首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
研究了14C-涕灭威在5种土壤中(4ppm,互.22μCi·50g-1土壤干重)的生物降解.模拟试验为密闭系统,土壤中水分含量为22%,气温20—30C℃在供试的5种土壤中,北京肖家河的土壤降解最快,为施人放射剂量的51.3%,以“CO:形式从土壤进出;26.0%与土壤结合,只有21.6%可以被抽出.取自浙江义乌的土壤降解较慢,收集到的14CO2为施入量的23.3%.土壤中加入杀菌剂红霉素或敌茵丹降解作用明显减慢.土壤提取物中涕灭威亚砜、涕灭威亚砜肟被确认是主要的代谢产物,还发现了少量的涕灭威砜,涕灭威亚砜腈涕灭威砜腈和涕灭威砜肟等降解物.  相似文献   

2.
从杉木林土壤中筛选到5株高效解酚菌(F2、F3、F4、F7、F15),结果表明,F4、Fd,F2、F155d能将600rng·L-1的阿魏酸降解完,F7的降解率为91.3%;F4、F3、F2、F7d,F15、4d能将600mg·L-1的对羟基苯甲酸完全降解;5株解酚菌对邻香草醛的降解能力较弱,除F25d能将300mg·L-1的邻香草醛完全降解外,其余4株5d的降解率为83%~96%.同时发现,F4能抑制杉苗生长,而其余4株则能在不同条件下促进杉苗生长,将5种菌按等比例混合使用,在土壤添加酚酸的情况下,仍能促进菌根苗Z和非菌根苗生长,杉木苗干重增长率为8.9%~168%.  相似文献   

3.
以连续5年不同CO2浓度(开顶箱700μmol·mol-1、500μmol·mol-1、对照箱和裸地)处理的长白赤松和红松幼苗为研究对象,在2003年7~9月分别对幼苗根际土壤细菌、真菌、放线菌数量进行比较研究.结果表明,高浓度CO2处理对长白赤松幼苗根际土壤细菌数量起显著的(P≤0.001)促进作用,对根际真菌和放线菌数量的促进作用却不明显;对红松来说,除8月份700μmol·mol-1CO2处理和7月份500μmol·mol-1CO2处理之外,在各月份中受高浓度CO2处理的根际土壤细菌数量均较对照箱和裸地显著增多(P≤0.001),而根际土壤真菌数量变化除9月份(P≤0.001)外均不明显,放线菌数量受高浓度CO2的影响亦不明显.  相似文献   

4.
依托FACE技术平台, 采用稳定13C同位素技术, 通过将小麦(C3作物)种植于长期单作玉米(C4作物)的土壤上, 研究了大气CO2浓度升高和不同氮肥水平对土壤排放CO2的δ13C值及根际呼吸的影响. 结果表明: 种植小麦后土壤排放CO2的δ13C值随作物生长逐渐降低, CO2浓度升高200 μmol·mol-1显著降低了孕穗、抽穗期(施氮量为250 kg·hm-2, HN)与拔节、孕穗期(施氮量为150 kg·hm-2, LN)土壤排放CO2的δ13C值, 显著提高了孕穗、抽穗期的根际呼吸比例. 拔节至成熟期, 根际呼吸占土壤呼吸的比例在高CO2浓度下为24%~48%(HN)和21%~48%(LN), 在正常CO2浓度下为20%~36% (HN)和19%~32%(LN). 不同CO2浓度下土壤排放CO2的δ13C值和根际呼吸对氮肥增加的响应不同, CO2浓度与氮肥用量在拔节期对根际呼吸的交互效应显著.  相似文献   

