首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Z F Chou  F Chen    J Wilusz 《Nucleic acids research》1994,22(13):2525-2531
We have defined the positional and sequence requirements of U-rich downstream elements using a simian virus 40 late polyadenylation signal containing a substituted downstream region. A UUUUU element will significantly increase the efficiency of 3' end processing when placed between 6 and 25 bases downstream from the cleavage site. Positions in this interval closer than 15 bases from the cleavage site, however, were noticeably less efficient. Placement of the UUUUU element between +20 and +25 caused a partial shift in cleavage site usage to a CA motif at +4. Mutational analysis indicated that the sequence requirements at individual positions of the UUUUU element were somewhat flexible. Changing more than one base of the UUUUU sequence, however, severely diminished the ability of the element to mediate efficient 3' end processing. Finally, although hnRNP C proteins specifically interact with U-rich sequences, this protein--RNA interaction is not required for efficient in vitro polyadenylation.  相似文献   

2.
RNA recognition by the human polyadenylation factor CstF.   总被引:21,自引:8,他引:13       下载免费PDF全文
Polyadenylation of mammalian mRNA precursors requires at least two signal sequences in the RNA: the nearly invariant AAUAAA, situated 5' to the site of polyadenylation, and a much more variable GU- or U-rich downstream element. At least some downstream sequences are recognized by the heterotrimeric polyadenylation factor CstF, although how, and indeed if, all variations of this diffuse element are bound by a single factor is unknown. Here we show that the RNP-type RNA binding domain of the 64-kDa subunit of CstF (CstF-64) (64K RBD) is sufficient to define a functional downstream element. Selection-amplification (SELEX) experiments employing a glutathione S-transferase (GST)-64K RBD fusion protein selected GU-rich sequences that defined consensus recognition motifs closely matching those present in natural poly(A) sites. Selected sequences were bound specifically, and with surprisingly high affinities, by intact CstF and were functional in reconstituted, CstF-dependent cleavage assays. Our results also indicate that GU- and U-rich sequences are variants of a single CstF recognition motif. For comparison, SELEX was performed with a GST fusion containing the RBD from the apparent yeast homolog of CstF-64, RNA15. Strikingly, although the two RBDs are almost 50% identical and yeast poly(A) signals are at least as degenerate as the mammalian downstream element, a nearly invariant 12-base U-rich sequence distinct from the CstF-64 consensus was identified. We discuss these results in terms of the function and evolution of mRNA 3'-end signals.  相似文献   

3.
Spatial constraints on polyadenylation signal function   总被引:11,自引:0,他引:11  
Efficient cleavage and polyadenylation of eukaryotic messenger RNAs require at least two signal elements: an AAUAAA or closely related sequence located 7-30 base pairs (bp) upstream of the site of processing, and a G/U- or U-rich sequence located 3' to the cleavage site. The herpes simplex virus type 1 thymidine kinase (tk) gene contains two copies of the AATAAA hexanucleotide and a GT-rich region. We have shown that the first AATAAA and the GT-rich region are essential for efficient processing, both in vivo and in vitro, whereas the second AATAAA does not appear to play any role in the formation of tk mRNA 3' ends. The failure of a signal containing only the second AATAAA and the GT-rich element to signal cleavage and polyadenylation suggested that these two elements might be too close together to constitute a functional polyadenylation signal. The experiments described in this report were directed at determining the effects on mRNA 3' end formation of alterations in spacing between signal elements. Wild-type tk contains 19 bp between these two elements. Constructs were made in which an AATAAA and the GT-rich region were separated by various distances ranging from 7 to 43 bp. The quantity and location of 3' ends of the tk mRNA produced by these constructs in Cos-1 cells were measured by S1 nuclease protection analysis. Signal efficiency was gradually reduced as the separation between the two signal elements was increased; with a separation of 43 bp, the signal functioned at approximately one-eighth the efficiency of the parental construction. Bringing the two signals closer together resulted in decreased signal efficiency; with a separation of 7 or 9 bp, no tk mRNA polyadenylated within the normal region was produced. Altering the sequences between these two elements without changing the distance had small effects on processing efficiency.  相似文献   

