首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transgenic mice expressing mutant (P301L) human tau develop neurofibrillary tangles, amyotrophy and progressive motor disturbance. We present ultrastructural features of neuronal degeneration in this model that suggests involvement of both neurofibrillary and autophagic processes in neurodegeneration. Neurons undergoing neurofibrillary degeneration contain tau-immunoreactive, 15–20 nm-wide straight or wavy filaments with no periodic twists. Tau filaments were found in two types of affected neurons. One type resembled neurons with neurofibrillary tangles (NFT) that were filled with numerous filaments that displaced sparse cytoplasmic organelles to the periphery. Microtubules were almost completely absent. The nucleus remained centrally located, but showed lobulations due to deep infoldings. The other type resembled ballooned neurons seen in some human tauopathies. The nucleus was peripherally placed, but normal appearing. The cytoplasmic organelles were dispersed throughout the swollen perikarya, the Golgi complex was fragmented and duplicated, while mitochondria and other organelles appeared normal. Tau filaments similar to those in NFT were sparse and not tightly packed. Microtubules were also sparse. Many autophagic vacuoles were present in these cells. Heterogeneous appearing axonal swellings resembling spheroids in human tauopathies were present in gray and white matter. Unlike normal appearing axons, axonal spheroids were filled with tau-immunoreactive filaments and autophagic vacuoles, in addition to normal appearing neurofilaments and microtubules. These P301L transgenic mice exhibit many features common to human tauopathies, making them a valuable model to study the pathogenesis of these uncommon disorders.  相似文献   

2.
The two characteristic neuropathological lesions of Alzheimer's disease are the neurofibrillary tangles and the senile plaques. Neurofibrillary tangles are made of abnormal filaments (PHF) accumulating in neurons and mainly composed of a modified form of the microtubule-associated protein tau (PHF-tau). Senile plaques are composed of a cluster of dystrophic neurites surrounding an extracellular deposit of amyloid fibers made of a 42 amino-acid peptide (beta-amyloid peptide). The abnormal filaments contain the complete sequences of the different tau isoforms. The PHF-tau proteins can be distinguished from the normal tau proteins by the presence of several phosphorylated sites. One of these sites is phosphorylated by a calcium-calmodulin-dependent kinase. The relationship between PHF-tau and the cytoskeletal pathology in Alzheimer's disease is further discussed.  相似文献   

3.
The protein component of Alzheimer's disease amyloid [neurofibrillary tangles (NFT), amyloid plaque core and congophilic angiopathy] is an aggregated polypeptide with a subunit mass of 4 kd (the A4 monomer). Based on the degree of N-terminal heterogeneity, the amyloid is first deposited in the neuron, and later in the extracellular space. Using antisera raised against synthetic peptides, we show that the N terminus of A4 (residues 1-11) contains an epitope for neurofibrillary tangles, and the inner region of the molecule (residues 11-23) contains an epitope for plaque cores and vascular amyloid. The non-protein component of the amyloid (aluminum silicate) may form the basis for the deposition or amplification (possible self-replication) of the aggregated amyloid protein. The amyloid of Alzheimer's disease is similar in subunit size, composition but not sequence to the scrapie-associated fibril and its constituent polypeptides. The sequence and composition of NFT are not homologous to those of any of the known components of normal neurofilaments.  相似文献   

4.
Alzheimer disease (AD) is a chronic neurodegenerative disease that is characterized by progressive memory loss. Pathological markers of AD include neurofibrillary tangles, accumulation of amyloid-β plaques, neuronal loss, and inflammation. The exact events that lead to the neuronal dysfunction and loss are not completely understood. However, pro-inflammatory cytokines, such as interleukin-1β, interleukin-6, and tumor necrosis factor α, are increased in AD, along with gene expression of major histocompatibility complex (MHC) class II molecules and macrophage migration inhibitory factor (MIF). MHC class II molecules are found in microglia of the brain, while MIF is found in both microglia and neurons of the hypothalamus, hippocampus, and cortex. MIF is not only a lymphocyte mediator but also a pituitary factor with endocrine properties and can mediate phosphorylation of the extracellular signal-regulated kinase-1/2 MAP kinases pathway. In this study, we looked at CD74, an integral membrane protein that acts as both a chaperone for MHC class II molecules as well as a receptor binding site for MIF. CD74 was recently found to be increased in microglia in AD cases compared to age-matched controls, but has not been reported in neurons. In our analysis, immunohistochemistry revealed a significant increase in CD74 primarily in neurofibrillary tangles, amyloid-β plaques, and microglia. This is the first finding to our knowledge that CD74 is increased in neurons of AD cases compared to age-matched control cases.  相似文献   

