首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A small ColE1 derivative, pAO2, which replicates like the original ColE1 and confers immunity to colicin E1 on its host cell has been constructed from a quarter region of ColE1 DNA (Oka, 1978). The entire nucleotide sequence of pAO2 (1,613 base pairs) was determined based on its fine cleavage map. The sequence of a similar plasmid, pAO3, carrying additional 70 base pairs was also deduced.The sequence in the region covering the replication initiation site on these plasmids was consistent with those reported for ColE1 by Tomizawa et al. (1977) and by Bastia (1977). DNA sequences indispensable for autonomous replication were examined by constructing plasmids from various restriction fragments of pAO2 DNA. As a result, a region of 436 base pairs was found to contain sufficient information to permit replication. The occurrence of initiation and termination codons and of the ribosome-binding sequence on pAO2 DNA suggests that a polypeptide chain consisting of 113 amino acid residues may be encoded by the region in which the colicin E1 immunity gene has been mapped.Abbreviations ColE1 colicin E1 plasmid - Tris tris-(hydroxymethyl)aminomethane - EDTA ethylenediaminetetraacetate - dNTP deoxyribonucleoside triphosphates - ATP adenosine 5-triphosphate  相似文献   

2.
3.
Deletions of colicin E1 (colE1) plasmid deoxyribonucleic acid (DNA) carrying the TnA transposon have been isolated. All except two were generated by nuclease digestion of plasmid DNA from its EcoRI-sensitive site. A plasmid containing about 16% of the ColE1 DNA (6.5 X 10(5) daltons) was generated that also contained the part of the TnA transposon conferring ampicillin resistance. The extents of different deletions were determined by analysis of restriction endonuclease fragments generated by the restriction endonucleases HaeII, BamHI, and HincII.  相似文献   

4.
A L Lu  N Blin  D W Stafford 《Gene》1981,14(1-2):51-62
A 1.35-kb EcoRI fragment of Lytechinus variegatus DNA containing a single 5S rRNA gene has been cloned into the plasmid vector pACYC184. Four clones from different transformation experiments contain 5S rDNA inserts of about the same size and have the same restriction enzyme digestion patterns for the enzymes HaeIII, HinfI, HhaI, and AluI. One EcoRI site near the HindIII site of the plasmid vector pACYC184 is missing in all the four clones. By DNA sequencing, the missing EcoRI ws found to be EcoRI site, d(AAATTN)d(TTTAAN) in pLu103, one of the four 5S rDNA clones. The structure of pLu103 was determined by restriction mapping and blot hybridization. Three restriction fragments, 1.0-kb HaeIII/HaeIII, 0.375-kb AluI/AluI and 0.249-kb MboII/MboII, which contain the 5S rRNA coding region, have been subcloned into the EcoRI site of the plasmid pACYC184. The organization of 5S rRNA genes in the sea urchin genome was also investigated. It was found that restriction endonuclease HaeIII has a single recognition site within each 5S rDNA repeat, and yields two fragment lengths, 1.2 and 1.3 kb. The behavior of these 5S rRNA genes when total L. variegatus DNA is partially digested with HaeIII is consistent with an arrangement of 5S rRNA genes in at least two tandemly repeated, non-interspersed families. Both the coding region and spacer region of the 5S rRNA gene in pLu103 hybridize to 1.2 and 1.3-kb rDNA families. This indicates that the cloned EcoRI fragment of 5S rDNA in pLu103 represents one single repeat of 5S rDNA in the genome.  相似文献   

