首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The interaction of proteins with immobilized transition-metal ions proceeds via mechanisms influenced by metal type and degree of coordination, variations in mobile phase constituents, and protein surface architecture at or near the metal binding site(s). The contributions each of these variables make toward the affinity of protein surfaces for immobilized metal ions remain empirical. We have used equilibrium binding analyses to evaluate the influence of pH and competitive binding reagents on the apparent equilibrium dissociation constant (Kd) and binding capacity of immobilized Cu(II) and Ni(II) ions for several model proteins of known three-dimensional structure. Linear Scatchard plots suggested that 8/13 of the proteins evaluated interacted with immobilized metal ions via a single class of operational (Kd = 10-700 microM) binding sites. Those proteins with the highest affinities for the immobilized Cu(II) ions (5/13) showed evidence of multiple, non-identical or nonindependent binding sites. The effects of altered metal type, pH, and concentration of competitive affinity reagents (e.g., imidazole, free metal ions) on the apparent Kd and binding capacity varied in magnitude for individual proteins. The presence of free Cu(II) ions did not detectably alter either the affinity or binding capacity of the proteins for immobilized Cu(II) ions. The expected relationship between the relative chromatographic elution sequence and calculated affinity constants was not entirely evident by evaluation under only one set of conditions. Our results demonstrate the utility of nonchromatographic equilibrium binding analyses for the quantitative evaluation of experimental variables affecting the relative affinity and capacity of immobilized metal ions for proteins. This approach affords the opportunity to improve understanding and to vary the contribution of interaction mechanisms involved.  相似文献   

2.
We have used equilibrium binding analyses to evaluate the influence of temperature and urea on the affinity of hen egg white lysozyme and bovine pancreatic ribonuclease A for surface-immobilized Cu(II) ions. Linear Scatchard plots suggested that these model proteins were interacting with immobilized metal ions via a single class of intermediate-affinity (Kd = 10-40 microM) binding sites. Alterations in temperature had little or no effect on the immobilized Cu(II) binding capacity of either protein. Temperature effects on the interaction affinity, however, were protein-dependent and varied considerably. The affinity of lysozyme for immobilized Cu(II) ions was significantly decreased with increased temperature (0 degree C-37 degrees C), yet the affinity of ribonuclease did not vary measurably over the same temperature range. The van 't Hoff plot (1n K vs 1/T) for lysozyme suggests a straight line relationship (single mechanism) with a delta H of approximately -5.5 kcal/mol. Urea effects also varied in a protein-dependent manner. A 10-fold reduction in the affinity of lysozyme for the immobilized Cu(II) was observed with the urea concentrations up to 3 M; yet urea had no effect on the affinity of ribonuclease for the immobilized metal ions. Although the interaction capacity of lysozyme with the immobilized Cu(II) ions was decreased by 50% in 3 M urea, ribonuclease interaction capacity was not diminished in urea. Thus, temperature- and urea-dependent alterations in protein-metal ion interactions were observed for lysozyme but not ribonuclease A. The complete, yet reversible, inhibition of lysozyme- and ribonuclease-metal ion interactions by carboxyethylation with low concentrations of diethylpyrocarbonate provided direct evidence of histidyl involvement. The differential response of these proteins to the effects of temperature and urea was, therefore, interpreted based on calculated solvent-accessibilities and surface distributions of His residues, individual His residue pKa values, and specific features of the protein surface structure in the immediate environment of the surface-exposed histidyl residues. Possible interaction mechanisms involved in protein recognition of macromolecular surface-immobilized metal ions are presented.  相似文献   

3.
The interaction of calmodulin with calcineurin, a calcium- and calmodulin-stimulated protein phosphatase, was investigated using a solid-phase assay. Binding of 125I-calmodulin by calcineurin immobilized on nitrocellulose membrane filters was of high affinity, reversible, and calcium-dependent. Complex binding kinetics reflected a time- and calcium/calmodulin-dependent conformational change of calcineurin which was shown to be ligand-induced renaturation. After renaturation and removal of calmodulin, immobilized calcineurin exhibited simple 125I-calmodulin binding kinetics with a single class of independent sites. The maximum stoichiometry of 125I-calmodulin binding to immobilized calcineurin was 0.1 mol/mol. The association rate (K1 = 8.9 x 10(3) M-1 S-1) and the dissociation rate (K-1 = 8.5 x 10(-5) s-1) yielded a dissociation constant of Kd = 10 nM. Equilibrium binding analyses gave a Kd value of 16 nM. The affinity of 125I-calmodulin for immobilized calcineurin was half that of unmodified calmodulin. Using equilibrium competition experiments, we determined, for the first time, the dissociation constant for the binding of native calmodulin by calcineurin in solution, Kd less than or equal to 0.1 nM (Kd for 125I-calmodulin = 0.23 +/- 0.09 nM). The effects of ionic strength and pH on 125I-calmodulin binding to immobilized calcineurin were characterized. The dissociation rate was dependent on free calcium concentration, with half-maximal rate at 700 nM calcium. 125I-Calmodulin equilibrium binding by the immobilized A subunit of calcineurin exhibited half the affinity of the holoenzyme, Kd = 30 nM. The described phenomenon, of reversible denaturation associated with immobilization of a protein on nitrocellulose, may be a general one open to exploitation in other systems.  相似文献   

