首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Diacetyl causes an unwanted buttery off-flavor in lager beer. It is spontaneously generated from α-acetolactate, an intermediate of yeast's valine biosynthesis released during the main beer fermentation. Green lager beer has to undergo a maturation process lasting two to three weeks in order to reduce the diacetyl level below its taste-threshold. Therefore, a reduction of yeast's α-acetolactate/diacetyl formation without negatively affecting other brewing relevant traits has been a long-term demand of brewing industry. Previous attempts to reduce diacetyl production by either traditional approaches or rational genetic engineering had different shortcomings. Here, three lager yeast strains with marked differences in diacetyl production were studied with regard to gene copy numbers as well as mRNA abundances under conditions relevant to industrial brewing. Evaluation of data for the genes directly involved in the valine biosynthetic pathway revealed a low expression level of Sc-ILV6 as a potential molecular determinant for low diacetyl formation. This hypothesis was verified by disrupting the two copies of Sc-ILV6 in a commercially used lager brewers' yeast strain, which resulted in 65% reduction of diacetyl concentration in green beer. The Sc-ILV6 deletions did not have any perceptible impact on beer taste. To our knowledge, this has been the first study exploiting natural diversity of lager brewers' yeast strains for strain optimization.  相似文献   

2.
Diacetyl, a highly valuable product that is extensively used as an ingredient of food, tobacco, and daily chemicals such as perfumes, can be produced from the nonenzymatic oxidative decarboxylation of α-acetolactate during bacterial fermentation and converted to acetoin and 2,3-butanediol by 2,3-butanediol dehydrogenase. In the present study, Bacillus sp. DL01, which gives high acetoin production, was metabolically engineered to improve diacetyl production. After the deletion of α-acetolactate decarboxylase (ALDC)-encoding gene (alsD) by homologous recombination, the engineered strain, named Bacillus sp. DL01-ΔalsD, lost ALDC activity and produced 1.53 g/L diacetyl without acetoin and 2,3-butanediol accumulation. The channeling of carbon flux into diacetyl biosynthetic pathway was amplified by an overexpressed α-acetolactate synthase (ALS)-encoding gene (alsS) in Bacillus sp. DL01-ΔalsD-alsS, which produced 4.02 g/L α-acetolactate and 1.94 g/L diacetyl, and the conversion from α-acetolactate to diacetyl was increased by 1-fold after 20 mM Fe3+ was added to the fermentation medium. A titer of 8.69 g/L diacetyl, the highest reported diacetyl production, was achieved by fed-batch fermentation in optimal conditions using the metabolically engineered strain of Bacillus sp. DL01-ΔalsD-alsS. These results are of great importance as a new method for the efficient production of diacetyl by food-safe bacteria.  相似文献   

3.
Abstract Diacetyl formation was linear with time and with protein concentration when a cell-free extract of Leuconostoc lactis NCW1 was added to a buffer system containing pyruvate, thiamine pyrophosphate and MgS4 (final concentrations 60 mM, 0.11 mM and 0.22 mM, respectively). No diacetyl was detected in the absence of pyruvate or cell-free extract and no increase in diacetyl formation was detected on the addition of acetyl-CoA. When 2-acetolactate (1.6 mM) was the substrate, autodecarboxylation to diacetyl and acetoin occurred under aerobic and anaerobic conditions. When cell-free extract was added, decarboxylation of 2-acetolactate to acetoin and diacetyl increased 4–6-fold, under aerobic and anaerobic conditions. When the cell-free extract was boiled, diacetyl formation from 2-acetolactate was reduced to the level of autodecarboxylation. The results suggest that diacetyl is formed enzymatically in the presence and absence of oxygen, as well as spontaneously, from 2-acetolactate.  相似文献   

