首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The human immunodeficiency virus (HIV) envelope glycoprotein forms trimers on the virion surface, with each monomer consisting of two subunits, gp120 and gp41. The gp120 envelope component binds to CD4 on target cells and undergoes conformational changes that allow gp120 to interact with certain G-protein-coupled receptors (GPCRs) on the same target membranes. The GPCRs that function as HIV coreceptors were found to be chemokine receptors. The primary coreceptors are CCR5 and CXCR4, but several other chemokine receptors were identified as "minor coreceptors", indicating their ability support entry of some HIV strains in tissue cultures. Formation of the tri-molecular complexes stabilizes virus binding and triggers a series of conformational changes in gp41 that facilitate membrane fusion and viral cell entry. Concerted efforts are underway to decipher the specific interactions between gp120/CD4, gp120/coreceptors, and their contributions to the subsequent membrane fusion process. It is hoped that some of the transient conformational intermediates in gp120 and gp41 would serve as targets for entry inhibitors. In addition, the CD4 and coreceptors are primary targets for several classes of inhibitors currently under testing. Our review summarizes the current knowledge on the interactions of HIV gp120 with its receptor and coreceptors, and the important properties of the chemokine receptors and their regulation in primary target cells. We also summarize the classes of coreceptor inhibitors under development.  相似文献   

2.
Filamin-A regulates actin-dependent clustering of HIV receptors   总被引:5,自引:0,他引:5  
Human immunodeficiency virus (HIV)-1 infection requires envelope (Env) glycoprotein gp120-induced clustering of CD4 and coreceptors (CCR5 or CXCR4) on the cell surface; this enables Env gp41 activation and formation of a complex that mediates fusion between Env-containing and target-cell membranes. Kinetic studies show that viral receptors are actively transported to the Env-receptor interface in a process that depends on plasma membrane composition and the actin cytoskeleton. The mechanisms by which HIV-1 induces F-actin rearrangement in the target cell remain largely unknown. Here, we show that CD4 and the coreceptors interact with the actin-binding protein filamin-A, whose binding to HIV-1 receptors regulates their clustering on the cell surface. We found that gp120 binding to cell receptors induces transient cofilin-phosphorylation inactivation through a RhoA-ROCK-dependent mechanism. Blockade of filamin-A interaction with CD4 and/or coreceptors inhibits gp120-induced RhoA activation and cofilin inactivation. Our results thus identify filamin-A as an adaptor protein that links HIV-1 receptors to the actin cytoskeleton remodelling machinery, which may facilitate virus infection.  相似文献   

3.
The human immunodeficiency virus (HIV) envelope glycoprotein forms trimers on the virion surface, with each monomer consisting of two subunits, gp120 and gp41. The gp120 envelope component binds to CD4 on target cells and undergoes conformational changes that allow gp120 to interact with certain G-protein-coupled receptors (GPCRs) on the same target membranes. The GPCRs that function as HIV coreceptors were found to be chemokine receptors. The primary coreceptors are CCR5 and CXCR4, but several other chemokine receptors were identified as “minor coreceptors”, indicating their ability support entry of some HIV strains in tissue cultures. Formation of the tri-molecular complexes stabilizes virus binding and triggers a series of conformational changes in gp41 that facilitate membrane fusion and viral cell entry. Concerted efforts are underway to decipher the specific interactions between gp120/CD4, gp120/coreceptors, and their contributions to the subsequent membrane fusion process. It is hoped that some of the transient conformational intermediates in gp120 and gp41 would serve as targets for entry inhibitors. In addition, the CD4 and coreceptors are primary targets for several classes of inhibitors currently under testing. Our review summarizes the current knowledge on the interactions of HIV gp120 with its receptor and coreceptors, and the important properties of the chemokine receptors and their regulation in primary target cells. We also summarize the classes of coreceptor inhibitors under development.  相似文献   

