首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The association of “pathogenesis-related” (PR) proteins with protection from superinfection, systemic acquired resistance and production of localized necrotic lesions was examined with a system using tobacco mosaic virus (TMV) and Nicotiana sylvestris. Leaves of N. sylvestris with a mosaic from earlier inoculation with a systemically infecting strain of TMV (TMV-C) and control plants were challenged with a necrotizing strain of TMV (TMV-P), RNA of TMV-P and turnip mosaic virus (TuMV). TMV-P virions produced localized necrotic lesions only in the dark green areas of the mosaic of TMV-C infected plants. Both RNA of TMV-P and TuMV produced localized necrotic lesions in both light green and dark green areas of the mosaic of TMV-C infected plants. All three challenge inocula produced localized necrotic lesions in previously uninoculated plants. Six days after challenge inoculation proteins were extracted from separated dark green and light green mosaic leaf tissue, and leaf material from control plants. Proteins were separated by electrophoresis in a 5 % polyacrylamide spacer gel and 10 % polyacrylamide running gel. PR proteins were found in tissue where localized necrotic lesions were produced as a result of challenge inoculation, but not in tissue that was not superinfected. PR proteins were not found in light green or dark green mosaic leaf tissue as a result of TMV-C inoculation. No PR proteins were evident in protein extracts from light green tissue challenged with TMV-P, although PR proteins were produced in dark green tissue, where necrosis occurred, from the same leaves. Systemic acquired resistance (reduction in size of lesions formed by a challenge inoculation) to TuMV or RNA of TMV-P and PR protein concentration was measured at various times in light green areas of mosaic leaves where dark green areas of the mosaic leaves had been inoculated with TMV-P. No quantitative or temporal relationship between the onset of resistance and PR protein production was found. It is concluded that PR proteins are a result of pathogen induced necrosis and not significantly involved in the mechanism(s) of viral induced resistance.  相似文献   

2.
Intercellular spaces are often the first sites invaded by pathogens. In the spaces of tobacco mosaic virus (TMV)-infected and necrotic lesion-forming tobacco (Nicotiana tabacum L.) leaves, we found that an inducer for acidic pathogenesis-related (PR) proteins was accumulated. The induction activity was recovered in gel-filtrated fractions of low molecular mass with a basic nature, into which authentic spermine (Spm) was eluted. We quantified polyamines in the intercellular spaces of the necrotic lesion-forming leaves and found 20-fold higher levels of free Spm than in healthy leaves. Among several polyamines tested, exogenously supplied Spm induced acidic PR-1 gene expression. Immunoblot analysis showed that Spm treatment increased not only acidic PR-1 but also acidic PR-2, PR-3, and PR-5 protein accumulation. Treatment of healthy tobacco leaves with salicylic acid (SA) caused no significant increase in the level of endogenous Spm, and Spm did not increase the level of endogenous SA, suggesting that induction of acidic PR proteins by Spm is independent of SA. The size of TMV-induced local lesions was reduced by Spm treatment. These results indicate that Spm accumulates outside of cells after lesion formation and induces both acidic PR proteins and resistance against TMV via a SA-independent signaling pathway.  相似文献   

3.
The response of tobacco (Nicotiana tabacum L. cv Xanthi-nc) plants with elevated catalase activity was studied after infection by tobacco mosaic virus (TMV). These plants contain the yeast (Saccharomyces cerevisiae) peroxisomal catalase gene CTA1 under the control of the cauliflower mosaic virus 35S promoter. The transgenic lines exhibited 2- to 4-fold higher total in vitro catalase activity than untransformed control plants under normal growth conditions. Cellular localization of the CTA1 protein was established using immunocytochemical analysis. Gold particles were detected mainly inside peroxisomes, whereas no significant labeling was detected in other cellular compartments or in the intercellular space. The physiological state of the transgenic plants was evaluated in respect to growth rate, general appearance, carbohydrate content, and dry weight. No significant differences were recorded in comparison with non-transgenic tobacco plants. The 3,3'-diaminobenzidine-stain method was applied to visualize hydrogen peroxide (H(2)O(2)) in the TMV infected tissue. Presence of H(2)O(2) could be detected around necrotic lesions caused by TMV infection in non-transgenic plants but to a much lesser extent in the CTA1 transgenic plants. In addition, the size of necrotic lesions was significantly bigger in the infected leaves of the transgenic plants. Changes in the distribution of H(2)O(2) and in lesion formation were not reflected by changes in salicylic acid production. In contrast to the local response, the systemic response in upper noninoculated leaves of both CTA1 transgenic and control plants was similar. This suggests that increased cellular catalase activity influences local but not systemic response to TMV infection.  相似文献   

