首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 371 毫秒
1.
2.
The bacterial endosymbionts of two species of the bivalve genus Solemya from the Pacific Ocean, Solemya terraeregina and Solemya pusilla, were characterized. Prokaryotic cells resembling gram-negative bacteria were observed in the gills of both host species by transmission electron microscopy. The ultrastructure of the symbiosis in both host species is remarkably similar to that of all previously described Solemya spp. By using sequence data from 16S rRNA, the identity and evolutionary origins of the S. terraeregina and S. pusilla symbionts were also determined. Direct sequencing of PCR-amplified products from host gill DNA with primers specific for Bacteria 16S rRNA genes gave a single, unambiguous sequence for each of the two symbiont species. In situ hybridization with symbiont-specific oligonucleotide probes confirmed that these gene sequences belong to the bacteria residing in the hosts gills. Phylogenetic analyses of the 16S rRNA gene sequences by both distance and parsimony methods identify the S. terraeregina and S. pusilla symbionts as members of the gamma subdivision of the Proteobacteria. In contrast to symbionts of other bivalve families, which appear to be monophyletic, the S. terraeregina and S. pusilla symbionts share a more recent common ancestry with bacteria associating endosymbiotically with bivalves of the superfamily Lucinacea than with other Solemya symbionts (host species S. velum, S. occidentalis, and S. reidi). Overall, the 16S rRNA gene sequence data suggest that the symbionts of Solemya hosts represent at least two distinct bacterial lineages within the gamma-Proteobacteria. While it is increasingly clear that all extant species of Solemya live in symbiosis with specific bacteria, the associations appear to have multiple evolutionary origins.  相似文献   

3.
Among families of bivalves with chemoautotrophic symbionts, the Thyasiridae may vary the most in their anatomical characters and in the extent of their nutritional reliance upon symbionts. Since only a fraction of thyasirid species are symbiotic, and the symbionts are mostly observed to be extracellular, this group may be representative of early stages in the evolution of bacterium- bivalve symbioses. To better understand the distribution of symbiosis among thyasirid genera, and the relationships between gill structure and symbiont occurrence, the gills of 26 thyasirid species were studied by light and electron microscopy. Observations revealed three gill types, which are generally constrained within genera or subgenera. Symbionts were found in two gill types: the most simple, homorhabdic filibranch morphotype, and the most derived and thickened morphotype, which resembles the gill structure of other chemosymbiotic bivalves. In all observable cases, the symbionts were located extracellularly among the microvilli of the bacteriocytes. Among individuals of the species Thyasira (Parathyasira) equalis, the quantity of symbionts varied. The results suggest an evolutionary sequence: a homorhabdic filibranch gill structure with few symbionts among the epithelial cell microvilli eventually thickened abfrontally, and thereby offered a larger surface for colonization by symbionts. Eventually, the symbionts persisted and grew in vacuoles within epithelial cells.  相似文献   

4.
Vertically transmitted bacterial symbionts are common in arthropods. However, estimates of their incidence and diversity are based on studies that test for a single bacterial genus and often only include small samples of each host species. Focussing on ladybird beetles, we collected large samples from 21 species and tested them for four different bacterial symbionts. Over half the species were infected, and there were often multiple symbionts in the same population. In most cases, more females than males were infected, suggesting that the symbionts may be sex ratio distorters. Many of these infections would have been missed in previous studies as they only infect a small proportion of the population. Furthermore, 11 out of the 17 symbionts discovered by us were either in the genus Rickettsia or Spiroplasma, which are rarely sampled. Our results suggest that the true incidence and diversity of bacterial symbionts in insects may be far greater than previously thought.  相似文献   

5.
Crinoid associates represent an abundant and diverse, but poorly explored, component of the hidden biodiversity of coral-reef ecosystems. We studied data from 5 years of collecting in the Bay of Nhatrang (BN), Vietnam, to assess the diversity of crinoids and their symbionts, to compare it with other areas of the Indo-West Pacific, and to elucidate the extent to which the observed diversity of crinoids and their symbionts corresponds to their true diversity. In total, about 2,287 specimens of symbionts belonging to 70 species were found on 203 specimens of crinoids belonging to 33 species. Among the crinoids, the most numerous species were Himerometra robustipinna (36 specimens) and Cenometra bella (29 specimens), among the symbionts the polychaete Paradyte crinoidicola (c. 850 specimens) and the galatheid crustacean Allogalathea elegans (180 specimens). Species accumulation curves suggest that we have sampled most of the crinoid diversity in the BN, whereas the diversity of their symbionts remained undersampled. Estimated species richness of crinoids was higher than previously observed richness, and varied from 39 (estimated by bootstrap) to 46 (jackknife 2). Estimated species richness of symbionts was higher than observed richness, and varied from 71 (bootstrap) to 93 (jackknife 2). We suggest a slight increase in the number of crinoid species to result from more detailed studies of nocturnal species, and an increase in the number of symbiotic species when studies of nocturnal crinoid associates and sibling species among decapods are included. Our study revealed a rather rich crinoid fauna in the bay compared to other areas of the Indo-West Pacific, and the highest species richness of crinoid associates known from anywhere in the World Ocean.  相似文献   

