首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas aeruginosa secretes a fluorescent siderophore, pyoverdine, when grown under iron-deficient conditions. Pyoverdine consists of a chromophoric group bound to a partly cyclic octapeptide. As a step toward understanding the molecular events involved in pyoverdine synthesis, we have sequenced a gene, pvdD, required for this process. The gene encodes a 2,448-residue protein, PvdD, which has a predicted molecular mass of 273,061 Da and contains two highly similar domains of about 1,000 amino acids each. The protein is similar to peptide synthetases from a range of bacterial and fungal species, indicating that synthesis of the peptide moiety of pyoverdine proceeds by a nonribosomal mechanism. The pvdD gene is adjacent to a gene, fpvA, which encodes an outer membrane receptor protein required for uptake of ferripyoverdine.  相似文献   

2.
Five fluorescent Pseudomonas strains isolated from Antarctica have been previously recognized as producing three structurally different pyoverdines. In the present work, siderotyping procedures have been used to classify these strains, together with 1282 isolates of different origins, into siderovars. The strain biodiversity encountered within each siderovar, as well as the potential taxonomic value of the siderovars, are described and discussed. It is concluded that a majority of antarctic strains are commonly distributed worldwide. One strain, however, presenting a particular pyoverdine structure found in a unique other isolate, was apparently much more specific to cold environment.  相似文献   

3.
The PII regulatory protein of Escherichia coli glutamine synthetase exists in two interconvertible forms: a uridylylated form (PIID) which promotes the deadenylylation of glutamine synthetase and an unmodified form (PIIA) which promotes the adenylylation of glutamine synthetase (Mangum, J.H., Magni, G., and Stadtman, E.R. (1973) Arch. Biochem. Biophys. 158, 514-525). PII has been purified to homogeneity. Its molecular weight is 44,000. The protein is composed of four subunits, each with a molecular weight of approximately 11,000. The subunits are identical as judged by: (a) the homogeneity of the subunits in sodium dodecyl sulfate, 8 M urea, and 6 M guanidine HCl; (b) the minimal molecular weight calculated from the amino acid composition; and (c) the isolation of only two tryptic peptides containing tyrosine (there are 8 tyrosyl residues per 44,000 molecular species). Following iodination of PIIA and PIID with 125I in the presence of chloramine-T, tryptic digestion yields two radioactive peptides from PIIA and only one from PIID. Since a tyrosine with a substituted hydroxyl group cannot be iodinated, this result indicates that 1 tyrosyl residue in each subunit is modified by the covalent attachment of UMP. This conclusion is supported also by the fact that treatment of PIID with snake venom phosphodiesterase results in the release of covalently bound UMP and the stoichiometric appearance of phenolate ion (pH 13) as measured by ultraviolet absorption spectroscopy. The enzyme activities (uridylyl-removing) responsible for removal and (uridylytransferase) responsible for attachment of UMP to PII have been partially purified. These activities co-purify through a variety of procedures, including hydrophobic chromatography, and are stabilized by high ionic strength buffers. Whereas Mn2+ alone supports only uridylyl-removing activity, ATP, alpha-ketoglutarate, and Mg2+ support both uridylyl-removing and uridylyltransferase activities.  相似文献   

4.
Pyoverdines are siderophores produced by fluorescent Pseudomonads to acquire iron. At least 60 different pyoverdines produced by diverse strains have been chemically characterized. They all consist of a dihydroquinoline‐type chromophore linked to a peptide. These peptides are of various lengths and the sequences are strain specific. Pyoverdine biosynthesis in Pseudomonas aeruginosa and fluorescent Pseudomonads is a complex process involving at least 12 different proteins, starting in the cytoplasm and ending in the periplasm. The cellular localization of pyoverdine precursors was recently shown to be consistent with their biosynthetic enzymes. In the cytoplasm, pyoverdine appears to be assembled at the inner membrane and particularly at the old cell pole of the bacterium. Mature pyoverdine is uniformly distributed throughout the periplasm, like the periplasmic enzyme PvdQ. Secretion of pyoverdine involves a recently identified ATP‐dependent efflux pump, PvdRT‐OpmQ. This efflux system does not only secrete newly synthesized pyoverdine but also pyoverdine that already transported iron into the bacterial periplasm and any pyoverdine–metal complex other than ferri‐pyoverdine present in the periplasm. This review considers how these new insights into pyoverdine biosynthesis and secretion contribute to our understanding of the role of pyoverdine in iron and metal homeostasis in fluorescent Pseudomonads.  相似文献   

