首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Proline metabolism is linked to hyperprolinemia, schizophrenia, cutis laxa, and cancer. In the latter case, tumor cells tend to rely on proline biosynthesis rather than salvage. Proline is synthesized from either glutamate or ornithine; both are converted to pyrroline-5-carboxylate (P5C), and then to proline via pyrroline-5-carboxylate reductases (PYCRs). Here, the role of three isozymic versions of PYCR was addressed in human melanoma cells by tracking the fate of 13C-labeled precursors. Based on these studies we conclude that PYCR1 and PYCR2, which are localized in the mitochondria, are primarily involved in conversion of glutamate to proline. PYCRL, localized in the cytosol, is exclusively linked to the conversion of ornithine to proline. This analysis provides the first clarification of the role of PYCRs to proline biosynthesis.  相似文献   

2.
3.
Progeroid disorders overlapping with De Barsy syndrome (DBS) are collectively denoted as autosomal-recessive cutis laxa type 3 (ARCL3). They are caused by biallelic mutations in PYCR1 or ALDH18A1, encoding pyrroline-5-carboxylate reductase 1 and pyrroline-5-carboxylate synthase (P5CS), respectively, which both operate in the mitochondrial proline cycle. We report here on eight unrelated individuals born to non-consanguineous families clinically diagnosed with DBS or wrinkly skin syndrome. We found three heterozygous mutations in ALDH18A1 leading to amino acid substitutions of the same highly conserved residue, Arg138 in P5CS. A de novo origin was confirmed in all six probands for whom parental DNA was available. Using fibroblasts from affected individuals and heterologous overexpression, we found that the P5CS-p.Arg138Trp protein was stable and able to interact with wild-type P5CS but showed an altered sub-mitochondrial distribution. A reduced size upon native gel electrophoresis indicated an alteration of the structure or composition of P5CS mutant complex. Furthermore, we found that the mutant cells had a reduced P5CS enzymatic activity leading to a delayed proline accumulation. In summary, recurrent de novo mutations, affecting the highly conserved residue Arg138 of P5CS, cause an autosomal-dominant form of cutis laxa with progeroid features. Our data provide insights into the etiology of cutis laxa diseases and will have immediate impact on diagnostics and genetic counseling.  相似文献   

4.
Pyrroline-5-carboxylate reductase 1 (PYCR1) catalyzes the biosynthetic half-reaction of the proline cycle by reducing Δ1-pyrroline-5-carboxylate (P5C) to proline through the oxidation of NAD(P)H. Many cancers alter their proline metabolism by up-regulating the proline cycle and proline biosynthesis, and knockdowns of PYCR1 lead to decreased cell proliferation. Thus, evidence is growing for PYCR1 as a potential cancer therapy target. Inhibitors of cancer targets are useful as chemical probes for studying cancer mechanisms and starting compounds for drug discovery; however, there is a notable lack of validated inhibitors for PYCR1. To fill this gap, we performed a small-scale focused screen of proline analogs using X-ray crystallography. Five inhibitors of human PYCR1 were discovered: l-tetrahydro-2-furoic acid, cyclopentanecarboxylate, l-thiazolidine-4-carboxylate, l-thiazolidine-2-carboxylate, and N-formyl l-proline (NFLP). The most potent inhibitor was NFLP, which had a competitive (with P5C) inhibition constant of 100 μm. The structure of PYCR1 complexed with NFLP shows that inhibitor binding is accompanied by conformational changes in the active site, including the translation of an α-helix by 1 Å. These changes are unique to NFLP and enable additional hydrogen bonds with the enzyme. NFLP was also shown to phenocopy the PYCR1 knockdown in MCF10A H-RASV12 breast cancer cells by inhibiting de novo proline biosynthesis and impairing spheroidal growth. In summary, we generated the first validated chemical probe of PYCR1 and demonstrated proof-of-concept for screening proline analogs to discover inhibitors of the proline cycle.  相似文献   