4.
The fusion of HIV-1 with the plasma membrane of CD4+ cells is triggered by the interaction of HIV-1 surface envelope glycoprotein gp120 with the CD4 receptor, and requires coreceptors (CCR5 and CXCR4). Recent advances in the study of HIV-1 entry into CD4+ cells suggest that glycosphingolipids (GSL) may also participate in the fusion process. GSL are organized in functional microdomains which are associated with specific membrane proteins such as CD4. GSL-enriched microdomains were purified from human lymphocytes and reconstituted as a monomolecular film at the air-water interface of a Langmuir film balance. Surface pressure measurements allowed to characterize the sequential interaction of GSL with CD4 and with gp120. Using this approach, we identified globotriaosylceramide (Gb3) and ganglioside GM3 as the main lymphocyte GSL recognized by gp120. In both cases, the interaction was saturable and dramatically increased by CD4. We propose that GSL microdomains behave as moving platforms allowing the recruitment of HIV-1 coreceptors after the initial interaction between the viral particle and CD4. According to this model, the GSL microdomain may: i) stabilize the attachment of the virus with the cell surface through multiple low affinity interactions between the V3 domain of gp120 and the carbohydrate moiety of GSL, and ii) convey the virus to an appropriate coreceptor by moving freely in the outer leaflet of the plasma membrane. This model can be extrapolated to all envelope viruses (e.g. influenza virus) that use cell surface GSL of the host cells as receptors or coreceptors.  相似文献   

5.
6.
Magnus C  Regoes RR 《PloS one》2012,7(3):e33441
Virions of the Human Immunodeficiency Virus (HIV) infect cells by first attaching with their surface spikes to the CD4 receptor on target cells. This leads to conformational changes in the viral spikes, enabling the virus to engage a coreceptor, commonly CCR5 or CXCR4, and consecutively to insert the fusion peptide into the cellular membrane. Finally, the viral and the cellular membranes fuse. The HIV spike is a trimer consisting of three identical heterodimers composed of the gp120 and gp41 envelope proteins. Each of the gp120 proteins in the trimer is capable of attaching to the CD4 receptor and the coreceptor, and each of the three gp41 units harbors a fusion domain. It is still under debate how many of the envelope subunits within a given trimer have to bind to the CD4 receptors and to the coreceptors, and how many gp41 protein fusion domains are required for fusion. These numbers are referred to as subunit stoichiometries. We present a mathematical framework for estimating these parameters individually by analyzing infectivity assays with pseudotyped viruses. We find that the number of spikes that are engaged in mediating cell entry and the distribution of the spike number play important roles for the estimation of the subunit stoichiometries. Our model framework also shows why it is important to subdivide the question of the number of functional subunits within one trimer into the three different subunit stoichiometries. In a second step, we extend our models to study whether the subunits within one trimer cooperate during receptor binding and fusion. As an example for how our models can be applied, we reanalyze a data set on subunit stoichiometries. We find that two envelope proteins have to engage with CD4-receptors and coreceptors and that two fusion proteins must be revealed within one trimer for viral entry. Our study is motivated by the mechanism of HIV entry but the experimental technique and the model framework can be extended to other viral systems as well.  相似文献   

7.
8.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD4-inducible gp120 epitopes and that block gp120-chemokine receptor binding were used to investigate the nature and functional significance of gp120 conformational changes initiated by CD4 binding. Envelope glycoproteins derived from both T-cell line-adapted and primary HIV-1 isolates exhibited increased binding of the 17b antibody in the presence of sCD4. CD4-induced exposure of the 17b epitope on the oligomeric envelope glycoprotein complex occurred over a wide range of temperatures and involved movement of the gp120 V1/V2 variable loops. Amino acid changes that reduced the efficiency of 17b epitope exposure following CD4 binding invariably compromised the ability of the HIV-1 envelope glycoproteins to form syncytia or to support virus entry. Comparison of the CD4 dependence and neutralization efficiencies of the 17b and CG10 antibodies suggested that the epitopes for these antibodies are minimally accessible following attachment of gp120 to cell surface CD4. These results underscore the functional importance of these CD4-induced changes in gp120 conformation and illustrate viral strategies for sequestering chemokine receptor-binding regions from the humoral immune response.  相似文献   