4.
The DT-1G mutant of tobacco mosaic virus (TMV) which has no coat protein was used to study the specific involvement of coat protein in TMV cross protection in N. sylvestris. Leaves of N. sylvestris previously inoculated with the mutantor the common strain of TMV were challenged with either turnip mosaic virus (TuMV) or a strain of TMV (TMV-N). Both TuMV and TMV-N produce necrotic lesions on N. sylvestris. About one-half as many lesions were produced by TuMV and TMV-N on leaves, inoculated with the DT-1G mutant compared with lesions produced by the same inoculum on control leaves. When leaves of N. sylvestris previously inoculated with the common strain of TMV were challenged with either TuMV or TMV-N, TuMV produced about one-half as many lesions as on control leaves whereas TMV-N produced about one-tenth as many lesions as on control leaves. A high level of non-specific resistance was induced by the mutant without coat protein, but it did not specifically protect against TMV.  相似文献   

5.
We studied the effects of salicylic acid (SA) on the plasmodesmal permeability as evaluated by the tobacco mosaic virus (TMV) spreading in tobacco Nicotiana glutinosaleaves, where TMV induces necrotic lesions. When leaves were treated with SA simultaneously with their viral inoculation, SA retarded the development of necrotic lesions and reduced their number. When inoculated leaves were kept on the SA solution at an elevated temperature (31°C) for a short period of time, the size of the necrotic lesions, which developed after leaf transfer to room temperature, was decreased. SA stimulated the formation of rapid callose involved in the control of the plasmodesmal permeability, which was assessed from fluorescence after tissue staining with Aniline Blue. On the basis of these data, we suggest that SA suppressed TMV spreading in the inoculated tobacco leaves by reducing the plasmodesmal permeability.  相似文献   

6.
The response of tobacco (Nicotiana tabacum L. cv. Xanthinc) plants, epigenetically suppressed for phenylalanine ammonia-lyase (PAL) activity, was studied following infection by tobacco mosaic virus (TMV). These plants contain a bean PAL2 transgene in the sense orientation, and have reduced endogenous tobacco PAL mRNA and suppressed production of phenylpropanoid products. Lesions induced by TMV infection of PAL-suppressed plants are markedly different in appearance from those induced on control plants that have lost the bean transgene through segregation, with a reduced deposition of phenofics. However, they develop at the same rate as on control tobacco, and pathogenesis-related (PR) proteins are induced normally upon primary infection. The levels of free salicylic acid (SA) produced in primary inoculated leaves of PAL-suppressed plants are approximately fourfold lower than in control plants after 84 h, and a similar reduction is observed in systemic leaves. PR proteins are not induced in systemic leaves of PAL-suppressed plants, and secondary infection with TMV does not result in the restriction of lesion size and number seen in control plants undergoing systemic acquired resistance (SAR). In grafting experiments between wild-type and PAL-suppressed tobacco, the SAR response can be transmitted from a PAL-suppressed root-stock, but SAR is not observed if the scion is PAL-suppressed. This indicates that, even if SA is the systemic signal for establishment of SAR, the amount of pre-existing phenylpropanoid compounds in systemic leaves, or the ability to synthesize further phenylpropanoids in response to the systemic signal, may be important for the establishment of SAR. Treatment of PAL-suppressed plants with dichloro-isonicotinic acid (INA) induces PR protein expression and SAR against subsequent TMV infection. However, treatment with SA, while inducing PR proteins, only partially restores SAR, further suggesting that de novo synthesis of SA, and/or the presence or synthesis of other phenylpropanoids, is required for expression of resistance in systemic leaves.  相似文献   

7.
A study was performed on the interaction of cucumber mosaic virus (CMV) of potato virus Y (PVY) with tobacco mosaic virus (TMV). Interference was evaluated using tobacco plantsNicotiana tabacum cv. Java responding to CMV and PVY with a systemic infection and to TMV with local necrotic lesions. The decrease in TMV — induced lesion number gave evidence of a decrease in susceptibility caused by the previous infection with CMV or PVY, the decrease of lesion enlargement demonstrated a decreased TMV reproduction in the plants previously infected with CMV or PVY. The interference concerned was incomplete, as evaluated from reproduction of the challenging TMV and from the decrease in susceptibility of the host to TMV brought about by the first infection with CMV or PVY.  相似文献   

