首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Addition of NADPH to osmotically lysed spinach chloroplasts results in a reduction of the primary acceptor (Q) of Photosystem II. This reduction of Q reaches a maximum of 50% in chloroplasts maintained under weak illumination and requires added ferredoxin and Mg2+. The reaction is inhibited by (i) an antibody to ferredoxin-NADP+ reductase (EC 1.6.7.1), (ii) treatment of chloroplasts with N-ethylmaleimide in the presence of NADPH, (iii) disulfodisalicylidenepropanediamine, (iv) antimycin, and (v) acceptors of non-cyclic electron transport. Uncouplers of phosphorylation do not affect NADPH-driven reduction of Q.It is proposed that electron flow from NADPH to Q may occur in the dark by a pathway utilising portions of the normal cyclic and non-cyclic electron carrier sequences. The possible in vivo role for such a pathway in redox poising of cyclic electron transport and hence in controlling the ATP/NADPH supply ratio is discussed.  相似文献   

2.
PSI cyclic electron transport is essential for photosynthesis and photoprotection. In higher plants, the antimycin A-sensitive pathway is the main route of electrons in PSI cyclic electron transport. Although a small thylakoid protein, PGR5 (PROTON GRADIENT REGULATION 5), is essential for this pathway, its function is still unclear, and there are numerous debates on the rate of electron transport in vivo and its regulation. To assess how PGR5-dependent PSI cyclic electron transport is regulated in vivo, we characterized its activity in ruptured chloroplasts isolated from Arabidopsis thaliana. The activity of ferredoxin (Fd)-dependent plastoquinone (PQ) reduction in the dark is impaired in the pgr5 mutant. Alkalinization of the reaction medium enhanced the activity of Fd-dependent PQ reduction in the wild type. Even weak actinic light (AL) illumination also markedly activated PGR5-dependent PSI cyclic electron transport in ruptured chloroplasts. Even in the presence of linear electron transport [11 mumol O2 (mg Chl)(-1) h(-1)], PGR5-dependent PSI electron transport was detected as a difference in Chl fluorescence levels in ruptured chloroplasts. In the wild type, PGR5-dependent PSI cyclic electron transport competed with NADP+ photoreduction. These results suggest that the rate of PGR5-dependent PSI cyclic electron transport is high enough to balance the production ratio of ATP and NADPH during steady-state photosynthesis, consistently with the pgr5 mutant phenotype. Our results also suggest that the activity of PGR5-dependent PSI cyclic electron transport is regulated by the redox state of the NADPH pool.  相似文献   

3.
Richard Malkin  Richard K. Chain 《BBA》1980,591(2):381-390
Light-induced redox changes of plastocyanin, the Rieske iron-sulfur center, and P-700 have been studied in situ in spinach chloroplasts. Plastocyanin and the Rieske center behaved in an analogous manner in that their steady states were fully oxidized in the light in the presence or absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea when an electron acceptor is present. After illumination under conditions of non-cyclic electron transfer from water to an electron acceptor, followed by a short dark period, the steady state of both shifted to a more reduced level. A 3-(3,4-dichlorophenyl)-1,1-dimethylurea-sensitive photoreduction of the Rieske center was observed in ferricyanide-washed chloroplast fragments. With reduced ferredoxin as electron donor, it was possible to demonstrate a reduction in the dark of these electron carriers and of P-700; this reduction was insensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea but was inhibited by antimycin A. These findings are discussed in relation to a function for these electron carriers in the cyclic electron transport pathway in chloroplasts and to their function in the non-cyclic electron transport pathway.  相似文献   