6.
《Marine Micropaleontology》2003,49(3):187-194
In all 29 polycystine radiolarian species were obtained from surface seawater on May 28, 1999, using a plankton-net at one station (Site 990528; 26°37′18″N, 127°47′35″E) approximately 5 km northwest of Okinawa Island, Japan. In most polycystine radiolarians of the orders Nassellarida and Spumellarida symbiotic algae were observed under light microscopy. The light microscopic (LM) images of the symbionts, however, varied in clarity among individuals because of the variations in microanatomy of the host radiolarian cells. On the other hand, epifluorescence microscopic (EFM) observation easily detected and confirmed the existence of the algal symbionts within the host cytoplasm even in radiolarians such as Dictyocoryne truncatum (Ehrenberg) that include algal symbionts in the depth of the cytoplasm. The chloroplasts of the algal symbionts emitted autofluorescence in ultraviolet irradiation and they appeared red. That is, the autofluorescence images of the chloroplasts can be used to recognize the existence of the algal symbionts within the host radiolarians. Moreover, staining of the symbiont cells with 4′,6-diamido-2-phenylindle permitted visualization of the nucleus in the center of the symbiont cell, confirming the existence of living endosymbiotic algae within the polycystine radiolarians. Both the LM and EFM observations of eight polycystine radiolarian species revealed the specific patterns of various host-symbiont associations. (1) The investigated polycystine radiolarians all possess algal symbionts, except for one species, i.e. Dictyocoryne profunda Ehrenberg. (2) The size of the algal symbionts depends on the radiolarian species. The symbionts are largely classified into two types based on the size of their diameters, i.e. about 8–10 μm for the larger group and about 5 μm for the smaller one. (3) The algal symbionts show a variety of locations within the host radiolarian cytoplasm. The types of distribution of algal symbionts may be a useful characteristic for radiolarian taxonomy.  相似文献   

7.
Mutualisms often involve one host supporting multiple symbionts, whose identity, density and intraguild interactions can influence the nature of the mutualism and performance of the host. However, the implications of multiple co-occurring symbionts on services to a host have rarely been quantified. In this study, we quantified effects of decapod symbionts on removal of sediment from their coral host. Our field survey showed that all common symbionts typically occur as pairs and never at greater abundances. Two species, the crab Trapezia serenei and the shrimp Alpheus lottini, were most common and co-occurred more often than expected by chance. We conducted a mesocosm experiment to test for effects of decapod identity and density on sediment removal. Alone, corals removed 10% of sediment, but removal increased to 30% and 48% with the presence of two and four symbionts, respectively. Per-capita effects of symbionts were independent of density and identity. Our results suggest that symbiont density is restricted by intraspecific competition. Thus, increased sediment removal from a coral host can only be achieved by increasing the number of species of symbionts on that coral, even though these species are functionally equivalent. Symbiont diversity plays a key role, not through added functionality but by overcoming density limitation likely imposed by intraspecific mating systems.  相似文献   

8.
褐飞虱体内共生菌多样性研究进展   总被引:1,自引:0,他引:1  
褐飞虱体内存在大量的共生菌,这些共生菌不但具有种类多样性,同时在对寄主的功能上也存在多样性。目前利用分子生物学手段以及高通量测序技术鉴定得到的测序丰度大于0.1%的共生真菌和共生细菌种类分属19和53个不同的属。由于技术的局限性和共生菌难以离体培养的特性,仍有相当部分共生菌分类地位尚未明确。共生菌在褐飞虱的生长、发育、繁殖、营养代谢、抗性变异以及免疫功能等生命活动中起着至关重要的作用,种类丰富的共生菌发挥着不同的功能。共生真菌主要参与固醇类物质和必需氨基酸的合成,而共生细菌则主要参与维生素的合成。共生菌在褐飞虱致害性变异、抗药性发展以及对宿主的繁殖等方面也都产生了重要的影响,但是具体的分子机制尚未明确。本文针对褐飞虱体内共生菌多样性研究概况进行综述,并对今后的研究侧重点提出了建议,后续研究可以聚焦于: (1)共生菌种类的鉴定;(2)特定、单一种类共生菌的功能;(3)共生菌在褐飞虱体内各组织间的扩散途径、扩散种类和调控机制;(4)以共生菌为靶标进行褐飞虱的防治等。  相似文献   