9.
The fusion of HIV-1 with the plasma membrane of CD4+ cells is triggered by the interaction of HIV-1 surface envelope glycoprotein gp120 with the CD4 receptor, and requires coreceptors (CCR5 and CXCR4). Recent advances in the study of HIV-1 entry into CD4+ cells suggest that glycosphingolipids (GSL) may also participate in the fusion process. GSL are organized in functional microdomains which are associated with specific membrane proteins such as CD4. GSL-enriched microdomains were purified from human lymphocytes and reconstituted as a monomolecular film at the air–water interface of a Langmuir film balance. Surface pressure measurements allowed to characterize the sequential interaction of GSL with CD4 and with gp120. Using this approach, we identified globotriaosylceramide (Gb3) and ganglioside GM3 as the main lymphocyte GSL recognized by gp120. In both cases, the interaction was saturable and dramatically increased by CD4. We propose that GSL microdomains behave as moving platforms allowing the recruitment of HIV-1 coreceptors after the initial interaction between the viral particle and CD4. According to this model, the GSL microdomain may : i) stabilize the attachment of the virus with the cell surface through multiple low affinity interactions between the V3 domain of gp120 and the carbohydrate moiety of GSL, and ii) convey the virus to an appropriate coreceptor by moving freely in the outer leaflet of the plasma membrane. This model can be extrapolated to all envelope viruses (e.g. influenza virus) that use cell surface GSL of the host cells as receptors or coreceptors.  相似文献   

10.
The CD4 molecule is an essential receptor for human immunodeficiency virus type 1 (HIV-1) through high-affinity interactions with the viral external envelope glycoprotein gp120. Previously, neutralizing monoclonal antibodies (MAbs) specific to the third hypervariable domain of gp120 (the V3 loop) have been thought to block HIV infection without affecting the binding of HIV particles to CD4-expressing human cells. However, here we demonstrate that this conclusion was not correct and was due to the use of soluble gp120 instead of HIV particles. Indeed, neutralizing anti-V3 loop MAbs inhibited completely the binding and entry of HIV particles into CD4+ human cells. In contrast, the binding of virus was only partially inhibited by neutralizing anti-CD4 MAbs against the gp120 binding site in CD4, which, like the anti-V3 loop MAbs, completely inhibited HIV entry and infection. Nonneutralizing control MAbs against either the V3 loop or the N or C terminus of gp120 had no significant effect on HIV binding and entry. HIV-1 particles were also found to bind human and murine cells expressing or not expressing the human CD4 molecule. Interestingly, the binding of HIV to CD4+ murine cells was inhibited by both anti-V3 and anti-CD4 MAbs, whereas the binding to human and murine CD4- cells was affected only by anti-V3 loop MAbs. The effect of anti-V3 loop neutralizing MAbs on the HIV binding to cells appears not to be the direct consequence of gp120 shedding from HIV particles or of a decreased affinity of CD4 or gp120 for binding to its surface counterpart. Taken together, our results suggest the existence of CD4-dependent and -independent binding events involved in the attachment of HIV particles to cells; in both of these events, the V3 loop plays a critical role. As murine cells lack the specific cofactor CXCR4 for HIV-1 entry, other cell surface molecules besides CD4 might be implicated in stable binding of HIV particles to cells.  相似文献   

