首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Abstract: All natural populations fluctuate in abundance and age structure through time; understanding why they do so is a critical step towards their effective management and conservation. However, the long‐term data sets needed for such an understanding are rarely available, especially for tropical organisms. A 17‐year capture‐mark–recapture study yielded detailed information on the demography of water pythons (Liasis fuscus) and their main prey, the dusky rat (Rattus colletti), on the Adelaide River flood plain in tropical Australia. The link between annual rainfall patterns and rat demography was highly non‐linear. Rat numbers were low during years with low and high rainfall at the end of the wet season (April). Numbers of both predators and prey fluctuated considerably among years. Annual fluctuations in rat numbers generated a corresponding variation in rates of female python reproduction, python body condition and survival. Although variation in recruitment, survival and prey abundance all had a significant impact on annual fluctuations in python numbers, our analyses suggest that recruitment constituted the main determinant in driving the population dynamics of these large tropical predators. In combination with our other studies on this system, the data show that population dynamics of the water python population is ultimately driven by annual variation in rainfall, mediated via shifts in prey availability. The water pythons and the dusky rats of the Adelaide River flood plain thus demonstrate an unusually clear and direct link between an abiotic factor (rainfall) and predator–prey population dynamics.  相似文献   

2.
Birgitta Aava 《Oikos》2001,93(2):205-212
Frequency distributions of mammal body sizes in large‐scale assemblages have often been found to show a positive skew. In an attempt to explain this pattern, a model has been put forward which incorporates energetic constraints on fitness and thereby predicts optimal body sizes corresponding to the mode of the distribution. A key assumption of the model is that energy is unlimited. However, if energy is limited, the input of energy into a herbivorous mammal community should influence the shape of the frequency distribution. Thus, I propose that increases in primary productivity will decrease the variation of body size and increase the mean body size in a distribution. So, in low‐productivity environments we should see a predominance of small‐sized species, but with a great variation of body sizes due to limitations of resources (energy). I tested this hypothesis using the herbivorous mammal fauna (rodents, bats and marsupials) in seven biomes of Australia. Because herbivorous marsupials generally are fairly large‐bodied while rodents and bats are small‐sized and because marsupials also have a different mode of reproduction from placental mammals, the hypothesis was also tested on placental mammals and marsupials separately. There was no clear mode for the entire assemblage in any biome, but as primary productivity increased, the variation of body masses decreased and the mean body mass of the distribution increased. Body mass distributions of both placental mammals and marsupials displayed clear modes. Placental mammals also showed an increase in mean body mass. The variation in body mass of marsupials was highest for the intermediately productive biomes. Primary productivity does seem to have some effect on mammalian body mass in this case, but the results here need to be complemented with studies of other assemblages before any general conclusions can be drawn. It is also important to distinguish which taxa are affected in a heterogeneous assemblage like the Australian herbivorous mammal fauna.  相似文献   

3.
The Chicago Area Waterways System (CAWS), an artificial connection between Lake Michigan (LMI) and the Illinois River watershed, has served as a conduit for invasive species and is a potential pathway for viral hemorrhagic septicemia (VHS) to spread from the Great Lakes into the Illinois River drainage. Although some fishes are known to have moved from LMI into the Illinois River via the CAWS, the rate of fish passage from the lake into the CAWS is unclear. Stable carbon isotopic signatures (δ13C) in otoliths differ between lake‐ and CAWS‐resident fish and were used as a natural tag to identify individuals that may have moved into the CAWS from LMI. The objectives of this study were to (i) estimate relative frequency of individuals with otolith δ13C indicative of prior residency in LMI among small‐bodied (<150 mm total length) VHS‐susceptible fishes collected from several locations in the CAWS, and (ii) to assess differences in relative frequency of probable immigrants from LMI among CAWS locations that differ in distance from the lake. Thirty‐six percent of small‐bodied fishes collected from the CAWS were identified as potential immigrants based on otolith δ13C. The percentage of individuals that had otolith δ13C suggestive of prior residency in LMI was higher among fish collected from the Calumet River compared to the Chicago River and North Shore Channel and decreased with increasing distance from lock and dam structures at the three entrances to the CAWS from the lake. Movement of small‐bodied fishes from LMI into the CAWS appears to be common and may represent a pathway for VHS‐susceptible species to transport the virus into the CAWS and potentially beyond.  相似文献   