4.
Undesirable butter-tasting vicinal diketones are produced as by-products of valine and isoleucine biosynthesis during wort fermentation. One promising method of decreasing diacetyl production is through control of wort valine content since valine is involved in feedback inhibition of enzymes controlling the formation of diacetyl precursors. Here, the influence of valine supplementation, wort amino acid profile and free amino nitrogen content on diacetyl formation during wort fermentation with the lager yeast Saccharomyces pastorianus was investigated. Valine supplementation (100 to 300 mg L?1) resulted in decreased maximum diacetyl concentrations (up to 37 % lower) and diacetyl concentrations at the end of fermentation (up to 33 % lower) in all trials. Composition of the amino acid spectrum of the wort also had an impact on diacetyl and 2,3-pentanedione production during fermentation. No direct correlation between the wort amino acid concentrations and diacetyl production was found, but rather a negative correlation between the uptake rate of valine (and also other branched-chain amino acids) and diacetyl production. Fermentation performance and yeast growth were unaffected by supplementations. Amino acid addition had a minor effect on higher alcohol and ester composition, suggesting that high levels of supplementation could affect the flavour profile of the beer. Modifying amino acid profile of wort, especially with respect to valine and the other branched-chain amino acids, may be an effective way of decreasing the amount of diacetyl formed during fermentation.  相似文献   

5.

Objectives

To convert α-acetolactate into acetoin by an α-acetolactate decarboxylase (ALDC) to prevent its conversion into diacetyl that gives beer an unfavourable buttery flavour.

Results

We constructed a whole Saccharomyces cerevisiae cell catalyst with a truncated active ALDC from Acetobacter aceti ssp xylinum attached to the cell wall using the C-terminal anchoring domain of α-agglutinin. ALDC variants in which 43 and 69 N-terminal residues were absent performed equally well and had significantly decreased amounts of diacetyl during fermentation. With these cells, the highest concentrations of diacetyl observed during fermentation were 30 % less than those in wort fermented with control yeasts displaying only the anchoring domain and, unlike the control, virtually no diacetyl was present in wort after 7 days of fermentation.

Conclusions

Since modification of yeasts with ALDC variants did not affect their fermentation performance, the display of α-acetolactate decarboxylase activity is an effective approach to decrease the formation of diacetyl during beer fermentation.
  相似文献   

6.
A bacterial gene encoding α-acetolactate decarboxylase, isolated from Klebsiella terrigena or Enterobacter aerogenes, was expressed in brewer's yeast. The genes were expressed under either the yeast phosphoglycerokinase (PGK1) or the alcohol dehydrogenase (ADH1) promoter and were integrated by gene replacement by using cotransformation into the PGK1 or ADH1 locus, respectively, of a brewer's yeast. The expression level of the α-acetolactate decarboxylase gene of the PGK1 integrant strains was higher than that of the ADH1 integrants. Under pilot-scale brewing conditions, the α-acetolactate decarboxylase activity of the PGK1 integrant strains was sufficient to reduce the formation of diacetyl below the taste threshold value, and no lagering was needed. The brewing properties of the recombinant yeast strains were otherwise unaltered, and the quality (most importantly, the flavor) of the trial beers produced was as good as that of the control beer.  相似文献   

7.
The nucleotide sequence of a 1.4-kilobase DNA fragment containing the alpha-acetolactate decarboxylase gene of Enterobacter aerogenes was determined. The sequence contains an entire protein-coding region of 780 nucleotides which encodes an alpha-acetolactate decarboxylase of 260 amino acids. The DNA sequence coding for alpha-acetolactate decarboxylase was placed under the control of the alcohol dehydrogenase I promoter of the yeast Saccharomyces cerevisiae in a plasmid capable of autonomous replication in both S. cerevisiae and Escherichia coli. Brewer's yeast cells transformed by this plasmid showed alpha-acetolactate decarboxylase activity and were used in laboratory-scale fermentation experiments. These experiments revealed that the diacetyl concentration in wort fermented by the plasmid-containing yeast strain was significantly lower than that in wort fermented by the parental strain. These results indicated that the alpha-acetolactate decarboxylase activity produced by brewer's yeast cells degraded alpha-acetolactate and that this degradation caused a decrease in diacetyl production.  相似文献   