4.
S.G. Reeves  D.O. Hall 《BBA》1973,314(1):66-78
1. The stoichiometry of non-cyclic photophosphorylation and electron transport in isolated chloroplasts has been re-investigated. Variations in the isolation and assay techniques were studied in detail in order to obtain optimum conditions necessary for reproducibly higher ADP/O (equivalent to ATP/2e?) and photosynthetic control ratios.2. Studies which we carried out on the possible contribution of cyclic phosphorylation to non-cyclic phosphorylation suggested that not more than 10% of the total phosphorylation found could be due to cyclic phosphorylation.3. Photosynthetic control, and the uncoupling of electron transport in the presence of NH4Cl, were demonstrated using oxidised diaminodurene as the electron acceptor. A halving of the ADP/O ratio was found, suggesting that electrons were being accepted between two sites of energy conservation, one of which is associated with Photosystem I and the other associated with Photosystem II.4. ATP was shown to inhibit State 2 and State 3 of electron transport, but not State 4 electron transport or the overall ADP/O ratio, thus confirming its activity as an energy transfer inhibitor. It is suggested that part of the non-phosphorylating electron transport rate (State 2) which is not inhibited by ATP is incapable of being coupled to subsequent phosphorylation triggered by the addition of ADP (State 3). If the ATP-insensitive State 2 electron transport is deducted from the State 3 electron transport when calculating the ADP/O ratio, a value of 2.0 is obtained.5. The experiments reported demonstrate that there are two sites of energy conservation in the non-cyclic electron transfer pathway: one associated with Photosystem II and the other with Photosystem I. Thus, non-cyclic photophosphorylation can probably produce sufficient ATP and NADPH “in vivo” to allow CO2 fixation to proceed.  相似文献   

5.
Oxygen ist reduced by the electron transport chain of chloroplasts during CO2 reduction. The rate of electron flow to oxygen is low. Since antimycin A inhibited CO2-dependent oxygen evolution, it is concluded that cyclic photophosphorylation contributes ATP to photosynthesis in chloroplasts which cannot satisfy the ATP requirement of CO2 reduction by electron flow to NADP and to oxygen. Inhibition of photosynthesis by antimycin A was more significant at high than at low light intensities suggesting that cyclic photophosphorylation contributes to photosynthesis particularly at high intensities. Cyclic electron flow in intact chloroplasts is under the control of electron acceptors. At low light intensities or under far-red illumination it is decreased by substrates which accept electrons from photosystem I such as oxaloacetate, nitrite or oxygen. Obviously, the cyclic electron transport pathway is sensitive to electron drainage. In the absence of electron acceptors, cyclic electron flow is supported by far-red illumination and inhibited by red light. The inhibition by light exciting photosystem II demonstrated that the cyclic electron transport pathway is accessible to electrons from photosystem II. Inhibition can be relieved by oxygen which appears to prevent over-reduction of electron carriers of the cyclic pathway and thus has an important regulatory function. The data show that cyclic electron transport is under delicate redox control. Inhibition is caused both by excessive oxidation and by over-reduction of electron carriers of the pathway.  相似文献   

6.
The effects of two molecular forms of water-soluble ferredoxin (Fd I and Fd II) on the kinetics of electron transport in bean chloroplasts (class B) were studied. The light-induced redox transitions of the photosystem I reaction center P700 were measured by the intensity of the EPR signal I produced by P700+. Both forms of ferredoxin, Fd I and Fd II, when added to the chloroplasts in catalytic amounts, stimulate the light-induced electron transfer from P700 to NADP+. Nevertheless, Fd I is a better mediator of the back reactions from NADPH to P700+. This electron transfer pathway is sensitive to the cyclic electron transport inhibitor, antimycin A, and to DCMU inhibitor of electron transport between photosystem II and plastoquinone. It may be concluded that the two molecular forms of ferredoxin, Fd I and Fd II, differ in their ability to catalyze cyclic electron transport in photosystem I. The role of Fd I and Fd II in regulation of electron transport at the acceptor site of photosystem I is discussed.  相似文献   

7.
The activity of photosystems one and two (PS I and PS II) wasmeasured in chloroplasts isolated from the primary leaves ofPhaseolus vulgaris. During foliar senescence, the rates of electrontransport through PS I and PS II declined by approximately 25%and 33% respectively. These losses of activity could not accountfor the decrease of 80% in the rate of coupled, non-cyclic electrontransport during senescence. It is therefore suggested thatan impairment of electron flow between the photosystems limitednon-cyclic electron transport in chloroplasts from older leaves.In this study the activity of PS II was measured using oxidizedp-phenylenediamine as the electron acceptor, and trifluralinas an inhibitor of electron transport between PS II and PS I.In chloroplasts from young leaves the reduction of ferricyanidewas a measure of non-cyclic electron transport, but in preparationsfrom older leaves ferricyanide received a large proportion ofelectrons from PS II.  相似文献   