4.
1. Shallow lakes in the Boreal Transition Zone (BTZ) in Alberta, Canada are naturally productive systems that provide important breeding and moulting habitat for many waterfowl (Anseriformes). To examine the relative importance of biotic and abiotic factors on waterfowl population densities, species richness and community composition, we surveyed 30 shallow lakes and evaluated the relationships among fish communities, lake characteristics and waterfowl in both breeding and moulting habitat. Shallow lakes were either fishless (n = 15), contained only small‐bodied fishes (n = 10) or contained large‐bodied, mostly predatory, fish in addition to small‐bodied fish (n = 5). 2. Environmental factors, including water colour, submerged aquatic vegetation, lake area and potassium, explained 24.3% of the variation in breeding waterfowl communities. Fish assemblage contributed independently to a small but significant proportion (13.4%) of the variation, while 13.8% of the explained variation was shared between environmental factors and fish assemblage. In total, 51.5% of the variation in breeding waterfowl communities was explained. 3. Overall, 55.5% of the total variation in moulting waterfowl communities was explained. Environment alone [especially total phosphorus, lake area, maximum depth and dissolved organic carbon (DOC)] and variation shared by fish and environment similarly accounted for most of the explained variation in moulting waterfowl communities (21.7% and 25.7% respectively), while fish assemblage was only one‐third as important (8.1%). 4. Both breeding and moulting waterfowl densities increased with lake productivity, even in eutrophic and hypereutrophic lakes. Breeding waterfowl density was also twice as great in fishless lakes than in lakes with fish, after accounting for lake area. 5. Certain waterfowl taxa were linked to fishless lakes, especially in the moulting season. Canvasback and moulting ring‐necked ducks were linked to small‐bodied fish lakes, whereas moulting common goldeneye were indicators of large‐bodied fish lakes. Knowledge of fish presence and species composition can therefore help guide conservation and management of waterfowl habitat in western Canada. Our results suggest that management efforts to maintain the most productive waterfowl habitat in the BTZ should focus on smaller, shallow, fishless lakes, particularly given that larger fish‐bearing systems have greater regulatory protection.  相似文献   

5.
The response of semiarid grasslands to small, non‐colonial herbivores has received little attention, focusing primarily on the effects of granivore assemblages on annual plant communities. We studied the long‐term effects of both small and large herbivores on vegetation structure and species diversity of shortgrass steppe, a perennial semiarid grassland considered marginal habitat for small mammalian herbivores. We hypothesized that 1) large generalist herbivores would affect more abundant species and proportions of litter‐bare ground‐vegetation cover through non‐selective herbivory, 2) small herbivores would affect less common species through selective but limited consumption, and 3) herbivore effects on plant richness would increase with increasing aboveground net primary production (ANPP). Plant community composition was assessed over a 14‐year period in pastures grazed at moderate intensities by cattle and in exclosures for large (cattle) and large‐plus‐small herbivores (additional exclusion of rabbits and rodents). Exclusion of large herbivores affected litter and bare ground and basal cover of abundant, common and uncommon species. Additional exclusion of small herbivores did not affect uncommon components of the plant community, but had indirect effects on abundant species, decreased the cover of the dominant grass Bouteloua gracilis and total vegetation, and increased litter and species diversity. There was no relationship between ANPP and the intensity of effects of either herbivore body size on richness. Exclusion of herbivores of both body sizes had complementary and additive effects which promoted changes in vegetation composition and physiognomy that were linked to increased abundance of tall and decreased abundance of short species. Our findings show that small mammalian herbivores had disproportionately large effects on plant communities relative to their small consumption of biomass. Even in small‐seeded perennial grasslands with a long history of intensive grazing by large herbivores, non‐colonial small mammalian herbivores should be recognized as an important driver of grassland structure and diversity.  相似文献   