5.
以亚热带红壤丘陵区典型水田和旱地土壤为研究对象,向土壤中添加14C标记稻草,培养30 d后,提取与原位土壤中结构相似的14C可溶性有机碳(DOC);将14C DOC加入水田和旱地土壤中,并设置45%、60%、75%、90%和105%田间持水量(WHC)5个水分梯度,在标准状态下(25 ℃)培养100 d,监测14C DOC在土壤中的矿化过程.结果表明: 培养100 d后,两种土壤中28.7%~61.4%的标记DOC被矿化为CO2,且5个水分条件下,水田土壤DOC的矿化率均显著高于旱地,这主要是由于水田土壤DOC的结构组成比旱地土壤更简单.好气条件(56%~75%WHC)有利于两种土壤DOC的分解,淹水条件(105%WHC)则有利于DOC的积累.土壤处于好气条件(45%~90%WHC)时,DOC的生物可分解率及易分解态所占比例均随着含水量的增加而增加.100 d内,水田和旱地易分解态DOC分别占其累积矿化量的80.5%~91.1%和66.3%~72.4%,说明DOC的生物可分解率主要由其易分解态组分所占比例决定.  相似文献   

6.
几种替代杀线剂对甘薯茎线虫的毒力与活性   总被引:5,自引:0,他引:5  
采用熏蒸法和浸渍法测定了4种土壤熏蒸杀线剂和6种非熏蒸杀线剂对甘薯茎线虫的毒力,在此基础上以各药剂的致死中浓度剂量处理线虫,设置不同时间处理,观察了药剂对线虫的活性动态变化.结果表明: 熏蒸杀线剂棉隆、1,3-二氯丙烯、威百亩、氯化苦对甘薯茎线虫的LC50依次为0.49、0.89、0.91、3.60 mg·L-1,非熏蒸杀线剂甲维盐、阿维菌素、灭线磷、噻唑膦、涕灭威、丁硫克百威对甘薯茎线虫的LC50依次为31.2、48.1、224.3、288.4、632.3、823.9 mg·L-1.致死中浓度处理线虫后,各药剂校正死亡率随处理时间延长有不同幅度升高,棉隆、1,3-二氯丙烯、阿维菌素和甲维盐对线虫有较高的持续抑制效果,处理48 h脱离药剂处理后校正死亡率没有降低,而传统杀线剂品种灭线磷和涕灭威处理均出现线虫明显复苏的现象.表明棉隆、1,3-二氯丙烯、阿维菌素和甲维盐可以替代传统杀线剂应用于甘薯茎线虫的防治.  相似文献   

7.
CO2浓度升高可以诱导植物叶片气孔关闭, 提高植物对高浓度CO2的适应性。但植物如何感知CO2浓度变化并启动气孔关闭反应的分子机制至今仍不十分清楚。利用高通量、非侵入的远红外成像技术, 建立了拟南芥(Arabidopsis thaliana)气孔对CO2浓度变化反应相关的突变体筛选技术, 筛选出对环境CO2浓度敏感的拟南芥突变体ecs1。遗传学分析表明, ecs1为单基因隐性突变体, 突变基因ECS1编码一个跨膜钙离子转运蛋白。与野生型拟南芥相比, 360 μL·L–1CO2可引起ecs1突变体叶片温度上升和气孔关闭, ecs1突变体对900 μL·L–1CO2长时间处理具有较强的适应性。进一步的实验表明, 360μL·L–1CO2即可诱导ecs1突变体叶片积累较高浓度的H2O2, 而900 μL·L–1CO2才能够诱导野生型拟南芥叶片积累H2O2。因此, ECS1可能参与调节高浓度CO2诱导的拟南芥气孔关闭和H2O2产生, H2O2可能作为第二信号分子介导CO2诱导拟南芥气孔关闭的反应。  相似文献   

8.
香荚兰光合特性与室内栽培措施合理性探讨   总被引:1,自引:0,他引:1  
笔者采用红外线CO2微量分析仪和14CO2标记,测定玻璃室内栽培的香荚兰不同生育期叶片的光饱和点、光补偿点及植株器官间CO2的吸收、固定量。并测定玻璃室内大面积种植的香荚兰叶面积系数和空间分布。结果表明,香荚兰对CO2吸收和固定属于CAM类型。不同生育期叶片的光饱点为10000勒克斯,光补偿点为500勒克斯。并根据其光合特性,对玻璃室内香荚兰栽培措施合理性进行了探讨。  相似文献   