8.
The spectroscopic measurements of the slow phase of the electrochromic effect and the redox kinetics of cytochrome b6 and f provide strong evidence that a Q cycle operates in chloroplasts under conditions of non-cyclic electron transport. The effect of HQNO and DBMIB on the extent and kinetics of these light-induced changes places several constraints on the mechanism of quinol oxidation by the cyt. b/f—FeS complex: for each electron removed from the cyt. b/f—FeS complex by P700 an additional charge is transferred across the membrane; the cyclic pathway of electrons involved in quinol oxidation by the cyt. b/f—FeS complex includes at least one of the two b6 cytochromes; the electrogenic step associated with quinol oxidation is subsequent to the reduction of at least one cytochrome b6 quinol oxidation may proceed in a stepwise manner, with the first electron going to cytochrome b6 and the second electron going to the FeS center and cytochrome f.  相似文献   

9.
In this work, we studied theoretically the effects of diffusion restrictions and topological factors that could influence the efficiency of energy coupling in the heterogeneous lamellar system of higher plant chloroplasts. Our computations are based on a mathematical model for electron and proton transport in chloroplasts coupled to ATP synthesis in chloroplasts that takes into account the nonuniform distribution of electron transport and ATP synthase complexes in the thylakoids of grana and stroma. Numerical experiments allowed the lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids to be simulated under different metabolic conditions (in the state of photosynthetic control and under conditions of photophosphorylation). This model also provided an opportunity to simulate the effects of steric constraints (the extent of appression of thylakoids in grana) on the rates of non-cyclic electron transport and ATP synthesis. This model demonstrated that there might be two mechanisms of regulation of electron and proton transport in chloroplasts: 1) slowing down of non-cyclic electron transport due to a decrease in the intra-thylakoid pH, and 2) retardation of plastoquinone reduction due to slow diffusion of protons inside the narrow gap between the thylakoids of grana. Numerical experiments for model systems that differ with respect to the arrangement of thylakoids in grana allowed the effects of osmolarity on the photophosphorylation rate in chloroplasts to be explained.  相似文献   

10.
By an improved isolation procedure chloroplasts could be obtained from the alga Bumilleriopsis filiformis (Xanthophyceae) which exhibited high electron transport rates tightly coupled to ATP formation. Uncouplers both stimulate electron transport and inhibit photophosphorylation. These chloroplasts retain almost all soluble cytochrome c-553 besides a membrane-bound cytochrome c-554.5 (=f-554.5). Sonification or iron deficiency removed the soluble cytochrome only with a concurrent decrease of electron transport from water to methyl viologen or to NADP and decreased non-cyclic and cyclic photophosphorylation. However, photosynthetic control and the P/2e ratios remain unaltered. In Bumilleriopsis, which apparently has no plastocyanin, the soluble cytochrome c-553 seemingly links electron transport between the bound cytochrome c and P-700.  相似文献   

11.
Oxygen reduction by isolated chloroplast lamellae from spinach, yielding the superoxide free radical in the light, is stimulated by a fluorescent factor (“compound No. 4”, isolated from Euglena gracilis strain Z) in a ferredoxin-dependent reaction. This reaction is not observed with Euglena chloroplasts, although there is a stimulation by compound No. 4 of ferredoxin-dependent oxygen reduction at the expense of NADPH + H+ as electron donor in the dark. Evidence is provided that in Euglena chloroplasts in the absence of NADP as electron acceptor a cyclic electron transport is predominating, including photosystem I, ferredoxin, NADP-ferredoxin reductase, and cytochrome552. Isolated spinach chloroplast lamellae show a similar “cyclic” electron transport after treatment with digitonin, depending on the addition of the above cofactors. This result might indicate that Euglena chloroplast lamellae show this cyclic electron transport only as an artifact due to the isolation procedure. The results furthermore indicate that the pteridine-like, fluorescent compound No. 4 is not active as the primary electron acceptor of photosystem I; it may however be involved in oxygen activation by Euglena gracilis chloroplasts.  相似文献   