4.
The structure of the highly efficient simian virus 40 late polyadenylation signal (LPA signal) is more complex than those of most known mammalian polyadenylation signals. It contains efficiency elements both upstream and downstream of the AAUAAA region, and the downstream region contains three defined elements (two U-rich elements and one G-rich element) instead of the single U- or GU-rich element found in most polyadenylation signals. Since many reports have indicated that the secondary structure in RNA may play a significant role in RNA processing, we have used nuclease structure analysis techniques to determine the secondary structure of the LPA signal. We find that the LPA signal has a functionally significant secondary structure. Much of the region upstream of AAUAAA is sensitive to single-strand-specific nucleases. The region downstream of AAUAAA has both double- and single-stranded characteristics. Both U-rich elements are predominately sensitive to the double-strand-specific nuclease RNase V(1), while the G-rich element is primarily single stranded. The U-rich element closest to AAUAAA contains four distinct RNase V(1)-sensitive regions, which we have designated structural region 1 (SR1), SR2, SR3, and SR4. Linker scanning mutants in the downstream region were analyzed both for structure and for function by in vitro cleavage analyses. These data show that the ability of the downstream region, particularly SR3, to form double-stranded structures correlates with efficient in vitro cleavage. We discuss the possibility that secondary structure downstream of the AAUAAA may be important for the functions of polyadenylation signals in general.  相似文献   

5.
6.
7.
Cleavage site determinants in the mammalian polyadenylation signal.   总被引:22,自引:5,他引:17       下载免费PDF全文
Using a series of position and nucleotide variants of the SV40 late polyadenylation signal we have demonstrated that three sequence elements determine the precise site of 3-end cleavage in mammalian pre-mRNAs: an upstream AAUAAA element, a down-stream U-rich element consisting of five nucleotides, at least four of which are uridine, and a nucleotide preference at the site of cleavage in the order A > U > C >> G. Cleavage occurs no closer than 11 bases, but no further than 23 bases from the AAUAAA element. The downstream U-rich element is usually located 10-30 bases from the cleavage site. The relative position of the AAUAAA and the U-rich elements define the approximate region within a 13 base domain in which cleavage will occur. The exact position of cleavage is then determined by the local nucleotide sequence in the order of preference noted above. This model accounts for nearly three quarters of polyadenylation signals surveyed and is consistent with previous experimental observations.  相似文献   

8.
The CstF polyadenylation factor is a multisubunit complex required for efficient cleavage and polyadenylation of pre-mRNAs. Using an RNase H-mediated mapping technique, we show that the 64-kDa subunit of CstF can be photo cross-linked to pre-mRNAs at U-rich regions located downstream of the cleavage site of the simian virus 40 late and adenovirus L3 pre-mRNAs. This positional specificity of cross-linking is a consequence of CstF interaction with the polyadenylation complex, since the 64-kDa protein by itself is cross-linked at multiple positions on a pre-mRNA template. During polyadenylation, four consecutive U residues can substitute for the native downstream U-rich sequence on the simian virus 40 pre-mRNA, mediating efficient 64-kDa protein cross-linking at the downstream position. Furthermore, the position of the U stretch not only enables the 64-kDa polypeptide to be cross-linked to the pre-mRNA but also influences the site of cleavage. A search of the GenBank database revealed that a substantial portion of mammalian polyadenylation sites carried four or more consecutive U residues positioned so that they should function as sites for interaction with the 64-kDa protein downstream of the cleavage site. Our results indicate that the polyadenylation machinery physically spans the cleavage site, directing cleavage factors to a position located between the upstream AAUAAA motif, where the cleavage and polyadenylation specificity factor is thought to interact, and the downstream U-rich binding site for the 64-kDa subunit of CstF.  相似文献   