4.
The interaction of Lys-plasminogen and its fragments with fibrinogen fragment E was studied by equilibrium affinity binding. A quantitative analysis of binding parameters revealed two types of binding sites responsible for Lys-plasminogen interaction with the immobilized fragment E, i.e., with a high (Kd = 1.5 x 10(-6) M) and low (Kd = 82 x 10(-6) M) affinity ones. Among plasminogen fragments, only miniplasminogen and KI-3 bound immobilized fragment E and were eluted by epsilon-aminocaproic acid. Hence, two lysine binding sites may be involved in the binding of Lys-plasminogen to fragment E; they are localized in the KI-3 and K5 kringle structures.  相似文献   

5.
The interaction of free and immobilized myelin basic protein (MBP) with sodium deoxycholate (DOC) and sodium dodecyl sulfate (NaDodSO4) was studied under a variety of conditions. Free MBP formed insoluble complexes with both detergents. Analysis of the insoluble complexes revealed that the molar ratio of detergent/MBP in the precipitate increased in a systematic fashion with increasing detergent concentration until the complex became soluble. At pH 4.8, equilibrium dialysis studies indicated that approximately 15 mol of NaDodSO4 could bind to the protein without precipitation occurring. Regardless of the surfactant, however, minimum protein solubility occurred when the net charge on the protein-detergent complex was between +18 and -9. Complete equilibrium binding isotherms of both detergents to the protein were obtained by using MBP immobilized on agarose. The bulk of the binding of both detergents was highly cooperative and occurred at or above the critical micelle concentration. At I = 0.1, saturation levels of 2.09 +/- 0.15 g of NaDodSO4/g of protein and 1.03 /+- 0.40 g of DOC/g of protein were obtained. Below pH 7.0 the NaDodSO4 binding isotherms revealed an additional cooperative transition corresponding to the binding of 15-20 mol of NaDodSO4/mol of protein. Affinity chromatography studies indicated that, in the presence of NaDodSO4 (but not in its absence), [125I]MBP interacted with agarose-immobilized histone, lysozyme, and MBP but did not interact with ovalbumin-agarose. These data support a model in which the detergent cross-links and causes precipitation of MBP-anionic detergent complexes. Cross-linking may occur through hydrophobic interaction between detergents electrostatically bound to different MBP molecules.  相似文献   

6.
The com10 mutant of Haemophilus influenzae binds donor DNA reversibly, but is deficient in uptake. The DNA binding has all the characteristics of interaction with a protein receptor; it is saturable, reversible, and specific. However, binding specificity is 6-fold weaker in com10 than is uptake specificity in wild-type. The binding of small (120 base pairs) and large (14,400 base pairs) DNA molecules were compared. For small molecules, binding data fitted a straight line by Scatchard analysis (Bmax = 4.8 DNA molecules/cell, Kd = 0.5 X 10(-9) M). In contrast, for large DNA molecules, the Scatchard plot was not linear. A high affinity binding (Kd = 0.4 X 10(-12) M) and a lower affinity binding (Kd = 1.2 X 10(-11) M) were found with a total number of 3 molecules bound per cell. In wild-type cells, 3.2 large molecules were taken up per cell, whereas up to 40 small 120-base pair DNA fragments were taken up per cell. Uptake of small DNA molecules followed a Michaelis-Menten function with a Km of 0.5 X 10(-9) M and a maximal initial velocity of 1.5 molecules/cell/min at room temperature. For large DNA molecules, maximal initial velocity was approximately 2 molecules/cell/min at room temperature. The analysis of the binding and uptake data suggest to us that a receptor or a receptor complex is responsible for the uptake of either a single large DNA molecule or, successively, a number of small DNA molecules.  相似文献   