12.
Jin  Ming-Xian  Mi  Hualing 《Photosynthetica》2002,40(2):161-164
Kinetics of non-photochemical reduction of the photosynthetic intersystem electron transport chain by exogenous NADPH was examined in osmotically lysed spinach chloroplasts by chlorophyll (Chl) fluorescence measurements under anaerobic condition. Upon the addition of NADPH, the apparent F0 increased sigmoidally, and the value of the maximal slope was calculated to give the reduction rate of plastoquinone (PQ) pool. Application of 5 µM antimycin A lowered significantly both the ceiling and the rate of the NADPH-induced Chl fluorescence increase, while the suppressive effect of 10 µM rotenone was slighter. This indicated that dark reduction of the PQ pool by NADPH in spinach chloroplasts under O2-limitation condition could be attributed mainly to the pathway catalysed sequentially by ferredoxin-NADP+ oxidoreductase (FNR) and ferredoxin-plastoquinone reductase (FQR), rather than that mediated by NAD(P)H dehydro- genase (NDH).  相似文献   

13.
Pyridine nucleotide levels were measured in intact spinach chloroplasts. The NADPH/NADP ratio was close to unity in darkened chloroplasts. On illumination, chloroplast NADP levels decreased rapidly. The decrease was more prominent at low than at high light intensities. In the presence of bicarbonate, NADP subsequently increased to reach a steady-state level. The kinetics of the increase were related in general, but not in detail, to the lag phase of photosynthesis. In the steady state, chloroplast NADP was sometimes, particularly during photosynthesis at high light intensities, less reduced in the light than in the dark. In the dark-light transition, phosphoglycerate reduction is driven by increases in the ratios NADPH/NADP and ATP/ADP. When photosynthesis accelerates after the initial lag phase, the NADPH/NADP ratio decreases and a high ratio of phosphoglycerate to triose phosphate becomes an important factor in driving carbon reduction. Under photosynthetic flux conditions, the redox state of the chloroplast NADP system appeared to be governed largely by the chloroplast ratio of phosphoglycerate to dihydroxyacetone phosphate and by the phosphorylation potential [ATP]/[ADP] [Pi]. The inhibitor of cyclic electron transport, antimycin A, increased reduction of the chloroplast NADP system. Even when reduction was almost complete in the presence of 5 μM antimycin A, photosynthesis was still significant at low light intensities. Electrons appeared to be effectively distributed between the cyclic electron-transport pathway and the noncyclic route to NADP at NADPH/NADP ratios as low as about 1. When bicarbonate was absent, the NADP system remained largely reduced in the light. The energy-transfer inhibitor, Dio-9, and uncouplers and agents which interfered with pH regulation of the Calvin cycle increased reduction of the NADP system while decreasing photosynthesis.  相似文献   

14.
Patterns of electron transfer in isolated mesophyll chloroplasts of maize (Zea mays L.) were studied in the presence of the physiological substrates, oxaloacetate, 3-phosphoglycerate and pyruvate. Flash-induced absorbance changes due to the electrochromic pigment band-shift (P-518) were used to estimate relative electron flow rates through the cyclic and non-cyclic pathways of electron transport. Further information on the redox state of electron carriers and the activity of coupled electron flow was obtained from measurements of fluorescence induction and of actinic-light-induced fluorescence changes. The results demonstrate the importance of correct redox poising for optimal rates of photosynthesis and are discussed in relation to the operation and regulation of photosynthesis in the C4 system.  相似文献   

15.
M. Miginiac-Maslow 《BBA》1971,234(3):353-359
Whole spinach chloroplasts were able to perform photophosphorylation under nitrogen without the addition of any redox cofactor. This “endogenous” phosphorylation was totally insensitive to 3-(p-chlorophenyl)-1,1-dimethylurea. After osmotic shock endogenous ATP formation decreased but the addition of 3-(p-chlorophenyl)-1,1-dimethylurea stimulated it.