9.
Studies of microbial associations of intertidal isopods in the primitive genus Ligia (Oniscidea, Isopoda) can help our understanding of the formation of symbioses during sea-land transitions, as terrestrial Oniscidean isopods have previously been found to house symbionts in their hepatopancreas. Ligia pallasii and Ligia occidentalis co-occur in the high intertidal zone along the Eastern Pacific with a large zone of range overlap and both species showing patchy distributions. In 16S rRNA clone libraries mycoplasma-like bacteria (Firmicutes), related to symbionts described from terrestrial isopods, were the most common bacteria present in both host species. There was greater overall microbial diversity in Ligia pallasii compared with L. occidentalis. Populations of both Ligia species along an extensive area of the eastern Pacific coastline were screened for the presence of mycoplasma-like symbionts with symbiont-specific primers. Symbionts were present in all host populations from both species but not in all individuals. Phylogenetically, symbionts of intertidal isopods cluster together. Host habitat, in addition to host phylogeny appears to influence the phylogenetic relation of symbionts.  相似文献   

10.
Summary All aphids harbor symbiotrophic prokaryotes (primary symbionts) in a specialized-abdominal cell, the bacteriocyte. Chaperonin 60 (Cpn60, symbionin) and chaperonin 10 (Cpn10), which are high and low molecular weight heatshock proteins, were sought in tissues of more than 60 aphid species. The endosymbionts were compared immunologically and histologically. It was demonstrated that (1) there are two types of aphids in terms of the endosymbiotic system: some with only primary symbionts and others with, in addition, secondary symbionts; (2) the primary symbionts of various aphids are quite similar in morphology whereas the secondary symbionts vary; and (3) irrespective of the aphid species, Cpn60 is abundant in both the primary and secondary symbionts, while Cpn10 is abundant in the secondary symbionts but present in small amounts in the primary ones. Based on these results, we suggest that the primary symbionts have been derived from a prokaryote that was acquired by the common ancestor of aphids whereas the secondary symbionts have been acquired by various aphids independently after divergence of the aphid species. In addition, we point out the possibility that the prokaryotes under intracellular conditions have been subject to some common evolutionary pressures, and as a result, have come to resemble cell organelles.  相似文献   

11.
Most species of insects are infected with heritable, facultative symbionts. Such symbionts first appear within a host lineage as a result of lateral transfer from other host species. Although some facultative symbionts are reproductive parasites and thus adversely affect the transmission of host nuclear genes, there is growing evidence that many are beneficial to their hosts by, for example, conferring protection from natural enemies. The origin, spread, and maintenance of such symbionts bears many similarities to, as well as important differences from, the process of adaptive evolution by beneficial nuclear mutations. The time is ripe for the development of a coherent theory of the 'population genetics' of beneficial heritable symbionts.  相似文献   

12.
The protobranch bivalve Solemya velum Say (Mollusca: Bivalvia) houses chemoautotrophic symbionts intracellularly within its gills. These symbionts were characterized through sequencing of polymerase chain reaction-amplified 16S rRNA coding regions and hybridization of an Escherichia coli gene probe to S. velum genomic DNA restriction fragments. The symbionts appeared to have only one copy of the 16S rRNA gene. The lack of variability in the 16S sequence and hybridization patterns within and between individual S. velum organisms suggested that one species of symbiont is dominant within and specific for this host species. Phylogenetic analysis of the 16S sequences of the symbionts indicates that they lie within the chemoautotrophic cluster of the gamma subdivision of the eubacterial group Proteobacteria.  相似文献   