7.
Estrogen binding proteins in mouse liver cytosol were characterized by separation on Sephadex G-75 columns, by Scatchard plot analysis, and by hormonal competition studies. A high affinity receptor (56-70 fmol/mg cytosolic protein) with a mol. wt greater than 75,000, Kd of 5.7-8.4 X 10(-10) M was identified in male and female C3H liver. A second high capacity low affinity (HCLA) binder (200-300 fmol/mg cytosolic protein) with a mol. wt of about 50,000, Kd of 1.7-7.2 X 10(-8) was also identified. Following partial purification of the estrogen binders by ammonium sulfate precipitation, Scatchard plot analysis revealed selective removal of HCLA. On Sephadex G-75 filtration, the purification also resulted in selective removal of the 17 beta-estradiol binding component with a mol. wt of 50,000. Comparison with rat cytosol separations show that the sexual dimorphism in HCLA binding proteins (5 times higher in male than female rat liver) was absent in the mouse liver. These studies document the presence of a specific high affinity estrogen binding protein in mouse liver and indicate that the sexual dimorphism in HCLA proteins is not a universal feature of all rodent species.  相似文献   

8.
Mineralocorticoid activity of glycyrrhetinic acid (GR) was studied in vivo (electrical potential difference in rat rectum) and in vitro (brush border Mg2+-HCO3- ATPase in rat small intestine, kidney cytosol binding of GR with and without RU-28362, anti-glucocorticoid compound) in order to clarify the mechanism of mineralocorticoid-like activity of GR. Scatchard analysis of [3H]aldosterone showed that Kd of higher affinity site (type I) 6.0 X 10(-9) M, Bmax 1.0 X 10(-14) mol/mg protein, and Kd of lower affinity site (type II) 1.6 X 10(-7) M, Bmax 7.5 X 10(-14) mol/mg protein. GR competed for [3H]aldosterone binding sites in kidney cytosol at the concentration of 10(4) times as that of unlabeled aldosterone. RU-28362 displaced aldosterone binding curve, whereas GR binding kinetic was not affected by this compound. Adrenalectomy caused a significant fall in brush border Mg2+-HCO3- ATPase activity (75% reduction compared with the initial level) which was not restored by GR administration. Electrical potential differences in the adrenalecomized rats were significantly lower than those in the control rats, which did not increase after GR administration.  相似文献   

9.
Gelsolin is a Ca(2+)-regulated actin-modulating protein found in a variety of cellular cytoplasm and also in blood plasma. Affinity separation of human plasma gelsolin was successfully accomplished by eluting the protein with a low concentration of nucleoside polyphosphate from immobilized Cibacron Blue F3GA (1, 2). This finding was followed by the demonstration that the protein had one class of ATP binding site with Kd = 2.8 x 10(-7) M, which saturated at an ATP/gelsolin ratio of 0.6 in the absence of Ca2+ (3). To obtain further information on the nucleotide binding properties of gelsolin, binding studies were done in the presence of EGTA with GTP, ADP, and GDP by equilibrium dialysis. Incubation of plasma gelsolin with GTP resulted in binding of 0.6 mol of GTP per mol of protein with a dissociation constant of 1.8 x 10(-6) M, indicating that ATP binds to gelsolin with higher affinity than GTP. Neither ADP nor GDP at up to 100 microM appreciably bound to gelsolin at a physiological salt concentration. Then, the effects of divalent metal ions on the ATP binding to plasma gelsolin were examined. Gelsolin bound to ATP with Kd = 2.4 x 10(-6) M in a solution containing 2 mM MgCl2, whereas micromolar free Ca2+ concentrations inhibited ATP binding. Furthermore, addition of Ca2+ rapidly reversed the preformed nucleotide binding to gelsolin, suggesting that Ca2+ binding to gelsolin leads to a conformational change which disrupts a nucleotide binding fold in the protein molecule.  相似文献   