5.
Autosomal-recessive cutis laxa type 2 (ARCL2) is a multisystem disorder characterized by the appearance of premature aging, wrinkled and lax skin, joint laxity, and a general developmental delay. Cutis laxa includes a family of clinically overlapping conditions with confusing nomenclature, generally requiring molecular analyses for definitive diagnosis. Six genes are currently known to mutate to yield one of these related conditions. We ascertained a cohort of typical ARCL2 patients from a subpopulation isolate within eastern Canada. Homozygosity mapping with high-density SNP genotyping excluded all six known genes, and instead identified a single homozygous region near the telomere of chromosome 17, shared identically by state by all genotyped affected individuals from the families. A putative pathogenic variant was identified by direct DNA sequencing of genes within the region. The single nucleotide change leads to a missense mutation adjacent to a splice junction in the gene encoding pyrroline-5-carboxylate reductase 1 (PYCR1). Bioinformatic analysis predicted a pathogenic effect of the variant on splice donor site function. Skipping of the associated exon was confirmed in RNA from blood lymphocytes of affected homozygotes and heterozygous mutation carriers. Exon skipping leads to deletion of the reductase functional domain-coding region and an obligatory downstream frameshift. PYCR1 plays a critical role in proline biosynthesis. Pathogenicity of the genetic variant in PYCR1 is likely, given that a similar clinical phenotype has been documented for mutation carriers of another proline biosynthetic enzyme, pyrroline-5-carboxylate synthase. Our results support a significant role for proline in normal development.  相似文献   

6.
Activity of proline dehydrogenase and pyrroline-5-carboxylate reductase was greatest after 5 and 7 days germination in green and etiolated cotyledons respectively of pumpkin (Cucurbita moschata Poir. cv. Dickinson Field). The ratio of pyrroline-5-carboxylate reductase to proline dehydrogenase activity was constant throughout germination. Both enzymes were purified 30-fold but the ratio pyrroline-5-carboxylate reductase—proline dehydrogenase activity was constant throughout purification. However, this ratio decreased with storage, especially in purified preparations. Both enzymes were stable at high temperature and the ratio pyrroline-5-carboxylate reductase—proline dehydrogenase remained unchanged on heating. Proline dehydrogenase and pyrroline-5-carboxylate reductase were inhibited by sodium bisulfite and cysteine. ATP, ADP and NADP caused inhibition of both enzymes. Proline dehydrogenase utilized NAD but not NADP. Pyrroline-5-carboxylate reductase had a 2.5-fold greater activity with NADH than NADPH. Most of the data presented suggest that proline dehydrogenase and pyrroline-5-carboxylate reductase activities occur on the same protein molecule.  相似文献   

7.
Mutant Chinese hamster lung fibroblasts were selected that are resistant to the proline analog L-azetidine-2-carboxylic acid. Resistance in the two mutant cell lines is associated with two distinct alterations in pyrroline-5-carboxylate synthase, the enzyme that catalyzes the proline biosynthetic step leading from glutamic acid to pyrroline-5-carboxylate. In one mutant cell line, pyrroline-5-carboxylate synthase specific activity is increased 30-fold over the level in control cells. In the other mutant line, pyrroline-5-carboxylate synthase activity is not increased, but the enzyme has become insensitive to inhibition by ornithine and proline.  相似文献   

8.
Characteristics of pyrroline-5-carboxylate reductase (P5CR) from Bradyrhizobium japonicum bacteroids and cultured rhizobia were compared with those of the enzyme in soybean nodule host cytosol. Reductase from host cytosol differed from that in bacteroids in: (a) the effect of pH on enzymic activity, (b) the capacity to catalyze both reduction of pyrroline-5-carboxylic acid and NAD+-dependent proline oxidation, (c) apparent affinities for pyrroline-5-carboxylic acid, and (d) sensitivities to inhibition by NADP+ and proline. The K1 for proline inhibition of P5CR in bacteroid cytosol was 1.8 millimolar. The properties of P5CR in B. japonicum and bacteroid cytosol were similar. The specific activities of P5CR in the cytosolic fractions of the nodule host and the bacteroid compartment were also comparable.  相似文献   