9.
B Dichtl  W Keller 《The EMBO journal》2001,20(12):3197-3209
Recognition of poly(A) sites in yeast pre-mRNAs is poorly understood. Employing an in vitro cleavage system with cleavage and polyadenylation factor (CPF) and cleavage factor IA we show that the efficiency and positioning elements are dispensable for poly(A)-site recognition within a short CYC1 substrate in vitro. Instead, U-rich elements immediately upstream and downstream of the poly(A) site mediate cleavage-site recognition within CYC1 and ADH1 pre-mRNAs. These elements act in concert with the poly(A) site to produce multiple recognition sites for the processing machinery, since combinations of mutations within these elements were most effective in cleavage inhibition. Intriguingly, introduction of a U-rich element downstream of the GAL7 poly(A) site strongly enhanced cleavage, underscoring the importance of downstream sequences in general. RNA- binding analyses demonstrate that cleavage depends on the recognition of the poly(A)-site region by CPF. Consistent with in vitro results, mutation of sequences upstream and downstream of the poly(A) site affected 3'-end formation in vivo. A model for yeast pre-mRNA cleavage-site recognition outlines an unanticipated high conservation of yeast and mammalian 3'-end processing mechanisms.  相似文献   

10.
11.
F Chen  J Wilusz 《Nucleic acids research》1998,26(12):2891-2898
We have previously identified a G-rich sequence (GRS) as an auxiliary downstream element (AUX DSE) which influences the processing efficiency of the SV40 late polyadenylation signal. We have now determined that sequences downstream of the core U-rich element (URE) form a fundamental part of mammalian polyadenylation signals. These novel AUX DSEs all influenced the efficiency of 3'-end processing in vitro by stabilizing the assembly of CstF on the core downstream URE. Three possible mechanisms by which AUX DSEs mediate efficient in vitro 3'-end processing have been explored. First, AUX DSEs can promote processing efficiency by maintaining the core elements in an unstructured domain which allows the general polyadenylation factors to efficiently assemble on the RNA substrate. Second, AUX DSEs can enhance processing by forming a stable structure which helps focus binding of CstF to the core downstream URE. Finally, the GRS element, but not the binding site for the bacteriophage R17 coat protein, can substitute for the auxiliary downstream region of the adenovirus L3 polyadenylation signal. This suggests that AUX DSE binding proteins may play an active role in stimulating 3'-end processing by stabilizing the association of CstF with the RNA substrate. AUX DSEs, therefore, serve as a integral part of the polyadenylation signal and can affect signal strength and possibly regulation.  相似文献   

12.
13.
14.
Recent in vivo studies have identified specific sequences between 56 and 93 nucleotides upstream of a polyadenylation [poly(A)] consensus sequence, AAUAAA, in human immunodeficiency virus type 1 (HIV-1) that affect the efficiency of 3'-end processing at this site (A. Valsamakis, S. Zeichner, S. Carswell, and J. C. Alwine, Proc. Natl. Acad. Sci. USA 88:2108-2112, 1991). We have used HeLa cell nuclear extracts and precursor RNAs bearing the HIV-1 poly(A) signal to study the role of upstream sequences in vitro. Precursor RNAs containing the HIV-1 AAUAAA and necessary upstream (U3 region) and downstream (U5 region) sequences directed accurate cleavage and polyadenylation in vitro. The in vitro requirement for upstream sequences was demonstrated by using deletion and linker substitution mutations. The data showed that sequences between 56 and 93 nucleotides upstream of AAUAAA, which were required for efficient polyadenylation in vivo, were also required for efficient cleavage and polyadenylation in vitro. This is the first demonstration of the function of upstream sequences in vitro. Previous in vivo studies suggested that efficient polyadenylation at the HIV-1 poly(A) signal requires a spacing of at least 250 nucleotides between the 5' cap site and the AAUAAA. Our in vitro analyses indicated that a precursor containing the defined upstream and downstream sequences was efficiently cleaved at the polyadenylation site when the distance between the 5' cap and the AAUAAA was reduced to at least 140 nucleotides, which is less than the distance predicted from in vivo studies. This cleavage was dependent on the presence of the upstream element.  相似文献   

