首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
Bacillus anthracis has four plasmid possible virulence genotypes: pXO1+/pXO2+, pXO1+/pXO2-, pXO1-/pXO2+ or pXO1-/pXO2-. Due to the lack of a specific chromosomal marker for B. anthracis, differentiation of the pXO1-/pXO2- form of B. anthracis from closely related Bacillus cereus group species is difficult. In this study, we evaluate the ability of sspE, pXO1 and pXO2 primers to discriminate individual B. anthracis and the B. cereus group genotypes using multiplex real-time PCR and melting curve analysis. Optimal conditions for successful multiplex assays have been established. Purified DNAs from 38 bacterial strains including 11 strains of B. anthracis and 18 B. cereus group strains were analyzed. Nine of the B. cereus group near-neighbor strains were shown by multilocus sequence typing to be phylogenetically proximate to the B. anthracis clade. We have demonstrated that the four plasmid genotypes of B. anthracis and B. cereus group near-neighbors were differentially and simultaneously discriminated by this assay.  相似文献   

2.
The transfer of plasmids by mating from four Bacillus thuringiensis subspecies to Bacillus anthracis and Bacillus cereus recipients was monitored by selecting transcipients which acquired plasmid pBC16 (Tcr). Transcipients also inherited a specific large plasmid from each B. thuringiensis donor at a high frequency along with a random array of smaller plasmids. The large plasmids (ca. 50 to 120 megadaltons), pXO13, pXO14, pXO15, and pXO16, originating from B. thuringiensis subsp. morrisoni, B. thuringiensis subsp. toumanoffi, B. thuringiensis subsp. alesti, and B. thuringiensis subsp. israelensis, respectively, were demonstrated to be responsible for plasmid mobilization. Transcipients containing any of the above plasmids had donor capability, while B. thuringiensis strains cured of each of them were not fertile, indicating that the plasmids confer conjugation functions. Confirmation that pXO13, pXO14, and pXO16 were self-transmissible was obtained by the isolation of fertile B. anthracis and B. cereus transcipients that contained only pBC16 and one of these plasmids. pXO14 was efficient in mobilizing the toxin and capsule plasmids, pXO1 and pXO2, respectively, from B. anthracis transcipients to plasmid-cured B. anthracis or B. cereus recipients. DNA-DNA hybridization experiments suggested that DNA homology exists among pXO13, pXO14, and the B. thuringiensis subsp. thuringiensis conjugative plasmids pXO11 and pXO12. Matings performed between strains which each contained the same conjugative plasmid demonstrated reduced efficiency of pBC16 transfer. However, in many instances when donor and recipient strains contained different conjugative plasmids, the efficiency of pBC16 transfer appeared to be enhanced.  相似文献   

3.
The aim of this study was to apply the multiplex PCR and PCR-RFLP method for the identification of the B. anthracis strains and to distinguish those bacteria from other members of the Bacillus cereus group. The multiplex PCR method enables to detect the virulence factors, i.e. the toxin and the capsule in B. anthracis strains. To do that, the authors have used 5 primer pairs specific for the fragments of lef, cya, pag genes which are present in the pXO1 plasmid and encode the toxin, the cap gene, which is present in the pXO2 plasmid and encodes the capsule, and the Ba813 chromosomal sequence. Among the four B. anthracis strains examined, three contained two plasmids and the Ba813 chromosomal sequence, while the fourth one contained the pXO1 plasmid only, together and the Ba813 chromosomal sequence. Other bacterial species, belonging to the B. cereus group, were also examined: 6 strains of B. cereus, 4 strains of B. thuringiensis and one strain of B. mycoides. The presence of Ba813 chromosomal sequence has been detected in two B. cereus strains. Neither plasmids nor Ba813 chromosomal sequence have been discovered in other B. cereus, B. thuringiensis and B. mycoides strains. The results of the survey indicate that the Ba813 chromosomal sequence does not occur solely in B. anthracis strains. The PCR-RFLP method with the use of SG-749f and SG-749r primers enabled to demonstrate the presence of DNA sequence (SG-749) in B. anthracis, B. cereus, B. thuringiensis and B. mycoides strains. Restriction analysis with enzyme AluI of the SG-749 sequence, has shown the presence of two DNA fragments at the size of about 90 and 660 bp in all B. anthracis strains. The restriction profile obtained was characteristic for B. anthracis strains and it did not occur in other investigated bacterial species belonging to the B. cereus group. It was not observed even in such B. cereus strains in which the presence of Ba813 sequence was discovered and it enabled to differentiate between B. anthracis strains and other closely related species of the B. cereus group.  相似文献   