11.
The high affinity binding site for human immunodeficiency virus (HIV) envelope glycoprotein gp120 resides within the amino-terminal domain (D1) of CD4. Mutational and antibody epitope analyses have implicated the region encompassing residues 40-60 in D1 as the primary binding site for gp120. Outside of this region, a single residue substitution at position 87 abrogates syncytium formation without affecting gp120 binding. We describe two groups of CD4 monoclonal antibodies (mAbs) which recognize distinct epitopes associated with these regions in D1. These mAbs distinguish between the gp120 binding event and virus infection and virus-induced cell fusion. One cluster of mAbs, which bind at or near the high affinity gp120 binding site, blocked gp120 binding to CD4 and, as expected, also blocked HIV infection of CD4+ cells and virus-induced syncytium formation. A second cluster of mAbs, which recognize the CDR-3 like loop, did not block gp120 binding as demonstrated by their ability to form ternary complexes with CD4 and gp120. Yet, these mAbs strongly inhibited HIV infection of CD4+ cells and HIV-envelope/CD4-mediated syncytium formation. The structure of D1 has recently been solved at atomic resolution and in its general features resembles IgVk regions as predicted from sequence homology and mAb epitopes. In the D1 structure, the regions recognized by these two groups of antibodies correspond to the C'C" (Ig CDR2) and FG (Ig CDR3) hairpin loops, respectively, which are solvent-exposed beta turns protruding in two different directions on a face of D1 distal to the D2 domain. This face is straddled by the longer BC (Ig CDR1) loop which bisects the plain formed by C'C' and FG. This structure is consistent with C'C' and FG forming two distinct epitope clusters within D1. We conclude that the initial interaction between gp120 and CD4 is not sufficient for HIV infection and syncytium formation and that CD4 plays a critical role in the subsequent virus-cell and cell-cell membrane fusion events. We propose that the initial binding of CD4 to gp120 induces conformational changes in gp120 leading to subsequent interactions of the FG loop with other regions in gp120 or with the fusogenic gp41 potion of the envelope gp160 glycoprotein.  相似文献   

12.
Despite advances in HIV therapy, viral resistance and side‐effects with current drug regimens require targeting new components of the virus. Dual antagonist peptide triazoles (PT) are a novel class of HIV‐1 inhibitors that specifically target the gp120 component of the viral spike and inhibit its interaction with both of its cell surface protein ligands, namely the initial receptor CD4 and the co‐receptor (CCR5/CXCR4), thus preventing viral entry. Following an initial survey of 19 gp120 alanine mutants by ELISA, we screened 11 mutants for their importance in binding to, and inhibition by the PT KR21 using surface plasmon resonance. Key mutants were purified and tested for their effects on the peptide's affinity and its ability to inhibit binding of CD4 and the co‐receptor surrogate mAb 17b. Effects of the mutations on KR21 viral neutralization were measured by single‐round cell infection assays. Two mutations, D474A and T257A, caused large‐scale loss of KR21 binding, as well as losses in both CD4/17b and viral inhibition by KR21. A set of other Ala mutants revealed more moderate losses in direct binding affinity and inhibition sensitivity to KR21. The cluster of sensitive residues defines a PT functional epitope. This site is in a conserved region of gp120 that overlaps the CD4 binding site and is distant from the co‐receptor/17b binding site, suggesting an allosteric mode of inhibition for the latter. The arrangement and sequence conservation of the residues in the functional epitope explain the breadth of antiviral activity, and improve the potential for rational inhibitor development. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
To infect target cells, the human immunodeficiency virus (HIV) type I (HIV-1) must engage not only the well-known CD4 molecule, but it also requires one of several recently described coreceptors. In particular, the CXCR4 (LESTR/fusin) receptor allows fusion and entry of T-tropic strains of HIV, whereas CCR5 is the major coreceptor used by primary HIV-1 strains that infect macrophages and CD4(+) T-helper cells (M-tropic viruses). In addition, the alpha chemokine SDF1alpha and the beta chemokines MIP1alpha, MIP1beta, and RANTES, natural ligands of CXCR4 and CCR5, respectively, are potent soluble inhibitors of HIV infection by blocking the binding between the viral envelope glycoprotein gp120 and the coreceptors. Approximately two-thirds of individuals with acquired immunodeficiency syndrome (AIDS) show neurologic complications, which are referred to a syndrome called AIDS dementia complex or HIV-1-associated cognitive/motor complex. The HIV-1 coat glycoprotein gp120 has been proposed as the major etiologic agent for neuronal damage, mediating both direct and indirect effects on the CNS. Furthermore, recent findings showing the presence of chemokine receptors on the surface of different cell types resident in the CNS raise the possibility that the association of gp120 with these receptors may contribute to the pathogenesis of neurological dysfunction. Here, we address the possible role of alpha and beta chemokines in inhibiting gp120-mediated neurotoxicity using the human neuroblastoma CHP100 cell line as an experimental model. We have previously shown that, in CHP100 cells, picomolar concentrations of gp120 produce a significant increase in cell death, which seems to proceed through a Ca(2+) - and NMDA receptor-dependent cascade. In this study, we gained insight into the mechanism(s) of neurotoxicity elicited by the viral glycoprotein. We found that CHP100 cells constitutively express both CXCR4 and CCR5 receptors and that stimulation with phorbol 12-myristate 13-acetate down-regulates their expression, thus preventing gp120-induced cell death. Furthermore, all the natural ligands of these receptors exerted protective effects against gp120-mediated neuronal damage, although with different efficiencies. These findings, together with our previous reports, suggest that the neuronal injury observed in HIV-1 infection could be due to direct (or indirect) interactions between the viral protein gp120 and chemokine and/or NMDA receptors.  相似文献   