8.
The nucleotide sequence of a 1.4-kilobase DNA fragment containing the alpha-acetolactate decarboxylase gene of Enterobacter aerogenes was determined. The sequence contains an entire protein-coding region of 780 nucleotides which encodes an alpha-acetolactate decarboxylase of 260 amino acids. The DNA sequence coding for alpha-acetolactate decarboxylase was placed under the control of the alcohol dehydrogenase I promoter of the yeast Saccharomyces cerevisiae in a plasmid capable of autonomous replication in both S. cerevisiae and Escherichia coli. Brewer's yeast cells transformed by this plasmid showed alpha-acetolactate decarboxylase activity and were used in laboratory-scale fermentation experiments. These experiments revealed that the diacetyl concentration in wort fermented by the plasmid-containing yeast strain was significantly lower than that in wort fermented by the parental strain. These results indicated that the alpha-acetolactate decarboxylase activity produced by brewer's yeast cells degraded alpha-acetolactate and that this degradation caused a decrease in diacetyl production.  相似文献   

9.
A method was developed to screen and isolate mutagenized Lactococcus lactis subsp. lactis biovar diacetylactis strains accumulating (alpha)-acetolactate. This compound is accumulated by (alpha)-acetolactate decarboxylase-deficient strains and undergoes spontaneous degradation into diacetyl on agar plates. The diacetyl produced is detected by a colorimetric reaction yielding a red halo around the colonies.  相似文献   

10.
The production of aroma compounds (acetoin and diacetyl) in fresh unripened cheese by Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 was studied at 30°C at different initial oxygen concentrations (0, 21, 50, and 100% of the medium saturation by oxygen). Regardless of the initial O2 concentration, maximal production of these compounds was reached only after all the citrate was consumed. Diacetyl and acetoin production was 0.01 and 2.4 mM, respectively, at 0% oxygen. Maximum acetoin concentration reached 5.4 mM at 100% oxygen. Diacetyl production was increased by factors of 2, 6, and 18 at initial oxygen concentrations of 21, 50, and 100%, respectively. The diacetyl/acetoin concentration ratio increased linearly with initial oxygen concentration: it was eight times higher at 100% (3.3%) than at 0% oxygen (0.4%). The effect of oxygen on diacetyl and acetoin production was also shown with other lactococci. At 0% oxygen, specific activity of α-acetolactate synthetase (0.15 U/mg) and NADH oxidase (0.04 U/mg) was 3.6 and 5.4 times lower, respectively, than at 100% oxygen. The increasing α-acetolactate synthetase activity in the presence of oxygen would explain the higher production of diacetyl and acetoin. The NADH oxidase activity would replace the role of the lactate dehydrogenase, diacetyl reductase, and acetoin reductase in the reoxidation of NADH, allowing accumulation of these two aroma compounds.  相似文献   

11.
啤酒风味是保证啤酒品质的关键因素之一。运用代谢组学的方法,分析工业啤酒发酵过程中酵母胞内代谢物和啤酒风味物质的对应关系,从代谢水平上研究风味物质形成过程中的关键影响因素。在啤酒发酵过程中,同时检测风味物质的含量变化和酵母胞内代谢物的变化,对得到海量的、多维的代谢数据采用主成分分析(PCA)和偏最小二乘分析(PLS)的多元统计分析方法进行处理。由PCA分析结果可知:磷酸、海藻糖、琥珀酸、谷氨酸、天冬氨酸、丙氨酸对主成分贡献比较大,说明这些代谢物在不同发酵阶段含量变化显著。由PLS分析结果可知:对啤酒风味影响最大的物质主要为氨基酸,包括丝氨酸、缬氨酸、苏氨酸、赖氨酸、丙氨酸、亮氨酸和天冬酰胺等,这为啤酒中风味物质的调控提供了一定的理论指导。  相似文献   

12.
High-gravity brewing, which can decrease production costs by increasing brewery yields, has become an attractive alternative to traditional brewing methods. However, as higher sugar concentration is required, the yeast is exposed to various stresses during fermentation. We evaluated the influence of high-gravity brewing on the fermentation performance of the brewer’s yeast under model brewing conditions. The lager brewer’s strain Weihenstephan 34/70 strain was characterized at three different gravities by adding either glucose or maltose syrups to the basic wort. We observed that increased gravity resulted in a lower specific growth rate, a longer lag phase before initiation of ethanol production, incomplete sugar utilization, and an increase in the concentrations of ethyl acetate and isoamyl acetate in the final beer. Increasing the gravity by adding maltose syrup as opposed to glucose syrup resulted in more balanced fermentation performance in terms of higher cell numbers, respectively, higher wort fermentability and a more favorable flavor profile of the final beer. Our study underlines the effects of the various stress factors on brewer’s yeast metabolism and the influence of the type of sugar syrups on the fermentation performance and the flavor profile of the final beer.  相似文献   