10.
The interactions of the bovine cation-dependent mannose 6-phosphate receptor with monovalent and divalent ligands have been studied by equilibrium dialysis. This receptor appears to be a homodimer or a tetramer. Each mole of receptor monomer bound 1.2 mol of the monovalent ligands, mannose 6-phosphate and pentamannose phosphate with Kd values of 8 X 10(-6) M and 6 X 10(-6) M, respectively and 0.5 mol of the divalent ligand, a high mannose oligosaccharide with two phosphomonoesters, with a Kd of 2 X 10(-7) M. When Mn2+ was replaced by EDTA in the dialysis buffer, the Kd for pentamannose phosphate was 2.5 X 10(-5) M. By measuring the affinity of the cation-dependent and cation-independent mannose 6-phosphate receptors for a variety of mannose 6-phosphate analogs, we conclude that the 6-phosphate and the 2-hydroxyl of mannose 6-phosphate each contribute approximately 4-5 kcal/mol of Gibb's free energy to the binding reaction. Neither receptor appears to interact substantially with the anomeric oxygen of mannose 6-phosphate. The receptors differ in that the cation-dependent receptor displays no detectable affinity for N-acetylglucosamine 1'-(alpha-D-methylmannopyranose 6-monophosphate) whereas this ligand binds to the cation-independent receptor with a poor, but readily measurable Kd of about 0.1 mM. The spacing of the mannose 6-phosphate-binding sites relative to each other may also differ for the two receptors.  相似文献   

11.
The binding of 125I-labeled human prothrombin to native and papain-treated tissue thromboplastin in the presence of CaCl2 or EDTA was studied. The Scatchard plots for the protein binding suggest the presence at thromboplastin surface of two types of binding sites, high affinity [Kd(app) = 7.4.10(-8) M] and moderate affinity [Kd(app) = 7.9.10(-5) M]. The removal of Ca2+ did not influence the Kd (values for these) sites but markedly reduced their number. Proteolysis by papain caused a decrease in the affinity of high affinity sites without affecting the Kd values of the moderate affinity sites yet caused a proportional increase in the number of both high and moderate affinity sites in the presence of Ca2+. At low prothrombin concentrations a positive cooperativity of protein binding at high affinity sites in the presence of Ca2+ was observed.  相似文献   

12.
The equilibrium binding of ([125I]ceruloplasmin) ([125I]CP) to a specific receptor of human erythrocytes was investigated. It was shown that reaching the binding equilibrium is a slow process. A strong dependence of binding on Ca2+ concentration (from 0.1 to 1 mM) was revealed; the optimal values were achieved at millimolar concentrations of Ca2+.Mg2+ do not affect the binding of [125I]CP. Under conditions of optimal binding (0.01 M Tris-HCl buffer pH 7.4 containing 158 mM NaCl and 1 mM Ca2+, 4 degrees C), the values of constants for [125I]CP binding to intact erythrocytes (Kd = 1.0 nm) and to membrane fragments (Kd = 0.8 nM) as well as the number of binding sites (16.3 X 10(-15) mol per 40,000,000 erythrocytes) were determined. No ceruloplasmin transport across the erythrocyte membrane was observed. This finding and the similarity of Kd values for ceruloplasmin binding to membrane fragments and to intact erythrocytes indicate that the effect of ceruloplasmin on human erythrocytes is due to the protein molecule interaction with membrane receptors.  相似文献   

13.
alpha 2-Macroglobulin (alpha 2M) is one of the major cadmium-binding proteins of human plasma. As determined with equilibrium dialysis, alpha 2M bound 4.6 (+/- 0.7) mol Cd2+ per mol protein with an apparent dissociation constant of (9.6 (+/- 5.0] X 10(-7) M. Methylamine-modified alpha 2M (alpha 2M-Me) had a similar affinity for Cd2+ (Kd,app = 5.3 X 10(-7) M), but fewer binding sites. Cadmium produced a small increase in the amidolytic activity of trypsin in the presence of alpha 2M and soybean trypsin inhibitor. Using the binding parameters determined from the equilibrium dialysis studies, the Cd2+ concentration which produced a half-maximal increase in amidolytic activity corresponded to saturation of all Cd2+-binding sites in one-half of the alpha 2M molecules. From these results, a model is proposed in which one Cd2+-binding site is present in each of the four polypeptide chains which compose alpha 2M.  相似文献   

14.
Using a new methodological approach based on the binding of 125I-labeled troponin C to troponins I and T immobilized on polyvinylchloride, the Ca2+-dependent interaction of troponin components was investigated. In the absence of Ca2+, two types of sites of troponin C--troponin T interaction were revealed (Kd = 3.6.10(-8) M and 5.10(-7) M). It was found that Ca2+ induced the formation of a troponin I--troponin C complex which was resistant to 5 M urea (Kd = 4.10(-8) M). In the absence of Ca2+, the binary troponin T--troponin C complex also revealed two types of interaction sites (Kd = 7.1.10(-8) M and 2.10(-7) M); however, in the presence of Ca2+ only high affinity sites whose number increased almost 2-fold were revealed. The events that may take place in the whole troponin complex during Ca2+ binding by troponin C are discussed.  相似文献   

