首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
The Fto gene locus has been linked to increased body weight and obesity in human population studies, but the role of the actual FTO protein in adiposity has remained controversial. Complete loss of FTO protein in mouse and of FTO function in human patients has multiple and variable effects. To determine which effects are due to the ability of FTO to demethylate mRNA, we genetically engineered a mouse with a catalytically inactive form of FTO. Our results demonstrate that FTO catalytic activity is not required for normal body composition although it is required for normal body size and viability. Strikingly, it is also essential for normal bone growth and mineralization, a previously unreported FTO function.  相似文献   

2.
Hornberger TA  Sukhija KB  Wang XR  Chien S 《FEBS letters》2007,581(24):4562-4566
Mechanical stretch induces phosphorylation of the hydrophobic motif site Thr(389) in p70(S6k) through a rapamycin-sensitive (RS) pathway that involves a unique PI3K-independent mechanism. Rapamycin is considered to be a highly specific inhibitor of the protein kinase mTOR; however, mTOR is also considered to be a PI3K-dependent signaling molecule. Thus, questions remain as to whether mTOR is the RS element that confers mechanically-induced signaling to p70(S6k)(389). In this study, rapamycin-resistant mutants of mTOR along with mechanical stretch were used to address this question. The results indicate that mTOR is the RS element and reveal that mTOR signaling can be activated through a PI3K-independent mechanism.  相似文献   

3.
To maintain the normal length of female reproductive life, the majority of primordial follicles must be maintained in a quiescent state for later use. In this study, we aimed to study the effects of rapamycin on primordial follicle development and investigate the role of mTOR and sirtuin signaling. Rats were treated every other day with an intraperitoneal injection of rapamycin (5 mg/kg) or vehicle. After 10 weeks of treatment, ovaries were harvested for hematoxylin and eosin (HE) staining, and analysis by immunohistochemistry and Western blotting. HE staining showed that the number and percentage of primordial follicles in the rapamycin-treated group were twice the control group (P < 0.001). Immunohistochemical analysis showed that mTOR and phosphorylated-p70S6K were extensively expressed in surviving follicles with strong staining observed in the cytoplasm of the oocyte. Western blotting showed decreased expression of phosphorylated mTOR and phosphorylated p70S6K in the rapamycin-treated group, and increased the expression of both SIRT1 and SIRT6 compared to the control group (P < 0.05). Taken together, these results suggest that rapamycin may inhibit the transition from primordial to developing follicles and preserve the follicle pool reserve, thus extending the ovarian lifespan of female rats via the modulation of mTOR and sirtuin signalings.  相似文献   

4.
Erwinia piriflorinigrans is a necrotrophic pathogen of pear reported from Spain that destroys flowers but does not progress further into the host. We sequenced the complete genome of the type strain CFBP 5888T clarifying its phylogenetic position within the genus Erwinia, and indicating a position between its closest relative, the epiphyte Erwinia tasmaniensis and other plant pathogenic Erwinia spp. (i.e., the fire blight pathogen E. amylovora and the Asian pear pathogen E. pyrifoliae). Common features are the type III and type VI secretion systems, amylovoran biosynthesis and desferrioxamine production. The E. piriflorinigrans genome also provided the first evidence for production of the siderophore chrysobactin within the genus Erwinia sensu stricto, which up to now was mostly associated with phytopathogenic, soft-rot Dickeya and Pectobacterium species. Plasmid pEPIR37, reported in this strain, is closely related to small plasmids found in the fire blight pathogen E. amylovora and E. pyrifoliae. The genome of E. piriflorinigrans also gives detailed insights in evolutionary genomics of pathoadapted Erwinia.  相似文献   

5.
6.
The mammalian target of rapamycin (mTOR) inhibiting drug rapamycin (Sirolimus) has severe side effects in patients including hyperlipidemia, an established risk factor for atherosclerosis. Recently, it was shown that rapamycin decreases hepatic LDL receptor (LDL-R) expression, which likely contributes to hypercholesterolemia. Scavenger receptor, class B, type I (SR-BI) is the major HDL receptor and consequently regulating HDL-cholesterol levels and the athero-protective effects of HDL. By using the mTOR inhibitor rapamycin, we show that SR-BI is down-regulated in human umbilical vein endothelial cells (HUVECs). This reduction of SR-BI protein as well as mRNA levels by about 50% did not alter HDL particle uptake or HDL-derived lipid transfer. However, rapamycin reduced HDL-induced activation of eNOS and stimulation of endothelial cell migration. The effects on cell migration could be counteracted by SR-BI overexpression, indicating that decreased SR-BI expression is in part responsible for the rapamycin-induced effects. We demonstrate that inhibition of mTOR leads to endothelial cell dysfunction and decreased SR-BI expression, which may contribute to atherogenesis during rapamycin treatment.  相似文献   

7.
Kawabata K  Murakami A  Ohigashi H 《FEBS letters》2006,580(22):5288-5294
Matrix metalloproteinase (MMP)-7 is considered to play essential roles in cancer progression. We examined the efficacy of auraptene, a citrus coumarin derivative, for suppressing MMP-7 expression in the human colorectal adenocarcinoma cell line HT-29. Auraptene remarkably inhibited the production of proMMP-7 protein, without affecting its mRNA expression level. Rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), showed similar results, suggesting that auraptene suppresses mTOR-dependent proMMP-7 translation. Interestingly, however, auraptene showed no effects on the activation of Akt/mTOR signaling, whereas the phosphorylation levels of 4E binding protein (4EBP)1 and eukaryotic translation initiation factor (eIF)4B were substantially decreased. In addition, auraptene remarkably dephosphorylated constitutively activated extracellular signal-regulated kinase (ERK)1/2. Transfection of ERK1/2 siRNA led to a significant reduction of proMMP-7 protein production as well as of the phosphorylation of eIF4B. These results demonstrate that auraptene targets the translation step for proMMP-7 protein synthesis by disrupting ERK1/2-mediated phosphorylation of 4EBP1 and eIF4B.  相似文献   

8.
9.
10.
11.
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus–host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.  相似文献   

12.
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号