhibitor which suggests that prostaglandins may be involved in the 'down' regulation of placental glucose transport in vivo.  相似文献   

11.
Summary Brain capillaries and their permeability to intravenously injected horseradish peroxidase, HRP, (MW: 40,000) were examined electron-microscopically in an attempt to find a structural explanation for the poorly developed blood-brain barrier in the hagfish, Myxine glutinosa. In particular, it was the aim of this study to examine the role of the numerous endothelial vesicles and tubules in the transport of this tracer between blood and brain. Many of the vesicles and tubules were found to be in continuity with the luminal or abluminal surfaces, but tubules generating channels through the endothelial cells were never observed. The cleft between adjacent endothelial cells was obliterated by punctate junctions. HRP, which was allowed to circulate for up to 35 min, was not found in the basal lamina or in the surrounding brain parenchyma. Few of the luminal vesicles and tubules were marked by the tracer. In the intercellular cleft HRP was stopped by the junctions. It is concluded that the hagfish like other vertebrates has a blood-brain barrier to HRP, and the numerous vesicles and tubules occurring in hagfish brain endothelium are not involved in the transendothelial transport of this macromolecule.  相似文献   

12.
Summary Protein uptake from cerebral ventricles into the epithelium of the choroid plexus, and transport across the epithelium were studied ultrastructurally in rats. Horseradish peroxidase (HRP, MW 40,000) was used as protein tracer. Steady-state ventriculo-cisternal perfusion with subatmospheric pressure (-10cm of water) in the ventricular system was applied. HRP dissolved in artificial CSF was perfused from the lateral ventricles to cisterna magna for various times, and ventriculo-cisternal perfusion, vascular perfusion or immersion fixation with a formaldehyde-glutaraldehyde solution was performed.Coated micropinocytic vesicles containing HRP were seen both connected with the apical, lateral and basal epithelial surface and within the cells. Heavily HRP-labeled vesicles were often fused with the lining membrane of slightly labeled or unlabeled intercellular spaces. Since the apical tight junctions of the epithelium never appeared open or never contained HRP in the spaces between the fusion points, and since the intercellular spaces between adjacent epithelial cells below the junctions only infrequently contained tracer after 5 min, by increasing amounts after 15–60 min of HRP perfusion, a vesicular transport of HRP from the apical epithelial surface to the intercellular spaces, bypassing the tight junctions, is suggested.In addition to the transepithelial transport, micropinocytic vesicles also transported HRP to the lysosomal apparatus of the epithelial cells. With increasing length of exposure to HRP, a sequence of HRP-labeled structures could be evaluated, from slightly labeled apical vacuoles and multivesicular bodies to very heavily labeled dense bodies.  相似文献   

13.
Although zinc is essential for normal fetal growth and development, little is known about factors that influence its transfer across the placenta. The in situ perfused guinea pig placenta model was used to study the influence of the zinc concentration of fetal circulation on maternofetal placental zinc transfer. A placenta of the anaesthetized sow was perfused (on the fetal side) with a physiological perfusate via the umbilical vessels, with the fetus excluded. The sow was infused intravenously with 65zinc as a tracer of placental Zn clearance, and with antipyrine as an indirect indicator of maternal placental blood flow. Maternal plasma and placental effluent samples collected at intervals were counted for 65zinc by gamma counter, and the absorbance of nitrosated antipyrine was measured at 350 nm. Varying the mean zinc concentration in the perfusate from 0.176 to 1.87 mg/L had no effect on relative zinc clearance calculated as zinc clearance/antipyrine clearance (mean +/- SEM; 0.085 +/- 0.010 vs. 0.114 +/- 0.018; n = 6; p greater than 0.05). The results suggest that short-term changes in fetal zinc status do not influence placental zinc transfer.  相似文献   