15.
Secondary structure within the downstream region of mammalian polyadenylation signals has been proposed to perform important functions. The simian virus 40 late polyadenylation signal (SVLPA) forms alternate secondary structures in equilibrium. Their formation correlates with cleavage-polyadenylation efficiency (H. Hans and J. C. Alwine, Mol. Cell. Biol. 20:2926-2932, 2000; M. I. Zarudnaya, I. M. Kolomiets, A. L. Potyahaylo, and D. M. Hovorun, Nucleic Acids Res. 3:1375-1386, 2003), and oligonucleotides that disrupt the secondary structure inhibit in vitro cleavage. To define the important features of downstream secondary structure, we first minimized the SVLPA by deletion, forming a downstream region with fewer, and more stable, stem-loop structures. Specific mutagenesis showed that both stem stability and loop size are important functional features of the downstream region. Stabilization of the stem, thus minimizing alternative structures, decreased cleavage efficiency both in vitro and in vivo. This was most deleterious when the stem was stabilized at the base of the loop, constraining loop size by inhibiting breathing of the stem. The significance of loop size was supported by mutants that showed increased cleavage efficiency with increased loop size and vice versa. A loop of at least 12 nucleotides promoted cleavage; U richness in the loop also promoted cleavage and was particularly important when the stem was stabilized. A mutation designed to eliminate downstream secondary structure still formed many relatively weak alternative structures in equilibrium and retained function. The data suggest that although the downstream region is very important, its structure is quite malleable and is able to tolerate significant mutation within a wide range of primary and secondary structural features. We propose that this malleability is due to the enhanced ability of GU- and U-rich downstream elements to easily form secondary structures with surrounding sequences.  相似文献   

16.
Extracts from HeLa cell nuclei assemble RNAs containing the adenovirus type 2 L3 polyadenylation site into a number of rapidly sedimenting heterodisperse complexes. Briefly treating reaction mixtures prior to sedimentation with heparin reveals a core 25S assembly formed with substrate RNA but not an inactive RNA containing a U----C mutation in the AAUAAA hexanucleotide sequence. The requirements for assembly of this heparin-stable core complex parallel those for cleavage and polyadenylation in vitro, including a functional hexanucleotide, ATP, and a uridylate-rich tract downstream of the cleavage site. The AAUAAA and a downstream U-rich element are resistant in the assembly to attack by RNase H. The poly(A) site between the two protected elements is accessible, but is attacked more slowly than in naked RNA, suggesting that a specific factor or secondary structure is located nearby. The presence of a factor bound to the AAUAAA in the complex is independently demonstrated by immunoprecipitation of a specific T1 oligonucleotide containing the element from the 25S fraction. Precipitation of this fragment from reaction mixtures is blocked by the U----C mutation. However, neither ATP nor the downstream sequence element is required for binding of this factor in the nuclear extract, suggesting that recognition of the AAUAAA is an initial event in complex assembly.  相似文献   

17.
18.
19.
A study of the cis-acting elements involved in the 3' end formation of the RNAs from the major late L4 family of adenovirus-2 was undertaken. Series of 5' or 3' end deletion mutants and mutants harboring either internal deletions or substitutions were prepared and assayed for in vitro cleavage. This first allowed the demonstration of a sequence, located at -6 to -29, relative to AAUAAA, whose deletion or substitution reduces cleavage efficiency at the L4 polyadenylation site two to three fold. This upstream efficiency element 5' AUCUUUGUUGUC/AUCUCUGUGCUG 3' is constituted of a partially repeated 12 nucleotide long, UCG rich sequence. The activities of the 2 sequence elements in cleavage are additive. We also searched for regulatory sequences downstream of the L4 polyadenylation site. We found that the deletion or substitution of a 30 nucleotide long UCG rich sequence, between nucleotides +7 and +35 relative to the cleavage site and harboring a UCCUGU repeat reduces cleavage efficiency at least ten fold. A GUUUUU sequence, starting at +35 had no influence. Thus, the usage of the L4 polyadenylation site requires down-stream sequences different from the canonical GU or U boxes and is regulated by upstream sequence elements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号