14.
The human immunodeficiency virus (HIV) envelope (Env) glycoprotein (gp) 120 is a highly disulfide-bonded molecule that attaches HIV to the lymphocyte surface receptors CD4 and CXCR4. Conformation changes within gp120 result from binding and trigger HIV/cell fusion. Inhibition of lymphocyte surface-associated protein-disulfide isomerase (PDI) blocks HIV/cell fusion, suggesting that redox changes within Env are required. Using a sensitive assay based on a thiol reagent, we show that (i) the thiol content of gp120, either secreted by mammalian cells or bound to a lymphocyte surface enabling CD4 but not CXCR4 binding, was 0.5-1 pmol SH/pmol gp120 (SH/gp120), whereas that of gp120 after its interaction with a surface enabling both CD4 and CXCR4 binding was raised to 4 SH/gp120; (ii) PDI inhibitors prevented this change; and (iii) gp120 displaying 2 SH/gp120 exhibited CD4 but not CXCR4 binding capacity. In addition, PDI inhibition did not impair gp120 binding to receptors. We conclude that on average two of the nine disulfides of gp120 are reduced during interaction with the lymphocyte surface after CXCR4 binding prior to fusion and that cell surface PDI catalyzes this process. Disulfide bond restructuring within Env may constitute the molecular basis of the post-receptor binding conformational changes that induce fusion competence.  相似文献   

15.
HIV use the CD4 molecule as their primary cellular receptor. Residues in the N-terminal domain (D1) of CD4 are crucial to HIV attachment through the gp120 envelope component. However, other regions of CD4 appear to be required subsequently for virus- and cell-cell fusion. Little is understood of the post-binding steps which may differ between HIV variants. We report a novel anti-CD4 mAb that does not block CD4/gp120 binding, but that does efficiently block both viral infection and cell-cell syncytia formation, and define its contact site as residues in CD4 D2 using both mouse/human CD4 chimeras and CD4 substitution mutants. We also investigated the basis for its antiviral effect. Using the CD4 D2 specific mAb, we identify another conserved step in HIV infection, as evidenced by its ability to neutralize a broad range of primary isolates and T cell-line passaged strains. Monovalent forms of the mAb were used to determine if its activity was due to masking of the D2 epitope, to steric inhibition, or bivalency. Our data indicate that both binding site and bivalency of the mAb underlie its potency. The need for bivalency is not simply explained by affinity, because monovalent forms can displace the intact mAb and reverse its protective effect. These results provide evidence that binding of the D2-specific mAb prevents structural alterations necessary for membrane fusion.  相似文献   