4.
To facilitate the analysis of genetic determinants carried by large resident plasmids of Bacillus anthracis, a mating system was developed which promotes plasmid transfer among strains of B. anthracis, B. cereus, and B. thuringiensis. Transfer of the selectable tetracycline resistance plasmid pBC16 and other plasmids from B. thuringiensis to B. anthracis and B. cereus recipients occurred during mixed incubation in broth. Two plasmids, pXO11 and pXO12, found in B. thuringiensis were responsible for plasmid mobilization. B. anthracis and B. cereus transcipients inheriting either pXO11 or pXO12 were, in turn, effective donors. Transcipients harboring pXO12 were more efficient donors than those harboring pXO11; transfer frequencies ranged from 10(-4) to 10(-1) and from 10(-8) to 10(-5), respectively. Cell-to-cell contact was necessary for plasmid transfer, and the addition of DNase had no effect. The high frequencies of transfer, along with the fact that cell-free filtrates of donor cultures were ineffective, suggested that transfer was not phage mediated. B. anthracis and B. cereus transcipients which inherited pXO12 also acquired the ability to produce parasporal crystals (Cry+) resembling those produced by B. thuringiensis, indicating that pXO12 carries a gene(s) involved in crystal formation. Transcipients which inherited pXO11 were Cry-. This mating system provides an efficient method for interspecies transfer of a large range of Bacillus plasmids by a conjugation-like process.  相似文献   

5.
The plasmids of the members of the Bacillus cereus sensu lato group of organisms are essential in defining the phenotypic traits associated with pathogenesis and ecology. For example, Bacillus anthracis contains two plasmids, pXO1 and pXO2, encoding toxin production and encapsulation, respectively, that define this species pathogenic potential, whereas the presence of a Bt toxin-encoding plasmid defines Bacillus thuringiensis isolates. In this study the plasmids from B. cereus isolates that produce emetic toxin or are linked to periodontal disease were sequenced and analyzed. Two periodontal isolates examined contained almost identical approximately 272-kb plasmids, named pPER272. The emetic toxin-producing isolate contained one approximately 270-kb plasmid, named pCER270, encoding the cereulide biosynthesis gene cluster. Comparative sequence analyses of these B. cereus plasmids revealed a high degree of sequence similarity to the B. anthracis pXO1 plasmid, especially in a putative replication region. These plasmids form a newly defined group of pXO1-like plasmids. However, these novel plasmids do not contain the pXO1 pathogenicity island, which in each instance is replaced by plasmid specific DNA. Plasmids pCER270 and pPER272 share regions that are not found in any other pXO1-like plasmids. Evolutionary studies suggest that these plasmids are more closely related to each other than to other identified B. cereus plasmids. Screening of a population of B. cereus group isolates revealed that pXO1-like plasmids are more often found in association with clinical isolates. This study demonstrates that the pXO1-like plasmids may define pathogenic B. cereus isolates in the same way that pXO1 and pXO2 define the B. anthracis species.  相似文献   

6.
The complete sequencing and annotation of the 181.7-kb Bacillus anthracis virulence plasmid pXO1 predicted 143 genes but could only assign putative functions to 45. Hybridization assays, PCR amplification, and DNA sequencing were used to determine whether pXO1 open reading frame (ORF) sequences were present in other bacilli and more distantly related bacterial genera. Eighteen Bacillus species isolates and four other bacterial species were tested for the presence of 106 pXO1 ORFs. Three ORFs were conserved in most of the bacteria tested. Many of the pXO1 ORFs were detected in closely related Bacillus species, and some were detected only in B. anthracis isolates. Three isolates, Bacillus cereus D-17, B. cereus 43881, and Bacillus thuringiensis 33679, contained sequences that were similar to more than one-half of the pXO1 ORF sequences examined. The majority of the DNA fragments that were amplified by PCR from these organisms had DNA sequences between 80 and 98% similar to that of pXO1. Pulsed-field gel electrophoresis revealed large potential plasmids present in both B. cereus 43881 (341 kb) and B. thuringiensis ATCC 33679 (327 kb) that hybridized with a DNA probe composed of six pXO1 ORFs.  相似文献   