9.
选择亚热带地区3种典型稻田和旱地土壤,应用碳同位素14C-CO2标记示踪技术结合室内模拟培养试验,研究自养微生物同化碳(“新碳”)在土壤碳库中的矿化和转化特征.结果表明: 在100 d的培养期内,“新碳”的矿化经历了先上升、10 d后缓慢下降、最后渐趋稳定的3个阶段.“新碳”的矿化比例为8.0%~26.9%,矿化速率为0.01~0.22 μg 14C·g-1·d-1,其中,稻田土壤为0.01~0.22 μg 14C·g-1·d-1,旱地土壤为0.01~0.08 μg 14C·g-1·d-1,而原有有机碳的矿化比例为1.6%~5.7%,矿化速率为1.3~25.66 μg C·g-1·d-1.土壤活性碳库\[可溶性有机碳(DOC)、微生物生物量碳(MBC)\]中,14C-DOC在培养初期(0~10 d)先上升,升高幅度达0.3 mg·kg-1,10~30 d又迅速下降,下降幅度达0.42 mg·kg-1,至30 d后缓慢下降.14C-MBC的波动与14C-DOC不同,在培养初期(0~10 d)先迅速下降,10~30 d又迅速上升,至40 d后缓慢下降并趋于稳定.水稻土14C-DOC/DOC的转化更新速率明显大于旱地,而旱地14C-MBC/MBC的转化更新速率大于水稻土.
  相似文献   

10.
研究了用开顶箱控制CO2浓度在500和700μmol·mol-1左右时红松幼苗的生理生态反应.结果表明,高浓度CO2(500、700μmol·mol-1CO2)和对照(对照开顶箱、裸地)条件下,红松幼苗的净光合速率与气孔导度之间的变化不同.红松幼苗在500μmol·mol-1CO2条件下,RuBPcase活性最高,呈现光合上调反应,日平均净光合速率最大,叶绿素及可溶性糖含量最高;而生长在700μmol·mol-1CO2的红松幼苗呈现光合下调反应,光合作用明显低于对照植株,其酶活性及物质含量均最低.  相似文献   

11.
The potential introduction of N-nitrosodimethylamine (NDMA) into groundwater during water reclamation activities poses a significant risk to groundwater drinking supplies. Greater than 54% biodegradation of N-[methyl-14C]NDMA to 14CO2 or to 14CO2 and 14CH4 was observed in soil from a water reclamation facility under oxic or anoxic conditions, respectively. Likewise, biodegradation was significant in microcosms containing soil with no history of NDMA contamination. These results indicate that aerobic and anaerobic biodegradation of NDMA may be an effective component of NDMA attenuation in water reclamation facility soils.  相似文献   

12.
The degradation of aldicarb, and the metabolites aldicarb sulfoxide and aldicarb sulfone, was evaluated in cotton field soils previously exposed to aldicarb. A loss of efficacy had been observed in two (LM and MS) of the three (CL) field soils as measured by R. reniformis population development and a lack of cotton yield response. Two soils were compared for the first test—one where aldicarb had been effective (CL) and the second where aldicarb had lost its efficacy (LM). The second test included all three soils: autoclaved, non-autoclaved and treated with aldicarb at 0.59 kg a.i./ha, or not treated with aldicarb. The degradation of aldicarb to aldicarb sulfoxide and then to aldicarb sulfone was measured using high-performance liquid chromatography (HPLC) in both tests. In test one, total degradation of aldicarb and its metabolites occurred within 12 days in the LM soil. Aldicarb sulfoxide and aldicarb sulfone were both present in the CL soil at the conclusion of the test at 42 days after aldicarb application. Autoclaving the LM and MS soils extended the persistence of the aldicarb metabolites as compared to the same soils not autoclaved. The rate of degradation was not changed when the CL natural soil was autoclaved. The accelerated degradation was due to more rapid degradation of aldicarb sulfoxide and appears to be biologically mediated.  相似文献   