5.
Aerobic microorganisms have evolved a variety of siderochromes, special ligands which can dissolve insoluble ferric iron and facilitate its transport into the cell. We have found that enb mutants of Salmonella typhimurium blocked in the biosynthesis of enterobactin (its natural iron carrier) are able to utilize siderochromes of different types made by other microorganisms as iron carriers. The antibiotic albomycin delta(2) was used to select mutants defective in ferrichrome-mediated iron uptake. Twelve classes of albomycin-resistant mutants, named sid, were defined on the basis of their growth responses to other siderochromes. Most of these classes have genetic lesions in loci that are cotransduced with panC (represented at 9 min on the genetic map). The locus designated sidJ is cotransduced with enb, whereas sidK and sidL are linked with neither panC nor enb. Genetic and physiological data indicate that S. typhimurium has several transport systems of high specificity for a variety of siderochromes produced by other microorganisms.  相似文献   

6.
Pyoverdine is a fluorescent nonribosomal peptide siderophore made by fluorescent pseudomonads. The Pseudomonas aeruginosa nonribosomal peptide synthetase (NRPS) PvdD contains two modules that each incorporate an l-threonine residue at the C-terminal end of pyoverdine. In an attempt to generate modified pyoverdine peptides, we substituted alternative-substrate-specifying adenylation (A) and peptide bond-catalyzing condensation (C) domains into the second module of PvdD. When just the A domain was substituted, the resulting strains produced only wild-type pyoverdine—at high levels if the introduced A domain specified threonine or at trace levels otherwise. The high levels of pyoverdine synthesis observed whenever the introduced A domain specified threonine indicated that these nonnative A domains were able to communicate effectively with the PvdD C domain. Moreover, the unexpected observation that non-threonine-specifying A domains nevertheless incorporated threonine into pyoverdine suggests that the native PvdD C domain exhibited stronger selectivity than these A domains for the incorporated amino acid substrate (i.e., misactivation of a threonine residue by the introduced A domains was more frequent than misincorporation of a nonthreonine residue by the PvdD C domain). In contrast, substitution of both the C and A domains of PvdD generated high yields of rationally modified pyoverdines in two instances, these pyoverdines having either a lysine or a serine residue in place of the terminal threonine. However, C-A domain substitution more commonly yielded a truncated peptide product, likely due to stalling of synthesis on a nonfunctional recombinant NRPS template.  相似文献   

7.
Pseudomonas fluorescens strain 2-79 (NRRL-15132) produces a fluorescent yellow-green pyoverdine when cultured on Fe(III)-poor medium. When cultured on Fe(III)-rich medium, strain 2-79 produces an antibiotic, phenazine 1-carboxylic acid, which is effective in suppressing plant fungal diseases such as take-all of wheat. A 23 factorial design was used to examine pyoverdine production as a function of the presence or absence of Bacto casamino acids, purines-pyrimidines and vitamins in an iron-deficient medium. Amino acids were found to be an important factor (P=0.0002). A Plackett-Burman design was used to identity eight amino acids, out of the 19 present in casamino acids, that were responsible for the increased pyoverdine production: methionine, valine, isoleucine, tyrosine, proline, phenylalanine, glutamic acid, and glycine. Biomass was enhanced only by glutamic acid. Correspondence to: W. S. Kisaalita  相似文献   

8.
9.
Pyoverdines are a group of structurally related siderophores produced by fluorescent Pseudomonas species. Recent genomic and biochemical data have shed new light on the complex molecular steps of pyoverdine biogenesis and explained the chemical diversity of these compounds. In the opportunistic pathogen Pseudomonas aeruginosa, pyoverdine is necessary for infection in several different disease models. The occurrence of pyoverdine-defective strains in chronic infections of patients with cystic fibrosis and the extremely high sequence diversity of genes involved in pyoverdine synthesis and uptake indicate that pyoverdine production is subject to high evolutionary pressure. Pyoverdine-dependent iron transport is also crucial for biofilm development, further expanding the importance of these siderophores in Pseudomonas biology.  相似文献   

10.
Amber and ochre suppressor mutations in Salmonella typhimurium were selected. The amino acid insertions directed by the suppressors were inferred from suppression patterns of Escherichia coli lacI amber mutations. These amber mutations only respond to nonsense suppressors that direct the insertion of particular amino acids. Four Salmonella amber suppressors characterized insert serine, glutamine, tyrosine, and (probably) leucine. Of the three ochre suppressors characterized, two direct the insertion of tyrosine and one directs that of lysine. Of the three amber and two ochre suppressors which have been mapped by phage P22 cotransduction, all are located in the same relative position on the Salmonella map as the analogous E. coli suppressors are on the E. coli map.  相似文献   