13.
Journal of Industrial Microbiology & Biotechnology - Diacetyl causes an unwanted buttery off-flavor in lager beer. The production of diacetyl is reduced by modifying the metabolic pathway of...  相似文献   

14.
啤酒酵母是啤酒酿造的灵魂,可以直接影响啤酒品质。在啤酒酿造过程中,由于啤酒酵母被多次传代和保藏,造成优良菌种发酵性能衰退等问题,导致发酵不彻底,影响最后啤酒的风味质量。为此以8株Lager型啤酒酵母为出发菌株,通过平板分离纯化获得80株分离菌株,再经过三角瓶发酵初筛和复筛、发酵罐中试发酵实验最终获得了8株发酵性能优良的啤酒酵母。其中,6株酵母可应用于酿造双乙酰含量低于0.1 mg/L的啤酒;3株酵母发酵度高于70%,适合酿造干啤酒;1株酵母发酵度低于50%,适合酿造低醇啤酒。在风味方面:1株酵母酿造的啤酒醇酯比为3.3,啤酒酯香味较突出;另1株酵母酿造的啤酒醇酯比为4.5,啤酒高级醇含量较高。8株经过选育的啤酒酵母发酵特征明显,便于精酿啤酒厂实际应用。  相似文献   

15.
Continuous beer production was investigated in a high cell-density culture system which consisted of two stages for the fermentation and sedimentation of yeast cells. The continuous culture was carried out for a fermentation time of 5,500 h without contamination, at varying dilution rates and fermentation temperatures in the ranges of 0.017-0.033 h−1 and 6.5–8.5°C, respectively. This process was found to be suitable for continuous and stable beer brewing. Under these conditions, the cell concentration in the first stage was about 80 times as high as that in the exit of the second stage. Concentrations of viable cells, sugar and ethanol were maintained at 1.3 × 109 cells/ml, 25 and 36 g/l, respectively, and were hardly affected by fermentation temperature. Concentrations of ethyl acetate, isoamyl alcohol and isoamyl acetate were similar in the fermentation temperature ranges of 6.5–8.5°C, and the amounts at a fermentation temperature of 7°C were comparable to those of lager-type beer. Diacetyl flavor, which is known to be an effluent component that causes deterioration in the second stag e (young beer), was maintained at 1.2 ppm at a dilution rate and fermentation temperature of 0.022 h−1 and 7°C, respectively. The diacetyl flavor was due to the accumulation of vicinal diketone, the precursor of which is acetohydroxy acid. The acetohydroxy acid was converted to vicinal diketone by pretreatment at 60°C for 30 min. The vicinal diketone was then consumed by the yeast during after-fermentation at a fermentation temperature of 3°C. Using this method, total vicinal diketone decreased below 0.3 ppm for an after-fermentation time of 6.8 h, which was 225 times as fast as that of after-fermentation without the pretreatment. This process may make it possible to achieve continuous beer fermentation from the fermentation stage to after-fermentation for diacetyl removal.  相似文献   

16.
Diacetyl removal from beer was studied with whole cells and crude enzyme extracts of yeasts and bacteria. Cells of Streptococcus diacetilactis 18-16 destroyed diacetyl in solutions at a rate almost equal to that achieved by the addition of whole yeast cells. Yeast cells impregnated in a diatomaceous earth filter bed removed all diacetyl from solutions percolated through the bed. Undialyzed crude enzyme extracts from yeast cells removed diacetyl very slowly from beer at its normal pH (4.1); at a pH of 5.0 or higher, rapid diacetyl removal was achieved. Dialyzed crude enzyme extracts from yeast cells were found to destroy diacetyl in a manner quite similar to that of diacetyl reductase from Aerobacter aerogenes, and both the bacterial and the yeast extracts were stimulated significantly by the addition of reduced nicotinamide adenine dinucleotide (NADH). Diacetyl reductase activity of four strains of A. aerogenes was compared; three of the strains produced enzyme with approximately twice the specific activity of the other strain (8724). Gel electrophoresis results indicated that at least three different NADH-oxidizing enzymes were present in crude extracts of diacetyl reductase. Sephadex-gel chromotography separated NADH oxidase from diacetyl reductase. It was also noted that ethyl alcohol concentrations approximately equivalent to those found in beer were quite inhibitory to diacetyl reductase.  相似文献   