13.
A shallow, RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)-contaminated aquifer at Naval Submarine Base Bangor has been characterized as predominantly manganese-reducing, anoxic with local pockets of oxic conditions. The potential contribution of microbial RDX degradation to localized decreases observed in aquifer RDX concentrations was assessed in sediment microcosms amended with [U-14C] RDX. Greater than 85% mineralization of 14C-RDX to 14CO2 was observed in aquifer sediment microcosms under native, manganese-reducing, anoxic conditions. Significant increases in the mineralization of 14C-RDX to 14CO2 were observed in anoxic microcosms under NO3-amended or Mn(IV)-amended conditions. No evidence of 14C-RDX biodegradation was observed under oxic conditions. These results indicate that microbial degradation of RDX may contribute to natural attenuation of RDX in manganese-reducing aquifer systems.  相似文献   

14.
Reginald Hems 《FEBS letters》1983,160(1-2):255-258
Entry of metabolic 14CO2 into urea is shown to be decreased by dichloroacetate although the production of 14CO2 is stimulated 2-fold. Hydroxypyruvate, a product of dichloroacetate metabolism, increases the incorporation of metabolic 14CO2 into urea. It is proposed that these effects result from changes in the cytoplasmic-mitochondrial pH gradient.  相似文献   

15.
Chemical and microbial degradation of the nematicides-insecticides aldicarb and ethoprop has been studied extensively in both laboratory and field studies. These studies show that temperature is the most important variable affecting the degradation rate of aldicarb and its carbamate metabolites in surface soils. Temperature and organic matter appear to be the most important variables affecting degradation rates of ethoprop in soils under normal agricultural conditions, with organic matter being inversely related to degradation, presumably due to increased binding to soil particles. Soil moisture may be important under some conditions for both compounds, with degradation reduced in low-moisture soils. The rate of degradation of aldicarb residues (aldicarb + aldicarb sulfoxide + aldicarb sulfone) does not seem to be significantly affected by depth from soil surface, except that aldicarb residues degrade more slowly in acidic, coarse sand subsoils. Degradation of ethoprop also continues in subsurface soils, although field data are limited due to its lower mobility. Both compounds degrade in groundwater. Because microbial activity decreases with depth below soil surface, chemical processes are important components of the degradation of both aldicarb residues and ethoprop. For aldicarb, transformation to carbamate oxides in surface soils is primarily microbial, while degradation to noncarbamate compounds appears to be primarily the result of soil-catalyzed hydrolysis throughout the soil profile. For ethoprop, both chemical and microbial catalyzed hydrolysis are important in surface soils, with chemical hydrolysis becoming more important with increasing depth.  相似文献   

16.
Following a series of continuous exposures to 14CO2 for different lengths of time, leaves from Neurachne munroi (C4), N. minor (C3-C4) and N. tenuifolia (C3| were estimated to assimilate 100%, 9% and 2–4%, respectively, of atmospheric CO2 by the C4 pathway. The percentage of 14C-label appearing in malate and aspartate in leaves of N. minor progressively increased with longer exposure times indicating that a significant proportion of its C4 acids are formed as secondary products. In 14CO2/12CO2 pulse/chase experiments, the 14C-label in leaves of N. munroi was rapidly transferred from C4 acids to sugar monophosphates plus sugar diphosphates, and finally to sucrose. In leaves of N. minor, the 14C-label was slowly metabolized from the C-4 carboxyl of malate and asparate (apparent half-time = 250 s), and the formation of C4 acids as secondary products was again evident. 14C-label in serine/glycine accumulated to comparable magnitudes in both N. minor and in N. tenuifolia, but there was an initial lag phase in the accumulation of label in N. minor. C4 photosynthesis is apparently of minimal importance in reducing photorespiration in N. minor, but leaf anatomical specializations and a possible compartmentation of photorespiratory metabolism may be of considerable importance.  相似文献   

17.
, , and 1972. Schistosoma mansoni and Schistosoma japonicum: utilization of amino acids. International Journal for Parasitology 2: 425–430. The production of 14CO2 from 12 labeled amino acids by S. mansoni and S. japonicum was studied. No 14CO2 was detected from incubations with glycine, isoleucine, leucine, lysine or phenylalanine. Differences were found between sexes and/or species for the other amino acids studied. Species related differences included a greater rate of metabolism of glutamic and aspartic acid by S. mansoni than by S. japonicum. Proline and histidine were utilized by S. mansoni males and females, respectively. S. japonicum male worms did not utilize proline, while histidine was not utilized by the female of this species. Major sex related differences included greater 14CO2 production from glutamic acid, aspartic acid and arginine by S. mansoni males than by females, and the utilization of histidine by male S. japonicum but not by females. Incubation in tyrosine resulted in the release of only small amounts of 14CO2 by female worms of both species but no 14CO2 production by male worms.  相似文献   