6.
1. The effects of omnivorous exotic species on native communities are often difficult to predict because of the broad diets and behavioural flexibility of the omnivore, and the diverse abiotic and biotic characteristics of invaded systems. We investigated experimentally the effects of a gradient of density of the introduced, omnivorous red swamp crayfish Procambarus clarkii (Decapoda: Cambaridae) on two stream communities in southern California, U.S.A. 2. The Ventura River is a clear, flowing stream with a cobble substratum, with abundant algae but low densities of large invertebrates, small herbivores and snails. The Santa Ynez River at the time of the study consisted of a series of drying pools underlain by sand, with abundant charophytes, large predatory invertebrates and herbivores, including snails. 3. In the Ventura River, periphyton biomass and inorganic sediment decreased with increasing crayfish abundance, but in the Santa Ynez River, periphyton and sediment were unrelated to crayfish densities. 4. In the Ventura River, the biomass and density of all benthic invertebrates combined, chironomids, micropredators, the meiofauna (chydorid cladocerans, copepods and ostracods), and specific predatory and herbivorous taxa, as well as taxon richness, were negatively related to crayfish density. In the Santa Ynez River, the biomass and average body size of benthic invertebrates, predatory invertebrates, herbivores and chironomids, but not total invertebrate density or taxon richness, were negatively related to crayfish density. 5. Fewer large predatory invertebrates and snails (Physella gyrina) in both streams, and baetid mayflies in the Ventura River, were visible at night in channels where crayfish were abundant. Snails responded to crayfish by moving above the water line in the Santa Ynez River, but not in the Ventura River. 6. We suggest that the same omnivore had different effects on these neighbouring streams because of crayfish predation on large invertebrates in the Santa Ynez River and the scarcity of such prey in the Ventura River, leading to increased crayfish grazing on periphyton, and reductions in periphyton‐associated invertebrates, in the Ventura River.  相似文献   

7.
How ecological communities respond to predicted increases in temperature will determine the extent to which Earth's biodiversity and ecosystem functioning can be maintained into a warmer future. Warming is predicted to alter the structure of natural communities, but robust tests of such predictions require appropriate large‐scale manipulations of intact, natural habitat that is open to dispersal processes via exchange with regional species pools. Here, we report results of a two‐year whole‐stream warming experiment that shifted invertebrate assemblage structure via unanticipated mechanisms, while still conforming to community‐level metabolic theory. While warming by 3.8 °C decreased invertebrate abundance in the experimental stream by 60% relative to a reference stream, total invertebrate biomass was unchanged. Associated shifts in invertebrate assemblage structure were driven by the arrival of new taxa and a higher proportion of large, warm‐adapted species (i.e., snails and predatory dipterans) relative to small‐bodied, cold‐adapted taxa (e.g., chironomids and oligochaetes). Experimental warming consequently shifted assemblage size spectra in ways that were unexpected, but consistent with thermal optima of taxa in the regional species pool. Higher temperatures increased community‐level energy demand, which was presumably satisfied by higher primary production after warming. Our experiment demonstrates how warming reassembles communities within the constraints of energy supply via regional exchange of species that differ in thermal physiological traits. Similar responses will likely mediate impacts of anthropogenic warming on biodiversity and ecosystem function across all ecological communities.  相似文献   

8.
Productive tundra plant communities composed of a variety of fast growing herbaceous and woody plants are likely to attract mammalian herbivores. Such vegetation is likely to respond to different-sized herbivores more rapidly than currently acknowledged from the tundra. Accentuated by currently changing populations of arctic mammals there is a need to understand impacts of different-sized herbivores on the dynamics of productive tundra plant communities. Here we assess the differential effects of ungulate (reindeer) and small rodent herbivores (voles and lemmings) on high productive tundra vegetation. A spatially extensive exclosure experiment was run for three years on river sediment plains along two river catchments in low-arctic Norway. The river catchments were similar in species pools but differed in species abundance composition of both plants and vertebrate herbivores. Biomass of forbs, deciduous shrubs and silica-poor grasses increased by 40–50% in response to release from herbivory, whereas biomass of silica-rich grasses decreased by 50–75%. Hence both additive and compensatory effects of small rodents and reindeer exclusion caused these significant changes in abundance composition of the plant communities. Changes were also rapid, evident after only one growing season, and are among the fastest and strongest ever documented in Arctic vegetation. The rate of changes indicates a tight link between the dynamics of productive tundra vegetation and both small and large herbivores. Responses were however not spatially consistent, being highly different between the catchments. We conclude that despite similar species pools, variation in plant species abundance and herbivore species dynamics give different prerequisites for change.  相似文献   