5.
Electron microscopy (EM) of whole mounted mouse chromosomes, light microscopy (LM), and agarose gel electrophoresis of DNA were used to investigate the cytological effect on chromosomes of digestion with the restriction endonucleases (REs) AluI, HinfI, HaeIII and HpaII. Treatment with AluI produces C-banding as seen by LM, cuts DNA into small fragments, and reduces the density of centromeres and disperses the chromatin of the arms as determined by EM. Treatment with HinfI produces C-banding, cuts DNA into slightly larger fragments than does AluI and increases the density of centromeres and disperses the fibres in the chromosomal arms. Exposure to HaeIII produces G- + C-banding, cuts the DNA into large fragments, and results in greater density of centromeres and reduced density of arms. Finally HpaII digestion produces G-like bands, cuts the DNA into the largest fragments found and results in greater density of centromeres and the best preservation of chromosomal arms detected by EM. These results provide evidence for: (1) REs producing identical effects in the LM (AluI and HinfI) produce different effects in the EM. (2) All enzymes appear to affect C-bands but while REs such as AluI reduce the density of these regions, other enzymes such as HpaII, HaeIII or HinfI increase their density. Conformational changes in the chromatin could explain this phenomenon. (3) The appearance of chromosomes in the EM is related to the action of REs on isolated DNA. The more the DNA is cut by the enzyme, the greater the alteration of the chromosomal ultrastructure.  相似文献   

6.
Cleavage of DNA.RNA hybrids by type II restriction enzymes.   总被引:2,自引:1,他引:1       下载免费PDF全文
The action of a number of restriction enzymes on DNA.RNA hybrids has been examined using hybrids synthesised with RNAs of cucumber mosaic virus as templates. The enzymes EcoRI, HindII, SalI, MspI, HhaI, AluI, TaqI and HaeIII cleaved the DNA strand of the hybrids (and possible also the RNA strand) into specific fragments. For four of these enzymes, HhaI, AluI, TaqI and HaeIII, comparison of the restriction fragments produced with the known sequences of the viral RNAs confirmed that they were recognising and cleaving the DNA strand of the hybrids at their correct recognition sequences. It is likely that the ability to utilise DNA.RNA hybrids as substrates is a general property of Type II restriction enzymes.  相似文献   

7.
Plasmid-encoded regulation of colicin E1 gene expression.   总被引:3,自引:1,他引:2       下载免费PDF全文
A plasmid-encoded factor that regulates the expression of the colicin E1 gene was found in molecular cloning experiments. The 2,294-base-pair AvaII fragment of the colicin E1 plasmid (ColE1) carrying the colicin E1 structural gene and the promoter-operator region had the same information with respect to the repressibility and inducibility of colicin E1 synthesis as the original ColE1 plasmid. An operon fusion was constructed between the 204-bp fragment containing the colicin E1 promoter-operator and xylE, the structural gene for catechol 2,3-dioxygenase encoded on the TOL plasmid of Pseudomonas putida. The synthesis of the dioxygenase from the resulting plasmid occurred in recA+, but not in recA- cells and was derepressed in the recA lexA(Def) double mutant. These results indicate that the ColE1 plasmid has no repressor gene for colicin E1 synthesis and that the lexA protein functions as a repressor. Colicin E1 gene expression was adenosine 3',5'-phosphate (cAMP) dependent. Upon the removal of two PvuII fragments (2,000 bp in length) from the ColE1 plasmid, the induced synthesis of colicin E1 occurred in the adenylate-cyclase mutant even without cAMP. The 3,100-bp Tth111I fragment of the ColE1 plasmid cloned on pACYC177 restored the cAMP dependency of the deleted ColE1 plasmid. Since the deleted fragments correspond to the mobility region of ColE1, the cAMP dependency of the gene expression should be somehow related to the plasmid mobilization function.  相似文献   