11.
The lungs of cystic fibrosis patients are frequently colonized by Pseudomonas aeruginosa, which produces high-affinity fluorescent peptidic siderophores, pyoverdines. Three pyoverdines which differ in their peptide chain and are easily differentiated by isoelectric focusing exist, only one being produced by a given strain. P. aeruginosa isolates from cystic fibrosis patients of a German hospital were analyzed by sequential, pulse-field gel electrophoresis (PFGE) and for pyoverdine production and type. Only producers of type I and type II pyoverdine were found. There was a perfect correlation between the type of pyoverdine produced and the clonality determined by PFGE. PFGE clone C, the most prevalent among cystic fibrosis patients, and found in an aquatic environment, produced type II pyoverdine. Pyoverdine-negative mutants seemed to increase as a function of the lung colonization time, but retained the capacity to take up pyoverdines. Most isolates that took up type II pyoverdine were also able to utilize type I pyoverdine as judged by growth stimulation experiments. No correlation was observed between the loss of pyoverdine production and mucoidy.  相似文献   

12.
Among the mischarging mutants isolated from strains with Su+2 glutamine tRNA, two double-mutants, A37A29 and A37C38, have been suggested to insert tryptophan at the UAG amber mutation site as determined by the suppression patterns of a set of tester mutants of bacteria and phages (Yamao et al., 1988). In this paper, we screened temperature sensitive mutants of E. coli in which the mischarging suppression was abolished even at the permissive temperature. Four such mutants were obtained and they were identified as the mutants of a structural gene for tryptophanyl-tRNA synthetase (trpS). Authentic trpS mutations, such as trpS5 or trpS18, also restricted the mischarging suppression. These results strongly support the previous prediction that the mutant tRNAs of Su+2, A37A29 and A37C38, are capable of interacting with tryptophanyl-tRNA synthetase and being misaminoacylated with tryptophan in vivo. However, in an assay to determine the specificity of the mutant glutamin tRNAs, we detected predominantly glutamine, but not any other amino acid, being inserted at an amber codon in vivo to any significant degree. We conclude that the mutant tRNAs still accept mostly glutamine, but can accept tryptophan in an extent for mischarging suppression. Since the amber suppressors of Su+7 tryptophan tRNA and the mischarging mutants of Su+3 tyrosine tRNA are charged with glutamine, structural similarity among the tRNAs for glutamine, tryptophan and tyrosine is discussed.  相似文献   

13.
14.
Many bacteria use nonribosomal peptide synthetase (NRPS) proteins to produce peptide antibiotics and siderophores. The catalytic domains of the NRPS proteins are usually linked in large multidomain proteins. Often, additional proteins are coexpressed with NRPS proteins that modify the NRPS peptide products, ensure the availability of substrate building blocks, or play a role in the import or export of the NRPS product. Many NRPS clusters include a small protein of approximately 80 amino acids with homology to the MbtH protein of mycobactin synthesis in Mycobacteria tuberculosis; no function has been assigned to these proteins. Pseudomonas aeruginosa utilizes an NRPS cluster to synthesize the siderophore pyoverdine. The pyoverdine peptide contains a dihydroxyquinoline-based chromophore, as well as two formyl-N-hydroxyornithine residues, which are involved in iron binding. The pyoverdine cluster contains four modular NRPS enzymes and 10-15 additional proteins that are essential for pyoverdine production. Coexpressed with the pyoverdine synthetic enzymes is a 72-amino acid MbtH-like family member designated PA2412. We have determined the three-dimensional structure of the PA2412 protein and describe here the structure and the location of conserved regions. Additionally, we have further analyzed a deletion mutant of the PA2412 protein for growth and pyoverdine production. Our results demonstrate that PA2412 is necessary for the production or secretion of pyoverdine at normal levels. The PA2412 deletion strain is able to use exogenously produced pyoverdine, showing that there is no defect in the uptake or utilization of the iron-pyoverdine complex.  相似文献   