13.
Mycoplasms are known as pathogens of economic and medical interest in plants, animals and man. Here, we show a positive correlation between the presence of Mycoplasma-like symbionts in their isopod hosts and survivorship on low-quality food. Most isopods that survived feeding on a cellulose-based low-quality diet for 90 days harboured 'Candidatus Hepatoplasma' in their midgut glands, while those that died within 90 days mostly either harboured no or other bacterial symbionts. We detected 'Candidatus Hepatoplasma' in all but one of the examined species of terrestrial isopods from different habitats and locations, suggesting an evolutionarily ancient association between terrestrial isopods and their Mycoplasma-like symbionts. Phylogenetic analyses clustered symbionts from different populations of the same isopod species together, and clearly distinguished between symbionts of different isopod species, indicating host-specificity of 'Candidatus Hepatoplasma', although a previous study provided evidence for environmental symbiont transmission. Nonetheless, horizontal exchange of symbionts between species may have been possible in evolutionary earlier stages, as suggested by only limited congruency of phylogenetic trees of hosts and symbionts. Another symbiont, 'Candidatus Hepatincola porcellionum', was only detected in midgut glands of the most terrestrial tribe of isopods (Crinocheta), suggesting an evolutionarily younger host-symbiont association. This symbiont proved to be negatively correlated with host longevity, even on high-quality food.  相似文献   

14.
Lichenized fungi of the genus Lepraria lack ascomata and conidiomata, and symbionts codisperse by soredia. Here, it is determined whether algal symbionts associated with Lepraria are monophyletic, and whether fungal and algal phylogenies are congruent, both of which are indicative of a long-term, continuous association between symbionts. The internal transcribed spacer (ITS) and part of the actin type I locus were sequenced from algae associated with Lepraria, and the fungal ITS and mitochondrial small subunit (mtSSU) were sequenced from fungal symbionts. Phylogenetic analyses tested for monophyly of algal symbionts and congruence between algal and fungal phylogenies. Algae associated with Lepraria were not monophyletic, and identical algae associated with different Lepraria individuals and species. Algal and fungal phylogenies were not congruent, suggesting a lack of strict codiversification. This study suggests that associations between symbionts are not strictly maintained over evolutionary time. The ability to switch partners may provide benefits similar to genetic recombination, which may have helped this lineage persist.  相似文献   

15.
The 16S rRNAs from the bacterial endosymbionts of six marine invertebrates from diverse environments were isolated and partially sequenced. These symbionts included the trophosome symbiont of Riftia pachyptila, the gill symbionts of Calyptogena magnifica and Bathymodiolus thermophilus (from deep-sea hydrothermal vents), and the gill symbionts of Lucinoma annulata, Lucinoma aequizonata, and Codakia orbicularis (from relatively shallow coastal environments). Only one type of bacterial 16S rRNA was detected in each symbiosis. Using nucleotide sequence comparisons, we showed that each of the bacterial symbionts is distinct from the others and that all fall within a limited domain of the gamma subdivision of the purple bacteria (one of the major eubacterial divisions previously defined by 16S rRNA analysis [C. R. Woese, Microbiol. Rev. 51: 221-271, 1987]). Two host specimens were analyzed in five of the symbioses; in each case, identical bacterial rRNA sequences were obtained from conspecific host specimens. These data indicate that the symbioses examined are species specific and that the symbiont species are unique to and invariant within their respective host species.  相似文献   

16.
Coral reefs provide habitat for an array of marine invertebrates that host symbiotic microbiomes. Photosynthetic symbionts including Symbiodinium dinoflagellates and diatoms potentially influence the diversity of their host-associated microbiomes by releasing carbon-containing photosynthates and other organic compounds that fuel microbial metabolism. Here we used 16S ribosomal RNA (rRNA) gene amplicon pyrosequencing to characterise the microbiomes of 11 common Great Barrier Reef marine invertebrate species that host photosynthetic symbionts and five taxa in which they are absent. The presence of photosynthetic symbionts influenced the composition but not the species richness, evenness and phylogenetic diversity of invertebrate-associated microbiomes. Invertebrates without photosynthetic symbionts were dominated by Alphaproteobacteria, whereas those hosting photosynthetic symbionts were dominated by Gammaproteobacteria. Interestingly, many microbial species from photosymbiont-bearing invertebrates, including Oceanospirillales spp., Alteromonas spp., Pseudomonas spp., Halomonas spp., are implicated in the metabolism of dimethylsulfoniopropionate (DMSP). DMSP is produced in high concentrations by photosynthetic dinoflagellates and is involved in climate regulation by facilitating cloud formation. Microbiomes correlated with host taxa and replicate individuals from most sampled species grouped in distance-based redundancy analysis of retrieved 16S rRNA gene sequences. This study highlights the complex nature of invertebrate holobionts and confirms the importance of photosynthetic symbionts in structuring marine invertebrate bacterial communities.  相似文献   