8.
Tobacco ringspot virus (TRSV) induces circular, darkbrown local lesions on primary leaves of lima bean (Phaseolus lunatus cv Nemagreen) with a concomitant production of three basic and three acidic pathogenesisrelated (PR) proteins. The three basic proteins are: a 21 kDa protein related serologically to Pinto bean PR-4d and tobacco PR-5 proteins; a 36 kDa glucanase that is related to tobacco PR-2; and, a 31 kDa chitinase related serologically to ethylene-induced bean chitinase. The three acidic 18 kDa lima bean PR proteins are serologically similar and probably are charged isomers of the same protein. The 21 kDa basic protein and the 18 kDa acidic protein accumulated preferentially at the lesion center while the 31 kDa chitinase and TRSV were distributed evenly throughout the necrotic area. In green tissue immediately surrounding a lesion, the amounts of PR proteins were comparable to or lower than those in the necrotic area, and virions were not detected. This mode of spatial distribution indicates that lima bean PR proteins are not involved in TRSV localization, and is consistent with other observations that PR proteins play no direct role in restricting viral spread.  相似文献   

9.
Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) are two closely related viruses in the genus Tobamovirus, but they induce obviously different sizes of necrotic lesions in tobacco plants containing the N gene. Comparison of the symptoms produced by TMV, ToMV and a chimaeric virus (T/OMP), in which the TMV movement protein (MP) gene was replaced by the ToMV MP gene, showed T/OMP caused necrotic lesions that were similar in size to those of ToMV in tobacco plants containing the N gene. The coat protein and MP of the three viruses accumulated in planta with similar levels, and the replication level of TMV and T/OMP in protoplasts also had no difference. Comparison of the activities of defense-related enzymes (PAL, POD and PPO) induced by the three viruses also showed that the variability of enzyme activity induced by T/OMP was similar to that induced by TMV, but different from that induced by ToMV. The results indicate that the size difference of necrotic lesions induced by TMV and ToMV in tobacco plants containing the N gene results from the functional difference of their MP genes.  相似文献   

10.
To investigate the role of salicylic acid (SA) in the hypersensitive response (HR) its accumulation was compromised during different phases of lesion development by differential expression of a salicylate hydroxylase gene (SH-L). Constitutive suppression of SA accumulation was achieved by expression of a gene fusion between the CaMV35S promoter (35S) and SH-L. Using the H2O2-responsive AoPR1 promoter to drive SH-L SA accumulation could be compromised at an early stage, on lesion formation and possibly prior to visible necrosis, whilst use of the salicylate-responsive PR1a promoter reduced SA accumulation at a later stage as lesions expand. TMV infection of 35S-SH-L and AoPR1-SH-L, but not PR1a-SH-L, tobacco resulted in significantly greater rates of lesion growth than in wild-type tobacco. TMV was detected in asymptomatic tissue surrounding lesions only in 35S-SH-L and AoPR1-SH-L lines; subsequently these transgenic lines exhibited a ‘spreading-necrosis’ originating from the lesion which entered the stem and eventually other leaves, a phenotype which could be correlated with the presence of TMV particles. Analysis of TMV-infected and ‘temperature-shifted’ tobacco indicated that both 35S-SH-L and AoPR1-SH-L, but not PR1a-SH-L, transgenics exhibited delayed cell-death compared to wild-type infections. We propose that the SH-L phenotypes indicate that early SA accumulation is a major factor in preventing viral escape, via mechanism(s) which may include influencing the rate of host-cell death and, possibly, an effect on viral function.  相似文献   

11.
Injection of leaves of tobacco (Nicotiana tahacum cv. ‘Xanthi’ nc) with salicylic acid (SA) or phenylsene (PS) had an effect on the local lesion development caused by tobacco mosaic virus (TMV), depending upon the concentration used and the time interval between injection and challenge inoculation. Maximum reduction in lesion size was obtained with 0.75 mM SA or with 8 mM PS. Concentrations higher than 1 mM SA or 25 mM PS damaged the leaf tissue, PS being far less toxic than SA. The leaves responded rapidly to injection with SA or PS. A time interval of only 1 h between injection and TMV inoculation reduced the lesion size significantly. Isolated tobacco cell walls incubated with SA yielded carbohydrate fractions capable of reducing lesion size significantly after injection. Cell walls incubated without SA or with PS did not yield active carbohydrate fractions.  相似文献   