9.
New technologies for quantifying animal locations enable us to document habitat‐selection patterns of cryptic taxa in extraordinary detail. Northern bluetongues (Tiliqua scincoides intermedia) and centralian bluetongues (Tiliqua multifasciata) are large heavy‐bodied scincid lizards that are broadly sympatric in the wet–dry tropics of north‐western Australia. We used data from GPS‐based radiotelemetry (n = 49 lizards, tracked for 2–121 days, total n = 61 640 locations) to examine the size, internal structure and overlap of lizard home ranges. Despite substantial habitat differences at our two study sites (semi‐arid and relatively pristine habitat at Keep River National Park, Northern Territory, vs. highly disturbed and fragmented flood plain habitat in an agricultural area near Kununurra, Western Australia), home ranges were similar between the two areas, and between the two species. Our radio‐tracked lizards continued to disperse into previously unused areas throughout the duration of the study, so that the total areas used by lizards continued to increase. Based on the minimum convex polygon method, total home ranges averaged 4 ha (range 2–12 ha), but only about two‐thirds of each home range was used intensively. Each home range had multiple core areas, and overlap of core as well as peripheral areas (especially with same‐sex conspecifics) was high at the disturbed (Western Australia) site where lizard densities were high. The concentration of lizard activity within small core areas, often used by multiple individuals, suggests that these heavily used sites are critical to lizard conservation. However, the lizards' infrequent long‐distance displacements also make them vulnerable to changes in the wider landscape mosaic. Because GPS‐based radiotelemetry can quantify habitat use at finer spatial and temporal scales than earlier technologies, it can provide a robust base for management of at‐risk fauna.  相似文献   

10.
Body mass is a strong predictor of diet and nutritional requirements across a wide range of mammalian taxa. In the case of small‐bodied primates, because of their limited gut volume, rapid food passage rate, and high metabolic rate, they are hypothesized to maintain high digestive efficiency by exploiting foods rich in protein, fats, and readily available energy. However, our understanding of the dietary requirements of wild primates is limited because little is known concerning the contributions of their gut microbiome to the breakdown and assimilation of macronutrients and energy. To study how the gut microbiome contributes to the feeding ecology of a small‐bodied primate, we analyzed the fecal microbiome composition and metabolome of 22 wild saddleback tamarins (adult body mass 360–390 g) in Northern Bolivia. Samples were analyzed using high‐throughput Illumina sequencing of the 16 S rRNA gene V3‐V5 regions, coupled with GC‐MS metabolomic profiling. Our analysis revealed that the distal microbiome of Leontocebus weddelli is largely dominated by two main bacterial genera: Xylanibacter and Hallella (34.7 ± 14.7 and 22.6 ± 12.4%, respectively). A predictive analysis of functions likely carried out by bacteria in the tamarin gut demonstrated the dominance of membrane transport systems and carbohydrate metabolism as the predominant metabolic pathways. Moreover, given a fecal metabolome composed mainly of glucose, fructose, and lactic acid (21.7 ± 15.9%, 16.5 ± 10.7%, and 6.8 ± 5.5%, respectively), the processing of highly fermentable carbohydrates appears to play a central role in the nutritional ecology of these small‐bodied primates. Finally, the results also show a potential influence of environmentally‐derived bacteria in colonizing the tamarin gut. These results indicate high energetic turnover in the distal gut of Weddell's saddleback tamarin, likely influenced by dominant bacterial taxa that facilitate dietary dependence on highly digestible carbohydrates present in nectar, plant exudates, and ripe fruits.  相似文献   

11.
In several higher animal taxa, such as mammals and birds, the distribution of species body sizes is heavily skewed towards small size. Previous studies have suggested that small‐bodied organisms are less prone to extinction than large‐bodied species. If small body size is favourable during mass extinction events, a post mass extinction excess of small‐bodied species may proliferate and maintain skewed body size distributions sometime after. Here, we modelled mass extinctions and found that even unrealistically strong body mass selection has little effect on the skew of interspecific body size distributions. Moreover, selection against large body size may, counter intuitively, skew size distributions towards large body size. In any case, subsequent evolutionary diversification rapidly erases these rather small effects mass extinctions may have on size distributions. Next, we used body masses of extant species and phylogenetic methods to investigate possible changes in body size distributions across the Cretaceous–Paleogene (K‐Pg) mass extinction. Body size distributions of extant clades that originated during the Cretaceous are on average more skewed than their subclades that originated during the Paleogene, but the difference is only minor in mammals, and in birds, it can be explained by a positive relationship between species richness and skewness that is also present in clades that originated after the transition. Hence, we cannot infer from extant species whether the K‐Pg mass extinctions were size‐selective, but they are not the reason why most extant bird and mammal species are small‐bodied.  相似文献   