8.
A composite plasmid has been constructed in vitro from colicin E1 factor (mass of 4.2 megadaltons [Md]) and nontransmissible resistance factor RSF 1010 (mass, 5.5. Md) deoxyribonucleic acids (DNAs) by the sequential action of Escherichia coli endonuclease (RI (Eco RI) and T4 phage DNA ligase on the covalently closed circular forms of the constituents. The composite plasmid was selected and amplified in vivo by sequential transformation of E. coli C600 with the ligated mixture and selection of transformants in medium containing streptomycin plus colicin E1, followed by amplification in the presence of chloramphenicol and purification of the extracted plasmid by dye-buoyant density gradient centrifugation in ethidium bromide-cesium chloride solution. Treatment of the composite plasmid with Eco RI yielded two fragments with mobilities corresponding to the linear forms of the parental plasmids, whereas Serratia marscesens endonuclease R (SmaR), which introduces a single scission in the colicin E1 factor but not in RSF 1010, convErted the composite plasmid to a single linear molecule (mass, 9.7 Md). Sequential degradation of colicin E1 factor with Sma R and Eco RI produced two fragments with masses of 3.5 and 0.7 Md; sequential degradation of RSF 1010 produced only one fragment (due to the cleavage with Eco RI), and sequential degradation of the composite plasmid produced the expected three fragments--an RSF 1010 Eco RI linear and the two expected products from the colicin E1 factor moiety. The composite plasmid conferred on the host cell resistance to streptomycin, sulfonamides, and colicin E1, but colicin E1 itself was not synthesized. In contrast, colicin E1 was synthesized by cells containing simultaneously both colicin E1 factor and RSF 1010 as separate entities. In the presence of chloramphenicol, the composite plasmid continued to replicate for 6 h. whereas replication of RSF 1010 and chromosomal DNA stopped within 2 h. Continued replication in the presence of chloramphenicol suggests that the replicator of the colicin E1 factor is functional in the composite plasmid.  相似文献   

9.
Gene expression in vitro of colicin El plasmid.   总被引:6,自引:1,他引:5       下载免费PDF全文
  相似文献   

10.
The mitochondrial deoxyribonucleic acids (mtDNA's) from human HeLa and HT1080 cells differed in their restriction endonuclease cleavage patterns for HaeII, HaeIII, and HhaI. HaeII digestion yielded a 9-kilobase fragment in HT1080, which was replaced by 4.5-, 2.4-, and 2.1-kilobase fragments in HeLa. HaeIII and HhaI yielded distinctive 1.35- and 0.68-kilobase HeLa fragments. These restriction endonuclease polymorphisms were used as mtDNA markers in HeLa-HT1080 cybrid and hybrid crosses involving the cytoplasmic chloramphenicol resistance mutation was used. mtDNA's were purified and digested with the restriction endonucleases, the fragments were separated on agarose gels, and the bands were detected by ethidium bromide staining and Southern transfer analysis. Three cybrids and four hybrids (four expressing HeLa and three expressing HT1080 chloramphenicol resistance) contained 2- to 10-fold excesses of the mtDNA of the chloramphenicol-resistant parent. One cybrid, which was permitted to segregate chloramphenicol resistance and was then rechallenged with chloramphenicol, had approximately equal proportions of the two mtDNA's. Only one hybrid was discordant. These results indicated that chloramphenicol resistance is encoded in mtDNA and that expression of chloramphenicol resistance is related to the ratio of chloramphenicol-resistant and -sensitive genomes within cells.  相似文献   

11.
Endonuclease digestion of isolated and unfixed mammalian metaphase chromosomes in vitro was examined as a means to study the higher-order regional organization of chromosomes related to banding patterns and the mechanisms of endonuclease-induced banding. Isolated mouse LM cell chromosomes, digested with the restriction enzymes AluI, HaeIII, EcoRI, BstNI, AvaII, or Sau96I, demonstrated reproducible G- and/or C-banding at the cytological level depending on the enzyme and digestion conditions. At the molecular level, specific DNA alterations were induced that correlated with the banding patterns produced. The results indicate that: (1) chromatin extraction is intimately involved in the mechanism of endonuclease induced chromosome banding. (2) The extracted DNA fragments are variable in size, ranging from 200 bp to more than 4 kb in length. (3) For HaeIII, there appears to be variation in the rate of restriction site cleavage in G- and R-bands; HaeIII sites appear to be more rapidly cleaved in R-bands than in G-bands. (4) AluI and HaeIII ultimately produce banding patterns that reflect regional differences in the distribution of restriction sites along the chromosome. (5) BstNI restriction sites in the satellite DNA of constitutive heterochromatin are not cleaved intrachromosomally, probably reflecting an inaccessibility of the BstNI sites to enzyme due to the condensed nature of this chromatin or specific DNA-protein interactions. This implies that some enzymes may induce banding related to regional differences in the accessibility of restriction sites along the chromosome. (6) Several specific nonhistone protein differences were noted in the extracted and residual chromatin following an AluI digestion. Of these, some nonhistones were primarily detected in the extracted chromatin while others were apparently resistant to extraction and located principally in the residual chromatin. (7) The chromatin in constitutive heterochromatin is transiently resistant to cleavage by micrococcal nuclease.  相似文献   