9.
Two mutant Chinese hamster lung fibroblast lines have been isolated that are resistant to the toxic proline analog L-azetidine-2-carboxylic acid. The line designated AZCA-1 has 30-fold elevated activity of pyrroline-5-carboxylate synthase and a large increase in the rate of proline production and release compared to controls. Pyrroline-5-carboxylate synthase activity is not elevated in the resistant line designated AZCA-4, but the enzyme is less sensitive to inhibition by ornithine and proline than control enzyme. Intracellular proline is elevated in AZCA-4 cells, with no change in the rate of release of proline synthesized from glutamate. Resistance to azetidine carboxylic acid in both mutant lines is attributed to the expanded intracellular proline pool that results from alterations in pyrroline-5-carboxylate synthase. These results indicate that intracellular proline levels are determined at least in part by the regulated activity of pyrroline-5-carboxylate synthase.  相似文献   

10.
In certain cancers, such as breast, prostate and some lung and skin cancers, the gene for the enzyme catalysing the second and last step in proline synthesis, δ1-pyrroline-5-carboxylate (P5C) reductase, has been found upregulated. This leads to a higher proline content that exacerbates the effects of the so-called proline-P5C cycle, with tumour cells effectively using this method to increase cell survival. If a method of reducing or inhibiting P5C reductase could be discovered, it would provide new means of treating cancer. To address this point, the effect of some phenyl-substituted derivatives of aminomethylene-bisphosphonic acid, previously found to interfere with the catalytic activity of plant and bacterial P5C reductases, was evaluated in vitro on the human isoform 1 (PYCR1), expressed in E. coli and affinity purified. The 3.5-dibromophenyl- and 3.5-dichlorophenyl-derivatives showed a remarkable effectiveness, with IC50 values lower than 1 µM and a mechanism of competitive type against both P5C and NADPH. The actual occurrence in vivo of enzyme inhibition was assessed on myelogenous erythroleukemic K562 and epithelial breast cancer MDA-MB-231 cell lines, whose growth was progressively impaired by concentrations of the dibromo derivative ranging from 10−6 to 10−4 M. Interestingly, growth inhibition was not relieved by the exogenous supply of proline, suggesting that the effect relies on the interference with the proline-P5C cycle, and not on proline starvation.  相似文献   

11.
Based on localization and high activities of pyrroline-5-carboxylate reductase and proline dehydrogenase activities in soybean nodules, we previously suggested two major roles for pyrroline-5-carboxylate reductase in addition to the production of the considerable quantity of proline needed for biosynthesis; namely, transfer of energy to the location of biological N2 fixation, and production of NADP+ to drive the pentose phosphate pathway. The latter produces ribose-5-phosphate which can be used in de novo purine synthesis required for synthesis of ureides, the major form in which biologically fixed N2 is transported from soybean root nodules to the plant shoot. In this paper, we report rapid induction (in soybean nodules) and exceptionally high activities (in nodules of eight species of N2-fixing plants) of pentose phosphate pathway and pyrroline-5-carboxylate reductase. There was a marked increase in proline dehydrogenase activity during soybean (Glycine max) ontogeny. The magnitude of proline dehydrogenase activity in bacteroids of soybean nodules was sufficiently high during most of the time course to supply a significant fraction of the energy requirement for N2 fixation. Proline dehydrogenase activity in bacteroids from nodules of other species was also high. These observations support the above hypothesis. However, comparison of pentose phosphate pathway and pyrroline-5-carboxylate reductase activities of ureide versus amide-exporting nodules offers no support. The hypothesis predicts that pyrroline-5-carboxylate and pentose phosphate pathway activities should be higher in ureide-exporting nodules than in amide-exporting nodules. This predicted distinction was not observed in the results of in vitro assays of these activities.  相似文献   