12.
草原区河流河漫滩草甸是生物多样性表现最充分和生物生产力最高的地段, 但由于过度放牧利用, 绝大部分草甸处于退化状态。该文以锡林河流域中游的河漫滩草甸为研究对象, 比较分析了围封保育湿地与放牧退化湿地的群落组成、地上生物量, 以及共有植物种的植株高度、节间长、叶长、叶宽, 土壤含水量、容重, 群落地下根量及根的分布, 土壤微生物生物量碳、氮的变化。结果表明: 1)放牧使得湿地植物群落优势种发生变化, 原有湿生植物逐渐向旱生化转变, 同时地上及地下生物量明显降低。2)退化湿地的植物呈现显著小型化现象。3)放牧退化湿地的土壤含水量较围封保育湿地低, 其垂直分布及地下根的垂直分布也发生变化。在低河漫滩, 土壤水分随土层的增加而增加, 根量也趋于深层化。但在高河漫滩湿地, 土壤含水量接近典型草原, 根未出现深层化分布趋势。4)放牧践踏引起土壤容重和土壤紧实度增加。5)放牧使得低河漫滩湿地土壤微生物生物量增加, 而在过渡区及高河漫滩湿地, 放牧使得土壤微生物生物量碳、氮含量显著降低。  相似文献   

13.
1. Rainbow Trout (Oncorhynchus mykiss [Walbaum]) is commonly stocked as a sport fish throughout the world but can have serious negative effects on native species, especially in headwater systems. Productive fish‐bearing lakes represent a frequently stocked yet infrequently studied system, and effects of trout in these systems may differ from those in headwater lakes. 2. We used a Before‐After Control‐Impact (BACI) design to determine how stocked trout affected assemblage‐level and taxon‐level biomass, abundance and average length of littoral invertebrates in a stocked lake relative to three unstocked control lakes in the boreal foothills of Alberta, Canada. Lakes were studied 1 year before and for 2 years after stocking. Because characteristics of productive fish‐bearing lakes should buffer impacts of introduced fish, we predicted that trout would not affect assemblage‐level structure of littoral invertebrates but might reduce the abundance or average length of large‐bodied taxa frequently consumed by trout. 3. Relative to the unstocked control lakes, biomass, but not abundance, of the littoral invertebrate assemblage was affected indirectly by trout through increases of some taxa after trout stocking. At the individual taxon‐level, trout stocking did not affect most (23 of the 27) taxa, with four taxa increasing in abundance or biomass after stocking. Only one taxon, Chironomidae, showed evidence of size‐selective predation by trout, being consumed frequently by trout and decreasing significantly in average length after stocking. 4. Our results contrast with the strong negative effects of trout stocking on invertebrate assemblages commonly reported from headwater lakes. A combination of factors, including large and robust native populations of forage fish, the generalised diet of trout, overwinter aeration, relatively high productivity and dense macrophyte beds, likely works in concert to reduce potentially negative effects of stocked trout in these systems. As such, productive, fish‐bearing lakes may represent a suitable system for trout stocking, especially where native sport fish populations are lacking.  相似文献   

14.
Quantitative samples were used to investigate density, biomass and annual production of the benthic invertebrate fauna in a small Danish stream. Forty-eight taxa were found and the total invertebrate densities varied from 3 810 m?2 in July to 20 040 m?2 in December. The total mean annual biomass of the invertebrate fauna was 6.1 g ash-free dry wt m?2. The annual production of the invertebrates was estimated from their mean annual biomass and their annual P/B ratio. Production of the primary consumers (herbivores and detritivores) was 21.4 g ash-free dry wt m?2 y?1 and of secondary consumers (carnivores) 1.1 g m?2 y?1. The amount of invertebrate production available to the trout population and the importance of the species as food for trout are discussed.  相似文献   