15.
Fluorescence lifetime imaging microscopy (FLIM) is a quantitative microscopy technique for imaging nanosecond decay times of fluorophores. In the case of frequency-domain FLIM, several methods have been described to resolve the relative abundance of two fluorescent species with different fluorescence decay times. Thus far, single-frequency FLIM methods generally have been limited to quantifying two species with monoexponential decay. However, multiexponential decays are the norm rather than the exception, especially for fluorescent proteins and biological samples. Here, we describe a novel method for determining the fractional contribution in each pixel of an image of a sample containing two (multiexponentially) decaying species using single-frequency FLIM. We demonstrate that this technique allows the unmixing of binary mixtures of two spectrally identical cyan or green fluorescent proteins, each with multiexponential decay. Furthermore, because of their spectral identity, quantitative images of the relative molecular abundance of these fluorescent proteins can be generated that are independent of the microscope light path. The method is rigorously tested using samples of known composition and applied to live cell microscopy using cells expressing multiple (multiexponentially decaying) fluorescent proteins.  相似文献   

16.
Cells of Pseudomonas aeruginosa secrete a fluorescent yellow-green siderophore, pyoverdine, when grown under iron-deficient conditions. We describe here the cloning and characterization of a gene, pvdS, which is required for this process. The pvdS gene is required for expression from promoters of at least two pyoverdine synthesis genes and can cause expression from these promoters in Escherichia coli, where they are otherwise inactive. Sequencing of pvdS revealed that it is a member of a subfamily of RNA polymerase sigma factors which direct the synthesis of extracellular products by bacteria. The pvdS gene is expressed only in iron-starved bacteria, and in E. coli cells at least, expression is regulated by the Fur repressor protein. We propose that in iron-rich cells of P. aeruginosa, Fur binds to the pvdS promoter and prevents expression of the gene; under conditions of iron starvation, repression is relieved and PvdS is made, reprogramming the cells for pyoverdine synthesis.  相似文献   

17.
18.
The role of cytochrome b(559) in photosynthetic oxygen evolution has been investigated in three chloroplast mutants of Chlamydomonas reinhardtii, in which one of the two histidine axial ligands to the heme, provided by the alpha subunit, has been replaced by the residues methionine, tyrosine, and glutamine. Photosystem two complexes functional for oxygen evolution could be assembled in the methionine and tyrosine mutants up to approximately 15% of wild type levels, whereas no complexes with oxygen evolution activity could be detected in the glutamine mutant. PSII supercomplexes isolated from the tyrosine and methionine mutants were as active as wild type in terms of light-saturated rates of oxygen evolution but in contrast to wild type contained no bound heme despite the presence of the alpha subunit. Oxygen evolution in the tyrosine and methionine mutants was, however, more sensitive to photoinactivation than the WT. Overall, these data establish unambiguously that a redox role for the heme of cytochrome b(559) is not required for photosynthetic oxygen evolution. Instead, our data provide new evidence of a role for cytochrome b(559) in the protection of the photosystem two complex in vivo.  相似文献   

19.
20.
A yeast DNA fragment carrying the gene CP A1 encoding the small subunit of the arginine pathway carbamoyl-phosphate synthetase has been sequenced. Only one continuous coding sequence on this fragment was long enough to account for the presumed molecular mass of CP A1 protein product. It codes for a polypeptide of 411 amino acids having a relative molecular mass, Mr, of 45 358 and showing extensive homology with the product of carA, the homologous Escherichia coli gene. CP A1 and carA products are glutamine amidotransferases which bind glutamine and transfer its amide group to the large subunits where it is used for the synthesis of carbamoyl-phosphate. A comparison of the amino acid sequences of CP A1 polypeptide with the glutamine amidotransferase domains of anthranilate and p-amino-benzoate synthetases from various sources has revealed the presence in each of these sequences of three highly conserved regions of 8, 11 and 6 amino acids respectively. The 11-residue oligopeptide contains a cysteine which is considered as the active-site residue involved in the binding of glutamine. The distances (number of amino acid residues) which separate these homology regions are accurately conserved in these various enzymes. These observations provide support for the hypothesis that these synthetases have arisen by the combination of a common ancestral glutamine amidotransferase subunit with distinct ammonia-dependent synthetases. Little homology was detected with the amide transfer domain of glutamine phosphoribosyldiphosphate amidotransferase which may be the result of a convergent evolutionary process. The flanking regions of gene CP A1 have been sequenced, 803 base pairs being determined on the 5' side and 382 on the 3' side. Several features of the 5'-upstream region of CP A1 potentially related to the control of its expression have been noticed including the presence of two copies of the consensus sequence d(T-G-A-C-T-C) previously identified in several genes subject to the general control of amino acid biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号