Under a stream of nitrogen, whole chloroplasts reduced NADP+ after an osmotic shock, in the absence of added ferredoxin. The resulting ATP/NADPH ratios were high (approx. 2 or 3). They decreased to 1 in the presence of either exogenous ferredoxin, 3-(p-chlorophenyl)-1,1-dimethylurea or limiting light: i.e. high ATP/NADPH ratios were observed only when the terminal step of NADP+ reduction was limiting.

The endogenous anaerobic phosphorylation was inhibited by antimycin A to the same extent as the O2-dependent endogenous non-cyclic phosphorylation.

A direct inhibition of electron transport by antimycin A has never been observed.  相似文献   


16.
Since coupling between phosphorylation and electron transport cannot be measured directly in intact chloroplasts capable of high rates of photosynthesis, attempts were made to determine ATP/2 e ratios from the quamdum requirements of glycerate and phosphoglycerate reduction and from the extent of oxidation of added NADH via the malate shuttle during reduction of phosphoglycerate in light. These different approaches gave similar results. The quantum requirement of glycerate reduction, which needs 2 molecules of ATP per molecule of NADPH oxidized was found to be pH-dependent. 9-11 quanta were required at pH 7.6, and only about 6 at pH 7.0. The quantum requirement of phosphoglycerate reduction, which consumes ATP and NADPH in a 1/1 ratio, was about 4 both at pH 7.6 ant at 7.0. ATP/2 e ratios calculated from the quantum requirements and the extent of phosphoglycerate accumulation during glycerate reduction were usually between 1.2 and 1.4, occasionally higher, but they never approached 2. Although the chloroplast envelope is impermeable to pyridine nucleotides, illuminated chlrooplasts reduced added NAD via the malate shuttle in the absence of electron acceptors and also during the reduction of glycerate or CO2. When phosphoglycerate was added as the substrate, reduction of pyridine-nucleotides was replaced by oxidation and hydrogen was shuttled into the chloroplasts to be used for phosphoglycerate reduction even under light which was rate-limiting for reduction. This indicated formation of more ATP than NADPH by the electron transport chain. From the rates of oxidation of external NADH and of phosphoglycerate reduction at very low light intensities ATP/2e ratios were calculated to be between 1.1 and 1.4. Fully coupled chloroplasts reduced oxaloacetate in the light at rates reaching 80 and in some instances 130 mumoles times mg-1 chlorophyll times h-1 even though ATP is not consumed in this reaction. The energy transfer inhibitor phlorizin did not significantly suppress this reduction at concentrations which completely inhibited photosynthesis. Uncouplers stimulated oxaloacetate reduction by factors ranging from 1.5 to more than 10. Chloroplasts showing little uncoupler-induced stimulation of oxaloacetate reduction were highly active in photoreducing CO2. Measurements of light intensity dependence of quantum requirements for oxaloacetate reduction gave no indication for the existence of uncoupled or basal electron flow in intact chloroplasts. Rather reduction is brought about by loosely coupled electron transport. It is concluded that coupling of phosphorylation to electron transport in intact chloroplasts is flexible, not tight. Calculated ATP/2e ratios were obtained under con a decreENG  相似文献   

17.

1. 1. Small particles prepared from spinach chloroplasts after treatment with digitonin, exhibited Photosystem I reactions, including phosphorylation, at rates as high as those in chloroplasts, whereas electron flow from water to NADP+ or ferricyanide through Photosystem II was completely lost. Mediators of cyclic electron flow, such as pyocyanine, or N-methylphenazonium methosulfate in red light, had to be reduced to support photophosphorylation.Diaminodurene at high concentrations catalyzed cyclic phosphorylation under anaerobic conditions without addition of a reductant. In fact, addition of ascorbate gave rise to a marked inhibition which was released by addition of a suitable electron acceptor such as methylviologen.