16.
There is evidence that the initial interaction between HIV-1 and the host that is essential for infection is the specific binding of the viral envelope glycoprotein, gp120, to the CD4 molecule found on certain T cells and monocytes. Most individuals infected with HIV develop antibodies against the gp120 protein. Although in vitro treatment of CD4+ T cells with mAb to a specific epitope of the CD4 molecule (T4a) blocks virus binding, syncytia formation, and infectivity, it is unclear if antibodies to gp120 from an infected individual that can inhibit the binding of gp120 to CD4 is in any way related to the clinical course of disease. Our present study characterizes the binding of 125I-labeled rgp120 to CD4+ cells, and describes an assay system that measures a potentially relevant form of immunity to HIV infection, i.e., the blocking of HIV binding to CD4+ cells. Optimal binding conditions included a 2-h incubation at 22 degrees C, 4 x 10(6) CD4+ cells, and 1 nM gp120. The dissociation constant (KD) for gp120 binding to cell surface CD4 was 5 nM, and was inhibited by soluble CD4 and by mAb to T4a but not to T3 or T4. For the binding inhibition assay, negative controls included healthy seronegatives, seronegatives with connective tissue diseases, patients with HTLV-1 disease, and patients infected with HIV-2. In studying over 100 sera, the assay was highly sensitive (98%) and specific (100%). The majority of HIV+ sera could inhibit binding at dilutions of 1/100 to 1/1000. No correlation was noted between binding inhibition (BI) titer in this assay and clinical stage of HIV infection. In addition, there was no correlation between BI titer and HIV neutralizing activity. The BI titer was correlated with the titer of anti-gp160 (r = 0.63) and the titer of anti-gp120 (r = 0.52) antibodies determined by Western blot dilution. As with neutralizing antibodies and other forms of immune response to HIV, it is unclear what role antibody blocking of HIV binding to CD4+ cells may play in active immunity to HIV in infected individuals. This activity may prove to have some value in protection against initial HIV infection and, thus, the assay may be of use in monitoring vaccine trials.  相似文献   

17.
The mechanism of the antiviral activity of sulfated polysaccharides on human immunodeficiency virus type 1 (HIV-1) was investigated by determining the effect of dextran sulfate on the binding of CD4 and several anti-gp120 monoclonal antibodies to both recombinant and cell surface gp120. Dextran sulfate did not interfere with the binding of sCD4 to rgp120 on enzyme-linked immunosorbent assay (ELISA) plates or in solution and did not block sCD4 binding to HIV-1-infected cells expressing gp120 on the cell surface. Dextran sulfate had minimal effects on rgp120 binding to CD4+ cells at concentrations which effectively prevent HIV replication. In contrast, it potently inhibited the binding of both rgp120 and cell surface gp120 to several monoclonal antibodies directed against the principal neutralizing domain of gp120 (V3). In an ELISA format, dextran sulfate enhanced the binding of monoclonal antibodies against amino-terminal regions of gp120 and had no effect on antibodies directed to other regions of gp120, including the carboxy terminus. The inhibitory effects of polyanionic polysaccharides on viral binding, viral replication, and formation of syncytia therefore appear mediated by interactions with positively charged amino acids concentrated in the V3 region. This high local positive charge density, unique to the V3 loop, leads us to propose that this property is critical to the function of the V3 region in mediating envelope binding and subsequent fusion between viral and cell membranes. The specific interaction of dextran sulfate with this domain suggests that structurally related molecules on the cell surface, such as heparan sulfate, may be additional targets for HIV binding and infection.  相似文献   