12.
Transgenic tobacco plants that express the bacterial nahG gene encoding salicylate hydroxylase have been shown to accumulate very little salicylic acid and to be defective in their ability to induce systemic acquired resistance (SAR). In recent experiments using transgenic NahG tobacco and Arabidopsis plants, we have also demonstrated that salicylic acid plays a central role in both disease susceptibility and genetic resistance. In this paper, we further characterize tobacco plants that express the salicylate hydroxylase enzyme. We show that tobacco mosaic virus (TMV) inoculation of NahG tobacco leaves induces the accumulation of the nahG mRNA in the pathogen infected leaves, presumably due to enhanced stabilization of the bacterial mRNA. SAR-associated genes are expressed in the TMV-infected leaves, but this is localized to the area surrounding necrotic lesions. Localized acquired resistance (LAR) is not induced in the TMV-inoculated NahG plants suggesting that LAR, like SAR, is dependent on SA accumulation. When SA is applied to nahG-expressing leave's SAR gene expression does not result. We have confirmed earlier reports that the salicylate hydroxylase enzyme has a narrow substrate specificity and we find that catechol, the breakdown product of salicylic acid, neither induces acquired resistance nor prevents the SA-dependent induction of the SAR genes.  相似文献   

13.
Abstract The virus inhibitor NS. 83. when spraved onto tobacco seedlings. was ettective against mechanical inoculation of TMV when applied to the inoculated surface and when mixed with the virus before inoculation. When aphids were ased to transmit potato virus before spraving inosulated seedlings immediately after the intection feed decreased the number intecteé with the virus.
Like salicylic acid. when NS-83 was injected into tobacco leaves lesion number, virus concen tration and lesion spread were decreased and pathogenesis related PR la protein associated with resisttance to plant pathogens was induced.
Zusammenfassung Die Einflüsse eines aus Pflanzen gewonnenen Virusinhibitors. NS-83, auf Virusinfektion und -verinehrung in Tabakpflanzen
Nach einer Spritzhehandlung von Tabaksämängen war der Virusinhibitor NS-83 wirksam gegen die schen mecbaniscb mit TMN inokulierte Oberfläche und auch. Wenn des Inhabitor mit dem Virus vor der laokulation gemischt wurde. Bei der Anwendung von Blattlausen. Um das Potato Virus Y zu übertragen, reduzierte eine Spritzbehandlung der Pllanzen mit NS-83 unnittelbar nach der Futteruogsintektion die Anzabl von betallenen ptlanzen.
Älmlich wie Saheylsaure bewirkre NS-83 nach dem Inizieren in Tabakblättern eine Reduzierung der Lästonenzahi der Viruskonzemration sowie der Lastionenausbreitung außerdem wurde eine Induktion des mit der Pathogenese gehoppelten Prla-Proteines, das mit der Resistenz gegeniber Pflanzenpathogenen assozuert ist. hervorgeruten.  相似文献   

14.
We have compared localized (LAR) and systemic (SAR) acquired resistance induced in tobacco by a hypersensitive response (HR) inducing Phytophthora megasperma glycoprotein elicitin. Three different zones were taken into account: LAR, SART and SARS. The LAR zone was 5–10 mm wide and surrounded the HR lesion. SART was the tissue of the elicitor-treated leaf immediately beyond the LAR zone. The systemic leaf was called SARS. Glycoprotein-treated plants showed enhanced resistance to challenge infection by tobacco mosaic virus (TMV). Disease resistance was similar in SART and SARS, and higher in LAR. The expression pattern, in glycoprotein-treated plants, of acidic and basic PR1, PR2, PR3 and PR5 proteins and of O-methyltransferases (OMT), enzymes of the phenylpropanoid pathway, was similar to that in TMV-infected plants. OMT was stimulated in LAR but not in SART and SARS. The four classes of acidic and basic PR proteins accumulated strongly in LAR. Reduced amounts of acidic PR1, PR2, PR3 and only minute amounts of basic PR2 and PR3 accumulated in SART and SARS. In glycoprotein-treated plants, expression of the acidic and basic PR proteins in LAR and SAR of transgenic NahG and ETR tobacco plants and in LAR of plants treated with inhibitors of salicylic acid accumulation and of ethylene biosynthesis indicated a salicylic acid-dependent signalling pathway for acidic isoform activation and an ethylene-dependent signalling pathway for basic isoform activation.  相似文献   