7.
The self-transmissible plasmid pXO12 (112.5 kilobases [kb]), originally isolated from strain 4042A of Bacillus thuringiensis subsp. thuringiensis, codes for production of the insecticidal crystal protein (Cry+). The mechanism of pXO12-mediated plasmid transfer was investigated by monitoring the cotransfer of the tetracycline resistance plasmid pBC16 (4.2 kb) and the Bacillus anthracis toxin and capsule plasmids, pXO1 (168 kb) and pXO2 (85.6 kb), respectively. In matings of B. anthracis donors with B. anthracis and Bacillus cereus recipients, the number of Tcr transcipients ranged from 4.8 x 10(4) to 3.9 x 10(6)/ml (frequencies ranged from 1.6 x 10(-4) to 7.1 x 10(-2), and 0.3 to 0.4% of them simultaneously inherited pXO1 or pXO2. Physical analysis of the transferred plasmids suggested that pBC16 was transferred by the process of donation and that the large B. anthracis plasmids were transferred by the process of conduction. The transfer of pXO1 and pXO2 involved the transposition of Tn4430 from pXO12 onto these plasmids. DNA-DNA hybridization experiments demonstrated that Tn4430 was located on a 16.0-kb AvaI fragment of pXO12. Examination of Tra- and Cry- derivatives of pXO12 showed that this fragment also harbored information involved in crystal formation and was adjacent to a restriction fragment containing DNA sequences carrying information required for conjugal transfer.  相似文献   

8.
9.
Bacillus anthracis can be identified by detecting virulence factor genes located on two plasmids, pXO1 and pXO2. Combining multiplex PCR with arrayed anchored primer PCR and biotin-avidin alkaline phosphatase indicator system, we developed a qualitative DNA chip method for characterization of B. anthracis, and simultaneous confirmation of the species identity independent of plasmid contents. The assay amplifies pag gene (in pXO1), cap gene (in pXO2) and Ba813 gene (a B. anthracis specific chromosomal marker), and the results were indicated by an easy-to-read profile based on the color reaction of alkaline phosphatase. About 1 pg of specific DNA fragments on the chip wells could be detected after PCR. With the proposed method, the avirulent (pXO1+/2-, pXO1-/2+ and pXO1-/2-) strains of B. anthracis and distinguished 'anthrax-like' strains from other B. cereus group bacteria were unambiguously identified, while the genera other than Bacillus gave no positive signal.  相似文献   

10.
Abstract Bacillus anthracis can be identified on the basis of the detection of virulence factor genes located on two plasmids, pXO1 and pXO2. Thus isolates lacking both pXO1 and pXO2 are indistinguishable from closely related B. cereus group bacteria. We developed a multiplex PCR assay for characterization of B. anthracis isolates, and simultaneous confirmation of the species identity independent of plasmid content. The assay amplifies lef, cya, pag (pXO1) and cap (pXO2) genes, and a B. anthracis specific chromosomal marker, giving an easy-to-read profile. This system unambiguously identified virulent (pXO1+/2+) and avirulent (pXO1+/2, pXO1/2+ and pXO1/2) strains of B. anthracis and distinguished 'anthrax-like' strains from other B. cereus group bacteria.  相似文献   

11.
AIMS: To investigate the molecular characterization of Bacillus anthracis strains by multiplex PCR, enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) and random amplification of polymorphic DNA (RAPD). METHODS AND RESULTS: Three primers were used to amplify the cya, cap and cereolysinAB genes in the multiplex PCR. Two distinct ERIC-PCR and RAPD fragments, which separated B. anthracis into two groups, were used as probes in Southern hybridization experiments. The probes hybridized only to the cya+ B. anthracis strains identified by the multiplex PCR. Nucleotide sequence analysis of the two cloned fragments showed they were from the pXO1 plasmid of B. anthracis. CONCLUSION: Multiplex PCR simultaneously identified isolates of the Bacillus cereus group and the B. anthracis virulence factors. ERIC-PCR and RAPD, combined with the Southern hybridization analyses, differentiated B. anthracis strains and separated them from the closely related B. cereus group bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: ERIC-PCR and RAPD assay could be effective in differentiating virulent from avirulent B. anthracis. Our results also show that the amplification of the large plasmids was allowed in the ERIC-PCR and RAPD assay.  相似文献   