12.
Overexpression of pyrroline-5-carboxylate reductase 1 (PYCR1) has been associated with the development of certain cancers; however, no studies have specifically examined the role of PYCR1 in hepatocellular carcinoma (HCC). Based on The Cancer Genome Atlas expression array and meta-analysis conducted using the Gene Expression Omnibus database, we determined that PYCR1 was upregulated in HCC compared to adjacent nontumor tissues (P < 0.05). These data were verified using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry analysis. Additionally, patients with low PYCR1 expression showed a higher overall survival rate than patients with high PYCR1 expression. Furthermore, PYCR1 overexpression was associated with the female sex, higher levels of alpha-fetoprotein, advanced clinical stages (III and IV), and a younger age (< 45 years old). Silencing of PYCR1 inhibited cell proliferation, invasive migration, epithelial-mesenchymal transition, and metastatic properties in HCC in vitro and in vivo. Using RNA sequencing and bioinformatics tools for data-dependent network analysis, we found binary relationships among PYCR1 and its interacting proteins in defined pathway modules. These findings indicated that PYCR1 played a multifunctional role in coordinating a variety of biological pathways involved in cell communication, cell proliferation and growth, cell migration, a mitogen-activated protein kinase cascade, ion binding, etc. The structural characteristics of key pathway components and PYCR1-interacting proteins were evaluated by molecular docking, and hotspot analysis showed that better affinities between PYCR1 and its interacting molecules were associated with the presence of arginine in the binding site. Finally, a candidate regulatory microRNA, miR-2355-5p, for PYCR1 mRNA was discovered in HCC. Overall, our study suggests that PYCR1 plays a vital role in HCC pathogenesis and may potentially serve as a molecular target for HCC treatment.  相似文献   

13.
Pyrroline-5-carboxylate reductase (EC 1.5.1.2) catalyzes the NAD(P)H-dependent conversion of pyrroline-5-carboxylate to proline. We cloned a human pyrroline-5-carboxylate reductase cDNA by complementation of proline auxotrophy in a Saccharomyces cerevisiae mutant strain, DT1100. Using a HepG2 cDNA library in a yeast expression vector, we screened 10(5) transformants, two of which gained proline prototrophy. The plasmids in both contained similar 1.8-kilobase inserts, which when reintroduced into strain DT1100, conferred proline prototrophy. The pyrroline-5-carboxylate reductase activity in these prototrophs was 1-3% that of wild type yeast, in contrast to the activity in strain DT1100 which was undetectable. The 1810-base pair pyrroline-5-carboxylate reductase cDNA hybridizes to a 1.85-kilobase mRNA in samples from human cell lines and predicts a 319-amino acid, 33.4-kDa protein. The derived amino acid sequence is 32% identical with that of S. cerevisiae. By genomic DNA hybridization analysis, the human reductase appears to be encoded by a single copy gene which maps to chromosome 17.  相似文献   

14.
15.
Pyrroline-5-carboxylate reductase 1 (PYCR1) is the final enzyme involved in the biosynthesis of proline and has been found to be upregulated in various forms of cancer. Due to the role of proline in maintaining the redox balance of cells and preventing apoptosis, PYCR1 is emerging as an attractive oncology target. Previous PYCR1 knockout studies led to a reduction in tumor growth. Accordingly, a small molecule inhibitor of PYCR1 could lead to new treatments for cancer, and a focused screening effort identified pargyline as a fragment-like hit. We report the design and synthesis of the first tool compounds as PYCR1 inhibitors, derived from pargyline, which were assayed to assess their ability to attenuate the production of proline. Structural activity studies have revealed the key determinants of activity, with the most potent compound (4) showing improved activity in vitro in enzyme (IC50 = 8.8 µM) and pathway relevant effects in cell-based assays.  相似文献   