2. 2. Under aerobic conditions a low O2 uptake, observed in the presence of diaminodurene, was stimulated several-fold upon addition of methylviologen and was stimulated again several-fold on further addition of ascorbate. The rate of phosphorylation, however, remained the same. The low P/2e ratio obtained under these conditions was not decreased at lower light intensities.

3. 3. These findings suggest a phosphorylation site associated with cyclic electron flow through Photosystem I without participation of the electron carriers of Photosystem II. A non-cyclic electron flow to O2 can be induced in this system by addition of methylviologen which effectively competes with the electron acceptors of cyclic flow. This non-cyclic electron flow still involves the same phosphorylation site. A scheme for electron transport and for the location of phosphorylation sites in chloroplasts is proposed.

Abbreviations: PMS, N-methylphenazonium methosulfate; DCIP, dichlorophenolindophenol; DCMU, dichlorophenyl-1,1-dimethylurea; Tricine, tris(hydroxymethyl)methylglycine  相似文献   


18.
Levels of ferricyanide reduction, cyclic and non-cyclic photophosphorylation were measured in chloroplasts of two cultivars of pea and a comparison of their P/2e+ ratios were made. No differences were observed in cyclic photophosphorylation or ferricyanide reduction but non-cyclic photophosphorylation was lower in chloroplasts from the dwarf than the normal cultivar. Thus the P/2e+ ratio of the dwarf was lower than the normal. Dwarf seedlings treated with gibberellic acid (GA3) had similar rates of cyclic photophosphorylation as the untreated dwarf but non-cyclic photophosphorylation was lower as was ferricyanide reduction. This resulted in P/2e+ ratios that were higher in chloroplasts from the GA3 treated dwarf seedlings than the untreated, and were the same as the untreated normal. Addition of GA3 directly to the chloroplasts did not alter the activity in any way. Hence gibberellins do not directly affect changes in chloroplastic activity but may conceivably be involved in a feed-back control system.  相似文献   

19.
Stimulation of Photoreactions of Isolated Chloroplasts by Serum Albumin   总被引:6,自引:4,他引:2  
Serum albumin was shown to stimulate markedly various photoreactions in isolated bean and lettuce chloroplasts. The maximal effect was obtained when this compound was present during the homogenization step and continuously in the chloroplast preparation. The "basal" electron transport was enhanced using various acceptors and stimulation was obtained also in the presence of uncouplers. The quantum requirement for ferricyanide reduction was appreciably reduced. Serum albumin increased the rate of cyclic phosphorylation and the ratio of P/e(2) in non-cyclic phosphorylation. The increase in phosphorylation is supposedly due to inhibition of the rate of decay of the high energy non-phosphorylated intermediate, X(E).It is postulated that serum albumin affects chloroplast photoreactions by binding endogenously released unsaturated fatty acids.  相似文献   

20.
The energy-dependent processes coupled to electron transport were studied in isolated pea chloroplasts treated with low concentrations (1-5 mM) of glutaraldehyde (GA) in the dark and in the light sufficient to cause energization of the membrane. After GA treatment the chloroplasts exhibited a strong suppression of cyclic and non-cyclic phosphorylation, coupled (+ADP+Pi) electron transport and diminution of the light-activated Mg2+-ATPase activity. The rate of basal electron transport was unaffected. The GA-treated chloroplasts were found to retain the capacity to form the osmotic component of the transmembrane potential. These data and the results of the effect of florizine and ATP on electron transport suggest that the effect of GA on energy transduction processes associated with photophosphorylation may consist in its action on reversible H+-ATPase. In light-adapted samples treated with GA the data characterizing the formation of a high energy state (rate of photophosphorylation, steady-state level of photo-induced quenching of atebrin fluorescence and its dark recovery; photo-induced absorbance changes at 520 nm; rate of the slow phase of delayed fluorescence increment) appear to be changed to a greater extent as compared to the dark-adapted samples. The observed changes may arise from a greater conductivity of thylakoid membranes due to fixation of the H+-ATPase proton channel in the "open" state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号