17.
Light influences the swimming behavior and settlement of the planktonic planula larvae of coral, but little is known regarding the photosensory biology of coral at this or any life-history stage. Here we used changes in the electrical activity of coral planula tissue upon light flashes to investigate the photosensitivity of the larvae. Recordings were made from five species: two whose larvae are brooded and contain algal symbionts (Porites astreoides and Agaricia agaricites), and three whose larvae are spawned and lack algal symbionts (Acropora cervicornis, Acropora palmata,and Montastrea faveolata). Photosensitivity originated from the coral larva rather than from, or in addition to, its algal symbionts as species with and without symbionts displayed similar tissue-level electrical responses to light. All species exhibited as much (or more) sensitivity to red stimuli as to blue/green stimuli, which is consistent with a role for long-wavelength visible light in the preference for substrata observed during settlement and in facilitating vertical positioning of larvae in the water column.  相似文献   

18.
Bacteria are ubiquitous inhabitants of animals.Hormaphidinae is a particular aphid group exhibiting very diverse life history traits.However,the microbiota in this group is poorly known.In the present study,using high-throughput sequencing of bacterial 16S ribosomal RNA gene amplicons,we surveyed the bacterial flora in hormaphidine aphids and explored whether the aphid tribe,host plant and geographical distribution are associated with the distribution of secondary symbionts.The most dominant bacteria detected in hormaphidine species are heritable symbionts.As expected,the primary endosymbiont Buchnera aphidicola is the most abundant symbiont across all species and has cospeciated with its host aphids.Six secondary symbionts were detected in Hormaphidinae.Arsenophonus is widespread in Hormaphidinae species,suggesting the possibility of ancient acquisition of this symbiont.Ordination analyses and statistical tests show that the symbiont composition does not seem to relate to any of the aphid tribes,host plants or geographical distributions,which indicate that horizontal transfers might occur for these symbionts in Hormaphidinae.Correlation analysis exhibits negative interference between Buchnera and coexisting secondary symbionts,while the interactions between different secondary symbionts are complicated.These findings display a comprehensive picture of the microbiota in Hormaphidinae and may be helpful in understanding the symbiont diversity within a group of aphids.  相似文献   

19.
Although heritable microorganisms are increasingly recognized as widespread in insects, no systematic screens for such symbionts have been conducted in Drosophila species (the primary insect genetic models for studies of evolution, development, and innate immunity). Previous efforts screened relatively few Drosophila lineages, mainly for Wolbachia. We conducted an extensive survey of potentially heritable endosymbionts from any bacterial lineage via PCR screens of mature ovaries in 181 recently collected fly strains representing 35 species from 11 species groups. Due to our fly sampling methods, however, we are likely to have missed fly strains infected with sex ratio-distorting endosymbionts. Only Wolbachia and Spiroplasma, both widespread in insects, were confirmed as symbionts. These findings indicate that in contrast to some other insect groups, other heritable symbionts are uncommon in Drosophila species, possibly reflecting a robust innate immune response that eliminates many bacteria. A more extensive survey targeted these two symbiont types through diagnostic PCR in 1225 strains representing 225 species from 32 species groups. Of these, 19 species were infected by Wolbachia while only 3 species had Spiroplasma. Several new strains of Wolbachia and Spiroplasma were discovered, including ones divergent from any reported to date. The phylogenetic distribution of Wolbachia and Spiroplasma in Drosophila is discussed.  相似文献   

20.
Microbial symbionts form abundant and diverse components of marine sponge holobionts, yet the ecological and evolutionary factors that dictate their community structure are unresolved. Here, we characterized the bacterial symbiont communities of three sympatric host species in the genus Ircinia from the NW Mediterranean Sea, using electron microscopy and replicated 16S rRNA gene sequence clone libraries. All Ircinia host species harbored abundant and phylogenetically diverse symbiont consortia, comprised primarily of sequences related to other sponge-derived microorganisms. Community-level analyses of bacterial symbionts revealed host species-specific genetic differentiation and structuring of Ircinia-associated microbiota. Phylogenetic analyses of host sponges showed a close evolutionary relationship between Ircinia fasciculata and Ircinia variabilis, the two host species exhibiting more similar symbiont communities. In addition, several bacterial operational taxonomic units were shared between I.?variabilis and Ircinia oros, the two host species inhabiting semi-sciophilous communities in more cryptic benthic habitats, and absent in I.?fasciculata, which occurs in exposed, high-irradiance habitats. The generalist nature of individual symbionts and host-specific structure of entire communities suggest that: (1) a 'specific mix of generalists' framework applies to bacterial symbionts in Ircinia hosts and (2) factors specific to each host species contribute to the distinct symbiont mix observed in Ircinia hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号