12.
Three Bacillus anthracis strains, formerly used as anti-anthrax vaccine strains in Argentina, were characterized from genetic and pathogenic perspectives. Southern blotting and PCR with pXO1 and pXO2 probes and primers, as well as pathogenicity and protection tests in guinea pigs and mice, were performed. Two of the B. anthracis strains contained both pXO1 and pXO2 plasmids, as did the fully virulent strains, while the third was a Sterne-type strain (pXO1+, pXO2-). The three strains were, however, markedly less pathogenic than a wild-type virulent strain. The methodology applied here may be used to characterize other B. anthracis strains.  相似文献   

13.
We present the microbiological and molecular characterization of bacteria isolated from four chimpanzees and one gorilla thought to have died of an anthrax-like disease in C?te d'Ivoire and Cameroon. These isolates differed significantly from classic Bacillus anthracis by the following criteria: motility, resistance to the gamma phage, and, for isolates from Cameroon, resistance to penicillin G. A capsule was expressed not only after induction by CO(2) and bicarbonate but also under normal growth conditions. Subcultivation resulted in beta-hemolytic activity and gamma phage susceptibility in some subclones, suggesting differences in gene regulation compared to classic B. anthracis. The isolates from C?te d'Ivoire and Cameroon showed slight differences in their biochemical characteristics and MICs of different antibiotics but were identical in all molecular features and sequences analyzed. PCR and Southern blot analyses confirmed the presence of both the toxin and the capsule plasmid, with sizes corresponding to the B. anthracis virulence plasmids pXO1 and pXO2. Protective antigen was expressed and secreted into the culture supernatant. The isolates possessed variants of the Ba813 marker and the SG-749 fragment differing from that of classic B. anthracis strains. Multilocus sequence typing revealed a close relationship of our atypical isolates with both classic B. anthracis strains and two uncommonly virulent Bacillus cereus and Bacillus thuringiensis isolates. We propose that the newly discovered atypical B. anthracis strains share a common ancestor with classic B. anthracis or that they emerged recently by transfer of the B. anthracis plasmids to a strain of the B. cereus group.  相似文献   

14.
15.
Polymorphism of five tandem repeats that are monomorphic in Bacillus anthracis was investigated in 230 isolates of the B. cereus group and in 5 sequenced B. cereus genomes in search for markers allowing identification of B. cereus and B. thuringiensis strains most closely related to B. anthracis. Using this multiple-locus variable number of tandem repeat analysis (MLVA), a cluster of 30 strains was selected for further characterization. Eventually, six of these were characterized by multilocus sequence type analysis. One of the strains is only six point mutations (of almost 3,000 bp) away from B. anthracis and was also proposed to be closest to B. anthracis by MLVA analysis. However, this strain remains separated from B. anthracis by a number of significant genetic events observed in B. anthracis, including the loss of the hemolysin activity, the presence of four prophages, and the presence of the two virulence plasmids, pXO1 and pXO2. One particular minisatellite marker provides an efficient assay to identify the subset of B. cereus and B. thuringiensis strains closely related to B. anthracis. Based on these results, a very simple assay is proposed that allows the screening of hundreds of strains from the B. cereus complex, with modest equipment and at a low cost, to eventually fill the gap with B. anthracis and better understand the origin and making of this dangerous pathogen.  相似文献   