14.
Protein uptake and degradation by trophotaenial cells of the viviparous goodeid fish Ameca splendens were studied colorimetrically and ultrastructurally using horseradish peroxidase (HRP) as a tracer and acid (ACPase) and alkaline (ALPase) phosphatase cytochemistry. Trophotaeniae are ribbon-like external projections of the embryonic gut that are equivalent to greatly hypertrophied intestinal villi. During gestation within the ovarian lumen, trophotaeniae are directly apposed to the internal ovarian epithelium (IOE) where they establish a placental association between the developing embryo and maternal organism. Trophotaenial absorptive cells possess an ALPase reactive brush border, an endocytotic apparatus, and ACPase reactive standing lysosomes. Ultrastructural studies of protein uptake indicate that cells of the trophotaenial epithelium take up HRP by micropinocytosis and degrade it within lysosomes. Initially (from 1.5-10 min), HRP is taken up in vitro at 22 degrees C at the apical cell surface and passes via endocytotic vesicles into an apical canalicular system. From 1.5 to 10 min exposure, HRP passes passes from the apical canalicular system to a series of small collecting vesicles. After 10 min, HRP is detected within large ACPase reactive supranuclear lysosomes. Three hours after an initial 1 h exposure to HRP, most peroxidase activity within supranuclear lysosomes is no longer detected. Presence of Golgi complexes, residual bodies, and secretory granules in the infranuclear cytoplasm suggest that products of protein uptake and hydrolysis are discharged across basal and lateral cell surfaces and into the trophotaenial circulation. Trophotaeniae of embryos incubated in vitro in HRP-saline take up HRP at an initial rate of 13.5 ng HRP/mg trophotaenial protein/min. The system becomes saturated after 3 h. Trophotaeniae incubated at 4 degrees C show little or no uptake. In trophotaeniae continuously pulsed with HRP for 1 h, then incubated in HRP-free saline, levels of absorbed peroxidase declined at a rate of 0.5 ng/mg trophotaenial protein/min. HRP does not appear to enter the embryo via extra-trophotaenial routes. These findings are consistent with the putative role of trophotaeniae as the embryonic component of the functional placenta of goodeid fishes. Trophotaenial uptake of maternal nutrients accounts for a massive (15,000%) increase in embryonic dry weight during gestation.  相似文献   

15.
Rapid uptake and efflux of 45Ca2+ and [3H]choline at the maternal and fetal interfaces of the syncytiotrophoblast in the dually-perfused human placenta was investigated by application of the single circulation paired-tracer dilution method (Yudilevich, Eaton, Short & Leichtweiss 1979). Cotyledons were perfused with Krebs-bicarbonate containing dextran (30 g/l; MW = 60-70,000) at 20 and 6 ml/min on maternal and fetal sides, respectively. The paired-tracer (test substrate and extracellular marker) technique consisted of an intra-arterial injection of a tracer bolus, followed by venous sampling over 5-6 min. There was a rapid (sec) uptake of 45Ca2+, followed by backflux (efflux into the ipsilateral circulation) which, over 5-6 min, was 59-100% on the fetal side. It was more variable but generally lower on the maternal interface. At 0.1 mM calcium, 45Ca2+ maximal uptake (Umax) was about 53% on the fetal side but on the maternal side it was variable and averaged 17%. At 2.4 mM calcium fetal side Umax was reduced to 40%. However, on the maternal side the effect was not consistent. Unidirectional influx (nmol/min per g) appeared to be not different on the two sides of the placenta. For [3H]choline (in choline-free perfusates) Umax was about 50% and 30% on fetal and maternal sides, respectively; tracer backflux was variable on the maternal side and averaged 50% on the fetal side. [3H]Choline uptake was highly inhibited by either 1.0 mM choline or the specific competitive inhibitor, hemicholinium-3 (0.1 mM). Specific transplacental transfer of 45Ca2+ (i.e. in excess of the extracellular marker) was not significant in either direction. For [3H]choline there was an apparent small excess (about 4%) preferential towards the fetal circulation. These findings in the human placenta are similar to those demonstrated previously in the guinea-pig placenta which suggested the existence of specific transport systems for choline and calcium on both sides of the syncytiotrophoblast.  相似文献   

16.
Using an in situ perfusion of the fetal side of the guinea-pig placenta the modification of a non-esterified fatty acid during transfer across the placenta was investigated. Simultaneous constant infusions of [9,10(3)H] palmitic acid and [1-14C] palmitic acid (3 animals) or [9,10(3)H] and [6-14C] palmitic acids (3 animals) or [9,10(3)H] and universal [14C] palmitic acids (3 animals) were given to the mothers and blood samples and perfusion fluid collected over 90 min in each experiment. When expressed as a ratio of perfusion fluid/maternal plasma radioactive counts, no difference between [3H] isotopes results were found for the 3 triplets of experiments. However significant differences were found between the [14C] isotope ratios. More radioactive lipid was found in the perfusion fluid when the label was positioned away from the C1 terminal of the fatty acid chain, i.e. the ratios were [1-14C] less than [6-14C] less than [9,10(3)H] less than universal [14C] palmitic acid. It was concluded that this indicates release of partially oxidised fatty acid products from the fetal side of the placenta, and it was speculated that this partial oxidation takes place in placental peroxisomes.  相似文献   