12.
A site specific endonuclease from Thermus aquaticus, Taq I, cleaves Simian virus 40 (SV40) DNA at a single site. The cleavage site was localized on the physical map by double digestions, using the previously characterized fragments produced by digestion with Hae II, Hae III, AluI, HhaI, HinfI, or BstI. The Taq I site is located at the position that is 56.5% of the unit length from the Eco RI site.  相似文献   

13.
L S Saxe 《Biochemistry》1975,14(10):2051-2057
A lambda DNA supercoil system has been developed to study the effects of colicin E2 on DNA in vivo. Colicin E2, a protein antibiotic synthesized by strains of coliform bacteria that carry the Col E2 plasmid, had as its most conspicious effect damage to the DNA of sensitive strains. Colicine E2 attacks the supercoiled molecul formed by labeled lambda DNA in superinfected cells as well as it attacks the bacterial DNA. The rate and extent of acid solubilization of the lambda supercoils and of host bacterial DNA induced by E2 treatment are nearly identical. Treatment of superinfected cells with colicin E2 results in the progressive conversion of lambda DNA supercoils to open circles and/or linear full lenght molecules, and subsequently to fragments less than full lambda in size. The first endonucleolytic reactions are single-strand and or double-strand breaks. The rate of supercoil breakdown as well as the final percent supercoils remaining unconverted, the size of the final lambda fragments, and the extent of solubilization are dependent on the multiplicity of colicin used. Additions of trypsin to E2-treated superinfected cells results in a cessation of further breakdown of the lambda molecules, presumably as a result of digestion of accessible colicin molecules. Energy is essential for an early event in colicin E2 action. The host enzymes, endonuclease I and Rec BC, may be instrumental in the nucleolytic process caused by colicin E2: endonuclease I in reaction preceding cell killing and Rec BC in a secondary degradation of the bacterial DNA.  相似文献   

14.
The endonuclease colicin E2 (ColE2), a bacteriocidal protein, and the associated cognate immunity protein (Im2) are released from producing Escherichia coli cells. ColE2 interaction with the target cell outer membrane BtuB protein and Tol import machinery allows the dissociation of Im2 from its colicin at the outer membrane surface. Here, we use in vivo approaches to show that a small amount of ColE2-Im2 protein complex bound to sensitive cells is susceptible to proteolytic cleavage by the outer membrane protease, OmpT. The presence of BtuB is required for ColE-Im2 cleavage by OmpT. The amount of colicin cleaved by OmpT is greatly enhanced when ColE2 is dissociated from Im2. We further demonstrate that OmpT cleaves the C-terminal DNase domain of the toxin. As expected, strains that over-produce OmpT are less susceptible to infection by ColE2 than by ColE2-Im2. Our findings reveal an additional function for the immunity protein beside protection of producing cells against their own colicin in the cytoplasm. Im2 protects ColE2 against OmpT-mediated proteolytic attack.  相似文献   

15.
J H Gottlieb  D H Duckworth 《Gene》1983,26(2-3):301-302
A cleavage site map of pHU011, a derivative of the colicin Ib plasmid containing the complete SalI-B fragment ligated to pBR322, has been determined. Sites of cleavage by PstI were determined using the Smith and Birnstiel [Nucl. Acids Res. 3 (1976) 2387-2398] method of mapping, whereas those for XbaI, XhoI, and HindIII were determined by double digestions or digestion of isolated fragments. In addition, the sites of the abi gene, which causes the abortive infection by T5 bacteriophage, and of the colicin (col) gene have been determined. The results indicate that these genes are not contiguous.  相似文献   