15.
1. We studied the effect of substratum movement on the communities of adjacent mountain and spring tributaries of the Ivishak River in arctic Alaska (69°1′N, 147°43′W). We expected the mountain stream to have significant bed movement during summer because of storm flows and the spring stream to have negligible bed movement because of constant discharge. 2. We predicted that the mountain stream would be inhabited only by taxa able to cope with frequent bed movement. Therefore, we anticipated that the mountain stream would have lower macroinvertebrate species richness and biomass and a food web with fewer trophic levels and lower connectance than the spring stream. 3. Substrata marked in situ indicated that 57–66% of the bed moved during summer in the mountain stream and 4–20% moved in the spring stream. 4. Macroinvertebrate taxon richness was greater in the spring (25 taxa) than in the mountain stream (20 taxa). Mean macroinvertebrate biomass was also greater in the spring (4617 mg dry mass m?2) than in the mountain stream (635 mg dry mass m?2). Predators contributed 25% to this biomass in the spring stream, but only 7% in the mountain stream. 5. Bryophyte biomass was >1000 times greater in the spring stream (88.4 g ash‐free dry mass m?2) than the mountain stream (0.08 g ash‐free dry mass m?2). We attributed this to differences in substratum stability between streams. The difference in extent of bryophyte cover between streams probably explains the high macroinvertebrate biomass in the spring stream. 6. Mean food‐web connectance was similar between streams, ranging from 0.18 in the spring stream to 0.20 in the mountain stream. Mean food chain length was 3.04 in the spring stream and 1.83 in the mountain stream. Dolly Varden char (Salvelinus malma) was the top predator in the mountain stream and the American dipper (Cinclus mexicanus) was the top predator in the spring stream. The difference in mean food chain length between streams was due largely to the presence of C. mexicanus at the spring stream. 7. Structural differences between the food webs of the spring and mountain streams were relatively minor. The difference in the proportion of macroinvertebrate biomass contributing to different trophic levels was major, however, indicating significant differences in the volume of material and energy flow between food‐web nodes (i.e. food web function).  相似文献   

16.
The genus Saguinus represents a successful radiation of over 20 species of small‐bodied New World monkeys. Studies of the tamarin diet indicate that insects and small vertebrates account for ~16–45% of total feeding and foraging time, and represent an important source of lipids, protein, and metabolizable energy. Although tamarins are reported to commonly consume large‐bodied insects such as grasshoppers and walking sticks (Orthoptera), little is known concerning the degree to which smaller or less easily identifiable arthropod prey comprises an important component of their diet. To better understand tamarin arthropod feeding behavior, fecal samples from 20 wild Bolivian saddleback tamarins (members of five groups) were collected over a 3 week period in June 2012, and analyzed for the presence of arthropod DNA. DNA was extracted using a Qiagen stool extraction kit, and universal insect primers were created and used to amplify a ~280 bp section of the COI mitochondrial gene. Amplicons were sequenced on the Roche 454 sequencing platform using high‐throughput sequencing techniques. An analysis of these samples indicated the presence of 43 taxa of arthropods including 10 orders, 15 families, and 12 identified genera. Many of these taxa had not been previously identified in the tamarin diet. These results highlight molecular analysis of fecal DNA as an important research tool for identifying anthropod feeding patterns in primates, and reveal broad diversity in the taxa, foraging microhabitats, and size of arthropods consumed by tamarin monkeys. Am J Phys Anthropol 156:474–481, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
The standing crop biomass of different populations or trophic levels reflects patterns of energy flow through an ecosystem. The contribution of parasites to total biomass is often considered negligible; recent evidence suggests otherwise, although it comes from a narrow range of natural systems. Quantifying how local parasite biomass, whether that of a single species or an assemblage of species sharing the same host, varies across localities with host population biomass, is critical to determine what constrains parasite populations. We use an extensive dataset on all free‐living and parasitic metazoan species from multiple sites in New Zealand lakes to measure parasite biomass and test how it covaries with host biomass. In all lakes, trematodes had the highest combined biomass among parasite taxa, ranging from about 0.01 to 0.25 g m?2, surpassing the biomass of minor free‐living taxa. Unlike findings from other studies, the life stage contributing the most to total trematode biomass was the metacercarial stage in the second intermediate host, and not sporocysts or rediae within snail first intermediate hosts, possibly due to low prevalence and small snail sizes. For populations of single parasite species, we found no relationship between host and parasite biomass for either juvenile or adult nematodes. In contrast, all life stages of trematodes had local biomasses that correlated positively with those of their hosts. For assemblages of parasite species sharing the same host, we found strong relationships between local host population biomass and the total biomass of parasites supported. In these host–parasite biomass relationships, the scaling factor (slope in log‐log space) suggests that parasites may not be making full use of available host resources. Host populations appear capable of supporting a little more parasite biomass, and may be open to expansion of existing parasites or invasion by new ones.  相似文献   