17.
Although the typical genomic and phenotypic changes that characterize the evolution of organisms under the human domestication syndrome represent textbook examples of rapid evolution, the molecular processes that underpin such changes are still poorly understood. Domesticated yeasts for brewing, where short generation times and large phenotypic and genomic plasticity were attained in a few generations under selection, are prime examples. To experimentally emulate the lager yeast domestication process, we created a genetically complex (panmictic) artificial population of multiple Saccharomyces eubayanus genotypes, one of the parents of lager yeast. Then, we imposed a constant selection regime under a high ethanol concentration in 10 replicated populations during 260 generations (6 months) and compared them with propagated controls exposed solely to glucose. Propagated populations exhibited a selection differential of 60% in growth rate in ethanol, mostly explained by the proliferation of a single lineage (CL248.1) that competitively displaced all other clones. Interestingly, the outcome does not require the entire time-course of adaptation, as four lineages monopolized the culture at generation 120. Sequencing demonstrated that de novo genetic variants were produced in all propagated lines, including SNPs, aneuploidies, INDELs and translocations. In addition, the different propagated populations showed correlated responses resembling the domestication syndrome: genomic rearrangements, faster fermentation rates, lower production of phenolic off-flavours and lower volatile compound complexity. Expression profiling in beer wort revealed altered expression levels of genes related to methionine metabolism, flocculation, stress tolerance and diauxic shift, likely contributing to higher ethanol and fermentation stress tolerance in the evolved populations. Our study shows that experimental evolution can rebuild the brewing domestication process in ‘fast motion’ in wild yeast, and also provides a powerful tool for studying the genetics of the adaptation process in complex populations.  相似文献   

18.
Production and degradation of diacetyl by a commercial Saccharomyces cerevisiae strain was studied. This yeast did not produce diacetyl but could consume it. Diacetyl degradation activity was biological and was present even when the yeast was grown in the absence of diacetyl. Maximum specific activity was obtained when the yeast was grown in 280 μmol of diacetyl, 1 vvm of aeration and 37°C.  相似文献   

19.
Lactococcus lactis subsp. lactis biovar diacetylactis strains are utilized in several industrial processes for producing the flavoring compound diacetyl or its precursor α-acetolactate. Using random mutagenesis with nitrosoguanidine, we selected mutants that were deficient in α-acetolactate decarboxylase and had low lactate dehydrogenase activity. The mutants produced large amounts of α-acetolactate in anaerobic milk cultures but not in aerobic cultures, except when the medium was supplemented with catalase, yeast extract, or hemoglobin.  相似文献   

20.
The volumetric productivity of the beer fermentation process can be increased by using a higher pitching rate (i.e. higher inoculum size). However, the decreased yeast net growth observed in these high cell density brewery fermentations can adversely affect the physiological stability throughout subsequent yeast generations. Therefore, different O2 conditions (wort aeration and yeast preoxygenation) were applied to high cell density fermentation and eight generations of fermentations were evaluated together with conventional fermentations. Freshly propagated high cell density populations adapted faster to the fermentative conditions than normal cell density populations. Preoxygenating the yeast was essential for the yeast physiological and beer flavor compound stability of high cell density fermentations during serial repitching. In contrast, the use of non-preoxygenated yeast resulted in inadequate growth which caused (1) insufficient yield of biomass to repitch all eight generations, (2) a 10% decrease in viability, (3) a moderate increase of yeast age, (4) and a dramatic increase of the unwanted flavor compounds acetaldehyde and total diacetyl during the sequence of fermentations. Therefore, to achieve sustainable high cell density fermentations throughout the economical valuable process of serial repitching, adequate yeast growth is essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号