15.
Phospholipid-binding properties of bovine factor V and factor Va.   总被引:5,自引:0,他引:5  
J W Bloom  M E Nesheim  K G Mann 《Biochemistry》1979,18(20):4419-4425
Factor V and factor Va binding to single bilayer phospholipid vesicles was investigated by light-scattering intensity measurements. This technique allows the measurement of free and phospholipid-bound protein concentrations from which equilibrium constants can be obtained. As controls, the Ca2+-dependent phospholipid binding of prothrombin and factor X were also studied. The average values obtained for the dissociation constants (Kd) and lipid to protein ratio at saturation, moles/mole (n), for prothrombin (Kd = 2.3 X 10(-6) M, n = 104) and factor X (Kd = 2.5 X 10(-6) M, n = 46) binding to vesicles containing 25% Folch fraction III and 75% phosphatidylcholine in the presence of 2 mM Ca2+ were in agreement with those reported in the literature. The average factor V and factor Va values for the dissociation constants and lipid to protein ratio at saturation (moles/mole) were Kd = 7.2 X 10(-8) M and n = 270 for factor V and Kd = 4.4 X 10(-7) M and n = 76 for factor Va. In contrast to prothrombin and factor X, factor V and factor Va demonstrated Ca2+-independent lipid binding. In addition, the number of factor V and factor Va molecules bound per vesicle was found to be dependent both on the phosphatidylserine content of the vesicle and the ionic strength of the buffer.  相似文献   

16.
Using transferrin-transferrin receptor binding as a model of ligand-receptor binding, we have developed a new and simple binding assay for the solubilized receptor. Solubilized membrane proteins containing transferrin receptor were immobilized by covalent binding to beads having chemical reactive epoxide groups, and then 125I-labeled transferrin was added to the beads. Dose-dependent, ligand-specific, and saturable binding of 125I-labeled transferrin to the immobilized membrane proteins were demonstrated and a Scatchard analysis derived affinity of Kd = 1.8 X 10(-9) M was obtained. These results indicate that the immobilization of receptors onto beads may be useful in a simple binding assay of the solubilized receptor.  相似文献   

17.
The effect of aurovertin on the binding parameters of ADP and ATP to native F1 from beef heart mitochondria in the presence of EDTA has been explored. Three exchangeable sites per F1 were titrated by ADP and ATP in the absence or presence of aurovertin. Curvilinear Scatchard plots for the binding of both ADP and ATP were obtained in the absence of aurovertin, indicating one high affinity site (Kd for ADP = 0.6-0.8 microM; Kd for ATP = 0.3-0.5 microM) and two lower affinity sites (Kd for ADP = 8-10 microM; Kd for ATP = 7-10 microM). With a saturating concentration of aurovertin capable of filling the three beta subunits of F1, the curvilinearity of the Scatchard plots was decreased for ATP binding and abolished for ADP binding, indicating homogeneity of ADP binding sites in the F1-aurovertin complex (Kd for ADP = 2 microM). When only the high affinity aurovertin site was occupied, maximal enhancement of the fluorescence of the F1-aurovertin complex was attained with 1 mol of ADP bound per mol of F1 and maximal quenching for 1 mol of ATP bound per mol of F1. When the F1-aurovertin complex was incubated with [3H]ADP followed by [14C]ATP, full fluorescence quenching was attained when ATP had displaced the previously bound ADP. In the case of the isolated beta subunit, both ADP and ATP enhanced the fluorescence of the beta subunit-aurovertin complex. The Kd values for ADP and ATP in the presence of EDTA were 0.6 mM and 3.7 mM, respectively; MgCl2 decreased the Kd values to 0.1 mM for both ADP and ATP. It is postulated that native F1 possesses three equivalent interacting nucleotide binding sites and exists in two conformations which are in equilibrium and recognize either ATP (T conformation) or ADP (D conformation). The negative interactions between the nucleotide binding sites of F1 are strongest in the D conformation. Upon addition of aurovertin, the site-site cooperativity between the beta subunits of F1 is decreased or even abolished.  相似文献   