17.
Previous studies of the metabolism of 11 beta-hydroxy corticosteroids by placental tissue have indicated that the only product is the C11-oxidized metabolite. In the present study we have re-examined the metabolism of prednisolone in the isolated, perfused, dual recirculating human placental lobule, using a perfusate based on tissue culture medium 199. Four metabolites were identified in both the maternal and fetal compartments in 6 h perfusions by comparison of relative retention times measured by HPLC and capillary gas chromatography (GC) and of mass spectra recorded by capillary gas chromatography-mass spectrometry (GC-MS) with those of authentic reference standards. The steroids were derivatized as the MO-TMS ethers for mass spectral measurements. Analysis of samples from five perfusion experiments resulted in the following percentage conversions after 6 h perfusion (mean +/- SD, maternal and fetal perfusate, respectively): prednisone (49.1 +/- 7.8, 49.1 +/- 6.6), 20 alpha-dihydroprednisone (0.84 +/- 0.29, 0.81 +/- 0.35), 20 beta-dihydroprednisone (39.1 +/- 6.7, 39.2 +/- 5.9), 20 beta-dihydroprednisolone (6.8 +/- 2.7, 6.3 +/- 1.6) and unmetabolized prednisolone (4.1 +/- 1.8, 4.6 +/- 2.1). No evidence was found for metabolites formed by 6 beta-hydroxylation or cleavage of the C17-C20 bond.  相似文献   

18.
Synopsis The present study is concerned with artifacts likely to occur in a horseradish peroxidase exclusion test. Incubation of murine peritoneal macrophages and lymphocytes with the peroxidase showed a close relationship between the number of living cells and the percentage of cells excluding the tracer. The penetration of the cytoplasm by horseradish peroxidase is attributed to an increase in the permeability of the cell membrane during the incubation (ranging from 10 to 120 min). It was not increased by the presence of tracer throughout the incubation period. However, concomitant fixation of the cell in the presence of horseradish peroxidase caused an increase in the influx of the tracer. The horseradish peroxidase exclusion test applied to the guinea-pig organ of Corti has proved to be valid provided that: (a) mechanical lesions prior to the tracer incubation are avoided; (b) incubation is terminated by removal of the extracellular tracer; (c) fixation is carried out as soon as possible; (d) a low concentration of horseradish peroxidase is used; and (e) specimens are incubated in diaminobenzidine-H2O2 medium for the shortest possible period.Although fixation-induced cytoplasmic infiltration by horseradish peroxidase was not detected in cochlear specimens, the findings call attention to possible sources of error and define the level of significance of the test. Horseradish peroxidase does not appear to be a cytotoxic agent under the conditions used.  相似文献   

19.
One of the possible mechanisms for the inhibition effect of Tb(III) on peroxidase activity in horseradish (Armoracia rusticana) treated with Tb(III) was investigated using some biophysical and biochemical methods. Firstly, it was found that a large amount of Tb(III) can be distributed on the cell wall, that some Tb(III) can enter into the horseradish cell, indicating that peroxidase was mainly distributed on cell wall, and thus that Tb(III) would interact with horseradish peroxidase (HRP) in the plant. In addition, peroxidase bioactivity was decreased in the presence of Tb(III). Secondly, a new peroxidase-containing Tb(III) complex (Tb–HRP) was obtained from horseradish after treatment with Tb(III); the molecular mass of Tb–HRP is near 44 kDa and the pI is about 8.80. Thirdly, the electrocatalytic activity of Tb–HRP is much lower than that of HRP obtained from horseradish without treatment with Tb(III). The decrease in the activity of Tb–HRP is due to the destruction (unfolding) of the conformation in Tb–HRP. The planarity of the heme active center in the Tb–HRP molecule was increased and the extent of exposure of Fe(III) in heme was decreased, leading to inhibition of the electron transfer. The microstructure change in Tb–HRP might be the result of the inhibition effect of Tb(III) on peroxidase activity in horseradish.  相似文献   

20.
In order to study the phagocytic potential of different cell types of the rat renal papilla with special emphasis on interstitial cells, horseradish peroxidase (HRP) (8 mg/100 g body weight) was injected intravenously into adult rats. The distribution of peroxidase was studied in animals perfusion-fixed 60 and 180 min after injection and was found to be similar after both time intervals. The epithelial cells of the collecting ducts took up the largest amounts of the tracer. HRP was mainly located in large lysosome-like bodies in the basal part of the cytoplasm, suggesting peritubular uptake from the interstitial space. However, small amounts of the tracer were also seen in apical vesicles close to the luminal plasma membrane. The interstitial cells of peroxidase-injected animals were ultrastructurally altered and had large irregular invaginations of the cell membrane. The cells had taken up only small amounts of the tracer which were located in small round lysosome-like bodies. Thus, the interstitial cells displays no macrophage characteristics, either in the native state or when challenged with an extracellular protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号