18.
1. We examined the export of invertebrates (aquatic and terrestrial) and coarse organic detritus from forested headwaters to aquatic habitats downstream in the coastal mountains of southeast Alaska, U.S.A. Fifty‐two small streams (mean discharge range: 1.2–3.6 L s?1), representing a geographic range throughout southeast Alaska, were sampled with 250‐μm nets either seasonally (April, July, September) or every 2 weeks throughout the year. Samples were used to assess the potential subsidy of energy from fishless headwaters to downstream systems containing fish. 2. Invertebrates of aquatic and terrestrial origin were both captured, with aquatic taxa making up 65–92% of the total. Baetidae, Chironomidae and Ostracoda were most numerous of the aquatic taxa (34, 16 and 8%, respectively), although Coleoptera (mostly Amphizoidae) contributed the greatest biomass (30%). Mites (Acarina) were the most numerous terrestrial taxon, while terrestrial Coleoptera accounted for most of the terrestrial invertebrate biomass. 3. Invertebrates and detritus were exported from headwaters throughout the year, averaging 163 mg invertebrate dry mass stream?1 day?1 and 10.4 g detritus stream?1 day?1, respectively. The amount of export was highly variable among streams and seasons (5–6000 individuals stream?1 day?1 and <1–22 individuals m?3 water; <1–286 g detritus stream?1 day?1 and <0.1–1.7 g detritus m?3 water). Delivery of invertebrates from headwaters to habitats with fish was estimated at 0.44 g dry mass m?2 year?1. We estimate that every kilometre of salmonid‐bearing stream could receive enough energy (prey and detritus) from fishless headwaters to support 100–2000 young‐of‐the‐year (YOY) salmonids. These results illustrate that headwaters are source areas of aquatic and terrestrial invertebrates and detritus, linking upland ecosystems with habitats lower in the catchment.  相似文献   

19.
The irruptive population dynamics of rodents are a globally renowned wildlife phenomenon; however, the dynamics of other small mammals with which rodents are sympatric are poorly understood. Dryland Australia supports a high diversity of small (<200 g) arthropod‐eating marsupials (Dasyuridae). Here, we test the hypothesis that dasyurid marsupials do not exhibit the same degree of irruptive population dynamics that are shown by rodents. We addressed this question by sampling small mammal assemblages on 20 permanent trapping sites in the Simpson Desert on 20 occasions from 2007 to 2017. Sampling was stratified across three broad habitat types: sandridge, gibber plain and clay plain. We captured 478 dasyurid marsupials of nine species, ranging in mean body mass from 5.75 to 93.50 g, at a capture rate of 1.71 per 100 trap‐nights. Capture rate varied across habitat and over time and the interaction between these two effects was also significant. Capture rate was highest on clay plain (3.35 captures/100 trap‐nights), followed by gibber plain (2.16 captures/100 trap‐nights) and lowest on sand habitat (0.54 captures/100 trap‐nights). Each species had a clear preference for one of the dominant habitat types. Dasyurid assemblages responded to high rainfall pulses in November–December 2008 and January 2015; however, the largest rainfall period in 2010–2011 resulted in very low captures. Likewise, a peak in abundance occurred in April 2008 although it was not preceded by high rainfall. We conclude that, although dasyurid marsupial capture rates varied up to 34 fold during the study period, population changes are not strongly tied to rainfall. Heterothermic physiology in this family, in particular the ability to use daily torpor to save energy, may be central to the decoupling of population dynamics from rainfall‐driven primary productivity.  相似文献   

20.
The functional feeding groups and diversity of macroinvertebrate communities associated with duckweed mats in the New Years River (two sites) and Bloukrans River (two sites), Eastern Cape province, South Africa, were assessed. Duckweed (Lemnaceae) is a ubiquitous family of floating macrophytes. A total of 41 macroinvertebrate families were collected monthly over a six-month period from February to July 2014. Duckweed biomass in both rivers was highly variable both temporally and spatially. The majority of identified macroinvertebrate taxa were predators and detritivores, with a small percentage of herbivores. An average of approximately 26% of the macroinvertebrate taxa found were from families that include species from more than one functional feeding group. Although overall measures of diversity and ecosystem health (Fisher’s α and Simpson’s index) remained constant over time in the New Years River, significant differences in macroinvertebrate community structure were seen between sites and months on both rivers, with dissimilarity being driven by a larger number of species in the New Years River. This high variability within macroinvertebrate assemblages probably reflects a combination of heterogeneous duckweed distribution, variation in physico-chemistry, opportunistic behaviours of macroinvertebrate predators and/or successional colonisation of duckweed mats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号