16.
Modification of gonococcal deoxyribonucleic acid (DNA) was investigated, and the relationship with endonuclease production was explored. Both chromosomal and plasmid DNA from different gonococcal strains, irrespective of their plasmid content, was poorly cleaved by the restriction endonucleases HaeII, HaeIII, SacII, and BamHI. The fragment pattern of the Tn3 segment present on the 7.2-kilobase gonococcal resistance plasmid, when compared to its known DNA sequence, allowed us to conclude that the HaeIII and BamHI resistance was due to modification of these sites. A comparison of the fragment pattern of the resistance plasmid, when isolated from Escherichia coli or Neisseria gonorrhoeae, revealed that the resistance of HaeII must also be due to modification of its recognition sequence. Isoschizomers of HaeII and HaeIII can be found in isolates of N. gonorrhoeae (NgoI and NgoII, respectively). A new restriction endonuclease in gonococci, NgoIII, with a specificity similar to SacII, is reported here. High-pressure liquid chromatography of gonococcal DNA showed the presence of 5-methylcytosine. It is suggested that the methylation of cytosine residues in the HaeII (NgoI), HaeIII (NgoII), and SacII (NgoIII) recognition sites is the basis for the resistance of gonococcal DNA to cleavage by these enzymes. This methylation may be part of a host restriction modification system. In two out of five gonococcal strains the sequence -GATC- was modified. One strain unable to modify this sequence was a spontaneous mutant of a strain carrying such a modifying function.  相似文献   

17.
18.
1. Two components of colicin E3, namely proteins A and B, were prepared by means of an improved method. 2. Protein A thus obtained was more than a thousand times as active as native colicin E3 when they were assayed in terms of activity for ribosome inactivation. 3. Protein A was reconstituted to colicin E3 simply by mixing with protein B. 4. Trypsin digestion of colicin E3 yielded two fragments, T1 and T2, probably by cleaving one specific bond of the A moiety of colicin E3. 5. T2 was a complex of T2A and B proteins. T2A showed an activity equivalent to that of protein A when assayed in the in vitro system, and its activity was neutralized by protein B. Thus T2A was assigned as an active fragment of protein A. 6. T2A has a characteristic amino acid composition rich in the basic amino acid, lysine. 7. The structure and function of the colicin E3 molecule is discussed based on the results obtained with its components as well as with fragments of the components.  相似文献   

19.
Colicin plasmids E2 and E3 (Col E2 and Col E3) deoxyribonucleic acid (DNA) has been shown to contain, respectively, two and three EcoR1 restriction endonuclease-sensitive sites. This was determined by measuring the DNA fragments generated after EcoR1 endonuclease treatment by agarose gel electrophoresis and electron microscopy. The structure of heteroduplex Col E2-col E3 DNA molecules formed from EcoR1-generated fragments permitted a localization of the EcoR1-sensitive sites on the plasmid chromosomes.  相似文献   

20.
The 4207-bp cryptic plasmid (pJD1) of Neisseria gonorrhoeae has 5-methylcytosine bases present at several positions in the DNA sequence. Fortuitously, these modified bases lie in the recognition sequences of many restriction enzymes. This feature makes the cryptic plasmid a model system for assaying the effect of these modified cytosines on the activities of the following restriction endonucleases and their isoschizomers: R X AvaII, R X BamHI, R X BglI, R X Fnu4HI, R X HaeII, R X HaeIII, R X HhaI, R X HpaII, R X KpnI, R X MspI, R X NaeI, R X NarI, R X NciI, R X NgoI, R X NgoII, and R X Sau96I. Of particular interest was the finding that methylation of one of the external cytosines of the palindrome 5'-CCGG-3' prevented its cleavage by R X MspI, but not by R X HpaII as had been suggested by Walder et al. [J. Biol. Chem. (1983) 258, 1235-1241].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号