16.
17.
Most human neurodegenerative diseases are sporadic and appear later in life. Aging and neurodegeneration are closely associated, and recent investigations reveal that endoplasmic reticulum (ER) stress is involved in the progression of these features. Immunoglobulin heavy chain-binding protein (BiP) is an ER chaperone that is central to ER functions. We produced knock-in mice expressing a mutant BiP that lacked the retrieval sequence to elucidate the effect of a functional defect in an ER chaperone in multicellular organisms. The homozygous mutant BiP mice died within several hours after birth because of respiratory failure with an impaired biosynthesis of pulmonary surfactant by alveolar type II cells. The heterozygous mutant BiP mice grew up to be apparently normal adults, although some of them revealed motor disabilities as they aged. Here, we report that the synthesis of a mitochondrial protein, pyrroline-5-carboxylate reductase 1 (PYCR1), is enhanced in the brains of homozygous mutant BiP mice. We performed a two-dimensional gel analysis followed by liquid chromatography-tandem mass spectrometry. PYCR1 was identified as one of the enhanced proteins. We also found that sublethal ER stress caused by tunicamycin treatment induced the synthesis of PYCR1 in murine fibroblasts. PYCR1 has been shown to be related to the aging process. Mutations in the PYCR1 gene cause cutis laxa with progeroid features and mental retardation. These findings suggest a pathophysiological interaction between ER stress and a mitochondrial function in aging.  相似文献   

18.
We previously reported that pyrroline-5-carboxylate (PC), the intermediate in the interconversions of proline, ornithine and glutamate markedly stimulates hexosemonophosphate-pentose pathway activity in human erythrocytes. The stimulation is mediated by pyrroline-5-carboxylate reductase which generates NADP+ accompanying the conversion of pyrroline-5-carboxylate to proline. We now report that the previously demonstrated effect of pyrroline-5-carboxylate on glucose oxidation through the hexose-monophosphate-pentose pathway is accompanied by increased phosphoribosyl-pyrophosphate production and increased formation of nucleotides via the salvage pathway. The demonstrated effect of pyrroline-5-carboxylate on purine processing may provide a regulatory link between amino acid and nucleotide metabolism.  相似文献   

19.
Enzymes of proline biosynthesis and proline degradation which act on the same compound, delta 1-pyrroline-5-carboxylate, are physically separated in yeast cells. The enzyme responsible for the final step in proline biosynthesis, pyrroline-5-carboxylate reductase, converts pyrroline-5-carboxylate to proline and is located in the cytoplasm. The last enzyme in the proline degradative pathway, pyrroline-5-carboxylate dehydrogenase, converts pyrroline-5-carboxylate to glutamate and is found in the particulate fraction of the cell, presumably in the mitochondrion. By subcellular compartmentation, yeast cells avoid futile cycling between proline and pyrroline-5-carboxylate.  相似文献   

20.
Pyrroline-5-carboxylate reductase (P5CR) lies at the converging point of the glutamate and ornithine pathways and is the last and critical enzyme in proline biosynthesis. In the present study, a P5CR gene, named IbP5CR, was isolated from salt-tolerant sweetpotato line ND98. Expression of IbP5CR was up-regulated in sweetpotato under salt stress. The IbP5CR-overexpressing sweetpotato (cv. Kokei No. 14) plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content and superoxide dismutase and photosynthetic activities were significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbP5CR up-regulated pyrroline-5-carboxylate synthase gene and down-regulated proline dehydrogenase and P5C dehydrogenase genes under salt stress. The systemic up-regulation of reactive oxygen species (ROS) scavenging genes was found in the transgenic plants under salt stress. These findings suggest that overexpression of IbP5CR increases proline accumulation, which enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and activating ROS scavenging system. This study indicates that IbP5CR gene has the potential to be used for improving salt tolerance of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号