18.
Infections by human immunodeficiency virus type 1 (HIV-1) involve interactions of the viral envelope glycoprotein gp120 with CD4 and then with a coreceptor. R5 isolates of HIV-1 use CCR5 as a coreceptor, whereas X4 isolates use CXCR4. It is not known whether coreceptors merely trigger fusion of the viral and cellular membranes or whether they also influence the energetics of virus adsorption, the placement of the membrane fusion reaction, and the metabolism of adsorbed gp120. Surprisingly, the pathway for metabolism of adsorbed gp120 has not been investigated thoroughly in any cells. To address these issues, we used purified (125)I-gp120s derived from the R5 isolate BaL and from the X4 isolate IIIB as ligands for binding onto human cells that expressed CD4 alone or CD4 with a coreceptor. The gp120 preparations were active in forming ternary complexes with CD4 and the appropriate coreceptor. Moreover, the cellular quantities of CD4 and coreceptors were sufficient for efficient infections by the corresponding HIV-1 isolates. In these conditions, the kinetics and affinities of (125)I-gp120 adsorptions and their subsequent metabolisms were strongly dependent on CD4 but were not significantly influenced by CCR5 or CXCR4. After binding to CD4, the (125)I-gp120s slowly became resistant to extraction from the cell monolayers by pH 3.0 buffer, suggesting that they were endocytosed with half-times of 1-2 h. Within 20-30 min of endocytosis, the (125)I-gp120s were proteolytically degraded to small products that were shed into the media. The weak base chloroquine strongly inhibited (125)I-gp120 proteolysis and caused its intracellular accumulation, suggesting involvement of a low pH organelle. Results supporting these methods and conclusions were obtained by confocal immunofluorescence microscopy. We conclude that the energetics, kinetics, and pathways of (125)I-gp120 binding, endocytosis, and proteolysis are determined principally by CD4 rather than by coreceptors in cells that contain sufficient coreceptors for efficient infections. Therefore, the role of coreceptors in HIV-1 infections probably does not include steerage or subcellular localization of adsorbed virus.  相似文献   

19.
Human immunodeficiency virus (HIV) type 1 infection requires functional interactions of the viral surface (gp120) glycoprotein with cell surface CD4 and a chemokine coreceptor (usually CCR5 or CXCR4) and of the viral transmembrane (gp41) glycoprotein with the target cell membrane. Extensive genetic variability, generally in gp120 and the gp41 ectodomain, can result in altered coreceptor use, fusion kinetics, and neutralization sensitivity. Here we describe an R5 HIV variant that, in contrast to its parental virus, infects T-cell lines expressing low levels of cell surface CCR5. This correlated with an ability to infect cells in the absence of CD4, increased sensitivity to a neutralizing antibody recognizing the coreceptor binding site of gp120, and increased resistance to the fusion inhibitor T-20. Surprisingly, these properties were determined by alterations in gp41, including the cytoplasmic tail, a region not previously shown to influence coreceptor use. These data indicate that HIV infection of cells with limiting levels of cell surface CCR5 can be facilitated by gp41 sequences that are not exposed on the envelope ectodomain yet induce allosteric changes in gp120 that facilitate exposure of the CCR5 binding site.  相似文献   

20.
The primary event in the infection of cells by HIV is the interaction between the viral envelope glycoprotein, gp120, and its cellular receptor, CD4. A recombinant form of gp120 was found to bind to a recombinant CD4 antigen with high affinity. Two gp120-specific murine monoclonal antibodies were able to block the interaction between gp120 and CD4. The gp120 epitope of one of these antibodies was isolated by immunoaffinity chromatography of acid-cleaved gp120 and shown to be contained within amino acids 397-439. Using in vitro mutagenesis, we have found that deletion of 12 amino acids from this region of gp120 leads to a complete loss of binding. In addition, a single amino acid substitution in this region results in significantly decreased binding, suggesting that sequences within this region are directly involved in the binding of gp120 to the CD4 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号