16.
Recent characterisations of plasmids related to the anthrax virulence plasmids pXO1 and pXO2 in clinical isolates of Bacillus cereus and Bacillus thuringiensis have contributed to the emerging picture of a virulence-associated plasmid pool in the B. cereus sensu lato group. The family of pXO2-like plasmids includes the conjugative plasmid pAW63 from the biopesticide strain B. thuringiensis subsp. kurstaki HD73 and the heretofore cryptic plasmid pBT9727 from the clinical strain B. thuringiensis subsp. konkukian 97-27. Comparative sequence analysis of these three plasmids suggested that they were derived from an ancestral conjugative plasmid, with pAW63 retaining its self-transfer capabilities, and pXO2 having lost them through genetic drift. Such properties had not been investigated in pBT9727, but sequence homologies led us to predict that it may possess self-transfer capabilities. Here, we report that pBT9727 is indeed conjugative, and is able to promote its own transfer as well as that of small mobilisable plasmids.  相似文献   

17.
The presence of one of the anthrax virulence plasmid pXO1 conserved fragments was analyzed in 24 Bacillus cereus and B. thuringiensis strains, including 6 B. thuringiensis subspecies, by polymerase chain reactions. Twelve out of 24 strains showed PCR-positive for an ORF101 homologous sequence. Two pXO1-ORF101-like fragments from a B. cereus B-4ac and a commercial B. thuringiensis kurstaki HD1 were cloned, sequenced and expressed in Escherichia coli. Toxicity assays revealed that the product encoded by the pXO1-ORF101-like fragment had no impact on either Vero cells or Chinese Hamster Ovary cells, suggesting that this fragment probably not contribute to enterotoxic activity. Sequence alignment of the pXO1-ORF101 from three Bacillus anthracis and ORF101-like fragments from other 12 B. cereus group isolates indicated high identity (more than 90%) and the presence of subgroup- and strain-specific SNPs among these fragments.  相似文献   

18.
Comparative study of virulence of B. anthracis strains harbouring pXO1 and pXO2 plasmids in mice and guinea pigs showed that among six B. anthracis strains, three were 100-1000 times less virulent for guinea pigs. Genetic construction of B. anthracis strains using transduction and conjugation transfer of resident plasmids permitted us to rule out the effects of modified pXO1 and pXO2 replicons and to prove the existence of nonidentified chromosome locuses responsible for the development of an infectious process in anthrax, along with plasmid determinants of virulence.  相似文献   

19.
Eighty soil-borne Bacillus cereus group isolates were collected from two neighbouring geographical sites in Belgium. Their genetic relationships and population structure were assessed using Multilocus sequence typing analysis of five chromosomal genes, while the contribution of extrachromosomal elements to the population dynamics was gauged by the presence, diversity and transfer capacity of pXO1- and pXO2-like plasmids. Globally, the bacterial population displayed a broad diversity, including an important subpopulation of psychrotolerant isolates related to Bacillus weihenstephanensis . pXO1- and pXO2-like replicons were present in 12% and 21% of the isolates, but no Bacillus anthracis -related toxin genes were found. Furthermore, only one of the isolates containing a pXO2-related plasmid was shown to be able to mobilize small non-self-conjugative plasmids. Interestingly, several B. cereus sensu lato isolates displaying the same sequence type were observed to have different plasmid contents, suggesting the occurrence of horizontal gene exchange. Similarly, a number of pXO2-like replicons with identical sequences were found in distinct bacterial isolates, therefore strongly arguing for lateral transfers among sympatric bacteria.  相似文献   

20.
Bacteriophage CP-51, a generalized transducing phage for Bacillus anthracis, B. cereus, and B. thuringiensis, mediates transduction of plasmid DNA. B. cereus GP7 harbors the 2.8-megadalton multicopy tetracycline resistance plasmid, pBC16. B. thuringiensis 4D11A carries pC194, the 1.8-megadalton multicopy chloramphenicol resistance plasmid. When phage CP-51 was propagated on these strains, it transferred the plasmid-encoded antibiotic resistances to the nonvirulent Weybridge (Sterne) strain of B. anthracis, to B. cereus 569, and to strains of several B. thuringiensis subspecies. The frequency of transfer was as high as 10(-5) transductants per PFU. Tetracycline-resistant and chloramphenicol-resistant transductants contained newly acquired plasmid DNA having the same molecular weight as that contained in the donor strain. Antibiotic-resistant transductants derived from any of the three species were effective donors of plasmids to recipients from all three species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号