15.
Leaves of Nicotiana tabacum L. cv. Xanthi necroticum plants form local necrotic lesions at the site of infection by tobacco mosaic virus. During the first seven days post-inoculation, endogenous levels of 1-aminocyclopropane-1-carboxylic acid (ACC) and N-malonyl-ACC increased in the lesion area. The time course of ACC accumulation coincided with an increase in the endogenous cyanide level which began within two days after inoculation. Concomitantly, the activity of -cyanoalanine synthase, the main HCN detoxifying enzyme, decreased. Likewise, treatment of leaf discs of uninfected plants with ACC led to cyanide accumulation. Exogenously applied KCN caused necrotic spots on tobacco leaves very similar to the whitish centers of virus-induced local lesions. Possible implications of cyanide in cell death during TMV-induced lesion development are discussed.  相似文献   

16.
Localized infections produced by tobacco necrosis virus (TNV) or tomato mosaic virus (ToMV) in White Burley tobacco induced a systemic acquired resistance in upper, uninoculated leaves. This resistance was effective against challenge infection by TNV or ToMV but not by potato virus Y, necrotic strain (PVYn), tobacco mosaic virus (TMV) or tobacco rattle virus (TRV), viruses giving systemic infections. Systemic acquired resistance against TNV or ToMV was expressed as a reduction in lesion size but not in viral antigen content of the resulting necrotic local lesions. The acquisition of resistance was concurrent with an increased capacity of the resistant leaves to convert 1-aminocyclopropane-1-carboxylic acid into ethylene. Systemic acquired resistance was ineffective to contrast or minimize in whatever way the systemic challenge infection produced by PVYN, TMV or TRV. Severity of symptoms and virus multiplication did not differ in resistant leaves from controls. This result does not allow any optimistic promise on possible application of the systemic acquired resistance against severe viral diseases of crops.  相似文献   

17.
18.
A virus inhibiting protein (VI) was isolated from spinach (Spinacia oleracea L.). The VI inhibited infections of test plants with plus- and minus-strand RNA viruses. Inoculation of both local lesion and systemic hosts with TMV in the presence of varying amounts of the VI resulted in typical dose response curves for the number of local lesions or the amount of virus respectively. The lowest concentration of VI leading to a significant reduction in the number of local lesions was 0.06 μg/ml. The VI was found to inhibit local lesion formation only when applied within 2–3 h p.i. but still reduced the number of local lesions when applied up to 9 h prior to virus inoculation. The antiviral activity could be attributed to a protein of molecular weight 29,000 dalton with an isoelectric point of 10.3. Its activity was destroyed by heating for 30 min to 70°C. These characteristics resemble those of other virus inhibiting proteins described for members of the order Caryophyllales such as the Phytolacca inhibitor against which a serological relationship was obtained.  相似文献   

19.
Local infections of either TMV or TNV in tobacco plants cv. Havana 425 (hypersensitive to TMV) proved effective in inducing systemic resistance to subsequent inoculation with the powdery mildew fungus Erysiphe cichoracearum DC. The proportion of leaf surface invaded by this pathogen and the amount of conidia it produced were both significantly lower in virus inoculated plants than in non-inoculated controls. However, the decrease in sporulation rate was less regularly observed than the reduction in leaf area infected. TMV was more effective than TNV in protecting tobacco plants from powdery mildew. E. cichoracearum is thus added to the list of challenge pathogens to which TMV or TNV are known to induce resistance in the host plants. Necrotic lesions caused to the leaves by local treatment with Ethephon (an ethylene-releasing compound) also conferred to tobacco some degree of systemic resistance to the same fungal pathogen, more frequently visible as a reduction of leaf area invaded. The protection due to the Ethephon lesions was in present experiments less marked than that of TMV. No effects against subsequent powdery mildew infection were obtained when point freeze necrotic lesions were provoked on the plants.  相似文献   

20.
An antiserum was prepared to the b1 protein purified from TMV infectedN. tabacum cv. Xanthi-nc leaves and used to study PR proteins. The Xanthi-nc proteins b2 and b3 were shown to be serologically closely related to b1. Antisera to b1 protein and TMV were used in a F(ab′)2 enzyme linked immunosorbent assay to monitor PR protein and TMV concentrations, respectively, during the first 6 days of a systemic TMV infection (cv. Xanthi) and a localised TMV infection (cv. Xanthi-nc).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号