18.
Panicum milioides, a naturally occurring species with C4-like Kranz leaf anatomy, is intermediate between C3 and C4 plants with respect to photorespiration and the associated oxygen inhibition of photosynthesis. This paper presents direct evidence for a limited degree of C4 photosynthesis in this C3-C4 intermediate species based on:

1. (a) the appearance of 24% of the total 14C fixed following 4 s photosynthesis in 14CO2-air by excised leaves in malate and aspartate and the complete transfer of label from the C4 acids to Calvin cycle intermediates within a 15 s chase in 12CO2-air;

2. (b) pyruvate- or alanine-enhanced light-dependent CO2 fixation and pyruvate stimulation of oxaloacetate- or 3-phosphoglycerate-dependent O2 evolution by illuminated mesophyll protoplasts, but not bundle sheath strands; and

3. (c) NAD-malic enzyme-dependent decarboxylation of C4 acids at the C-4 carboxyl position, C4 acid-dependent O2 evolution, and 14CO2 donation from [4-14C]C4 acids to Calvin cycle intermediates during photosynthesis by bundle sheath strands, but not mesophyll protoplasts.

However, P. milioides differs from C4 plants in that the activity of the C4 cycle enzymes is only 15 to 30% of a C4 Panicum species and the Calvin cycle and phosphoenolpyruvate carboxylase are present in both cell types. From these and related studies (Rathnam, C.K.M. and Chollet, R. (1979) Arch. Biochem. Biophys. 193, 346–354; (1978) Biochem. Biophys. Res. Commun. 85, 801–808) we conclude that reduced photorespiration in P. milioides is due to a limited degree of NAD-malic enzyme-type C4 photosynthesis permitting an increase in pCO2 at the site of bundle sheath, but not mesophyll, ribulosebisphosphate carboxylase-oxygenase.  相似文献   


19.
The role of gut microflora in ascorbic acid catabolism was investigated in both conventional and germ-free guinea pigs. In vitro studies demonstrated extensive degradation of the vitamin by fresh feces, cecal, and colonic contents of conventional guinea pigs. Direct injection of [1-14C] ascorbic acid into the cecum of conventional guinea pigs in vivo yielded a 70% recovery of the label as respiratory 14CO2 within 6 hr compared with only 5% recovery following injection into the virtually sterile peritoneum in a comparable group of conventional guinea pigs. Thus, ascorbic acid not absorbed prior to reaching the lower gastrointestinal tract stands to be extensively decarboxylated by microflora in the cecum. In a companion study of germ-free guinea pigs, 10% of an administered dose of [1-14C] ascorbic acid was expired as 14CO2 within 36 hr post-injection following intraperitoneal injection compared with 16% recovery in a matched group of conventional animals injected at the same site. Results of this series of studies suggest that hepatic decarboxylation and gut microflora, in tandem, contribute to ascorbic acid decarboxylation in this species.  相似文献   

20.
采用13C-CO2进行连续标记,研究水稻分蘖期和孕穗期光合碳在植株-土壤系统中的分配及其对大气CO2浓度升高(800 μL·L-1)和施氮(100 mg·kg-1)的响应.结果表明: CO2浓度升高显著提高分蘖期根系生物量和孕穗期地上部生物量,并使生物量根冠比在分蘖期增加,而在孕穗期减小.CO2浓度升高条件下,施氮使水稻地上部分生物量增加,却显著降低了孕穗期水稻根系生物量.CO2浓度升高使光合13C在孕穗期向土壤的输入显著增加,然而施肥并没有促进由CO2浓度升高驱动的光合13C在土壤中的积累,而且还降低了土壤中的光合13C的分配比例.综上,CO2浓度升高显著提高了稻田土壤光合碳输入,促进稻田有机碳周转;施氮促进了水稻地上部的生长,却降低了光合碳向地下的分配比例.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号