18.
A 36-kDa protein, which is a component of the membrane skeleton, has been shown to co-localize with spectrin in addition to serving as a major substrate for tyrosine-protein kinases. This protein, which will be referred to as calpactin (for calcium-dependent phospholipid and actin binding protein), was isolated from bovine intestine as the complex with a 10-kilodalton light chain and the Ca2+ binding was analyzed by equilibrium dialysis with 45Ca2+ in the presence or absence of phospholipid. Although Ca2+ binding by calpactin alone was negligible at micromolar free Ca2+, it was greatly enhanced by liposomes containing phosphatidylserine or phosphatidylinositol. A proteolytic derivative of calpactin, termed the "core," which has lost the site of association with the light chain in addition to the site of tyrosine phosphorylation by pp60src, was also found to contain this high affinity phospholipid enhanced Ca2+-binding activity. Scatchard plots reveal that each calpactin monomer or core polypeptide bound 2 Ca2+ ions with a Kd of 4.5 X 10(-6) M at 200 micrograms of phosphatidylserine/ml. Liposome binding experiments confirmed that calpactin as a complex with light chain as well as calpactin monomer or the 33-kDa core interact with phosphatidylserine liposomes in a Ca2+-dependent manner.  相似文献   

19.
The substitution of trivalent lanthanide ions for Ca(II) in the Ca(II)-DEPENDENT ACTIVATION OF BOVINE Factor X by the coagulant protein of Russell's viper venom was studied at pH 6.8. Factor X contains two high affinity metal binding sites which bind Gd(III), Sm(III), and Yb(III) with a Kd of about 4 X 10-7 M and four to six lower affinity metal binding sites which bind Gd(III), Sm(III) with a Kd of about 1.5 X 10-5M. In comparison, 1 mol of Factor X binds 2 mol of Ca(II) with a Kd of 3 X 10-4M and weakly binds many additional Ca(II) ions. No binding of Gd(III) to the venom protein was observed. Dy(III), Yb(III), Tb(III), Gd(III), Eu(III), La(III), AND Nd(III) cannot substitute for Ca(II) in the Ca(II)-dependent activation of Factor X by the venom protein at pH 6.8. Kinetic data consistent with the models of competitive inhibition of Ca(II) by Nd(III) yielded a Ki of 1 to 4 X 10-6M. The substitution of lanthanide ions for Ca(II) to promote protein complex formation of Factor X-metal-venom protein without the activation of Factor X facilitated the purification of the coagulant protein from crude venom by affinity chromatography. Using a column containing Factor X covalently bound to agarose which was equilibrated in 10 mM Nd(III), Tb(III), Gd(III), or La(III), the coagulant protein was purified 10-fold in 40% yield from crude venom and migrated as a single band on gel electrophoresis in sodium dodecyl sulfate. These data suggest that lanthanide ions complete with Ca(II) for the metal binding sites of Factor X and facilitate the formation of a nonproductive ternary complex of venom protein-Factor X-metal. Tb(III) fluorescence, with emission maxima at 490 and 545 nm, is enhanced 10,000-fold in the presence of Factor X. The study of the participation of an energy donor intrinsic to Factor X in energy transfer to Tb(III) may be useful in the characterization of the metal binding sites of Factor X.  相似文献   

20.
125I-Hemoglobin.haptoglobin injected intravenously into rats was incorporated into liver parenchymal cells as evidenced by a cell separation technique. A mixture of freshly isolated liver parenchymal and nonparenchymal cells failed to internalize and degrade the 125I-hemoglobin.haptoglobin added, although it retained the ability to bind the molecule. The liver parenchymal cells in primary culture also lacked the ability to degrade 125I-hemoglobin.haptoglobin, although they bound the molecule more extensively as compared with the freshly isolated liver cells. It was confirmed that the 125I-hemoglobin.haptoglobin which was bound to the freshly isolated liver parenchymal cells localized on the outer surface of liver plasma membranes. Scatchard plots revealed the existence of two binding sites for 125I-hemoglobin-haptoglobin on the isolated liver plasma membrane: an apparent high affinity binding site (Kd = 1.3 X 10(-7) M) and an apparent low affinity binding site (Kd = 4.0 X 10(-6) M) at 37 degrees C. In contrast, freshly isolated liver parenchymal cells had only an apparent low affinity binding site (Kd = 1.4 X 10(-6) M) at 37 degrees C. Impairment of the apparent high affinity binding site during the isolation procedure with collagenase seemed to be related to loss of the ability to internalize and degrade the 125I-hemoglobin.haptoglobin molecules into the freshly isolated liver parenchymal cells or liver parenchymal cells in primary culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号