5.
Díaz-Nido J  Wandosell F  Avila J 《Peptides》2002,23(7):1323-1332
Protein aggregation into dense filamentous inclusions is a characteristic feature of many etiologically diverse neurodegenerative disorders including Alzheimer's disease (AD), spongiform encephalopathies, and tauopathies. Thus, beta-amyloid peptide (Abeta) accumulates within senile amyloid plaques in AD, protease-resistant prion protein constitutes the amyloid deposits in spongiform encephalopathies and tau protein gives rise to neurofibrillary tangles (NFT) both in AD and in tauopathies. Curiously, these abnormal protein inclusions contain, in addition to their major peptide components, some associated sulfated glycosaminoglycans (sGAG). Here we discuss the proposal that the binding of sGAG to aggregate-forming peptides may modify the pathogenic process depending on their subcellular localization.  相似文献   

6.
Basic fibroblast growth factor (bFGF) is a potent mitogen for human bone marrow stromal cells and stimulates haematopoiesis in vitro. We report here that primary human bone marrow cultures contain bFGF and express heparin-like bFGF binding sites on the cell surface and in the extracellular matrix (ECM). bFGF bound predominantly to a 200-kD cell surface heparan sulfate proteoglycan (HSPG), which was also found in conditioned medium. bFGF was released from bone marrow cultures by incubation with phosphatidylinositol-specific phospholipase C (PI-PLC) and, less efficiently, by plasmin. Solubilized bFGF was found as a complex with the 200-kD HSPG. The complex was biologically active as shown by its ability to stimulate plasminogen activator production in bovine aortic endothelial cells. bFGF-HSPG complexes of bovine endothelial cells, however, were not released by PI-PLC. While only trace amounts of the bFGF-binding 200-kD HSPG were released spontaneously from bone marrow cultures, incubation with PI-PLC solubilized almost all of the 200-kD HSPG. The HSPG could be metabolically labeled with ethanolamine or palmitate, which was partially removed by treatment with PI-PLC. These findings indicate linkage of the HSPG to the cell surface via a phosphatidylinositol anchor. Plasmin released the 200-kD HSPG less efficiently than PI-PLC. We conclude that HSPGs of human bone marrow serve as a reservoir for bFGF, from which it can be released in a biologically active form via a dual mechanism; one involving a putative endogenous phospholipase, the other involving the proteolytic cascade of plasminogen activation.  相似文献   

7.
Numerous enzymes hyperphosphorylate Tau in vivo, leading to the formation of neurofibrillary tangles (NFTs) in the neurons of Alzheimer's disease (AD). Compared with age-matched normal controls, we demonstrated here that the protein levels of WW domain-containing oxidoreductase WOX1 (also known as WWOX or FOR), its Tyr33-phosphorylated form, and WOX2 were significantly down-regulated in the neurons of AD hippocampi. Remarkably knock-down of WOX1 expression by small interfering RNA in neuroblastoma SK-N-SH cells spontaneously induced Tau phosphorylation at Thr212/Thr231 and Ser515/Ser516, enhanced phosphorylation of glycogen synthase kinase 3beta (GSK-3beta) and ERK, and enhanced NFT formation. Also an increased binding of phospho-GSK-3beta with phospho-Tau was observed in these WOX1 knock-down cells. In comparison, increased phosphorylation of Tau, GSK-3beta, and ERK, as well as NFT formation, was observed in the AD hippocampi. Activation of JNK1 by anisomycin further increased Tau phosphorylation, and SP600125 (a JNK inhibitor) and PD-98059 (an MEK1/2 inhibitor) blocked Tau phosphorylation and NFT formation in these WOX1 knock-down cells. Ectopic or endogenous WOX1 colocalized with Tau, JNK1, and GSK-3beta in neurons and cultured cells. 17Beta-estradiol, a neuronal protective hormone, increased the binding of WOX1 and GSK-3beta with Tau. Mapping analysis showed that WOX1 bound Tau via its COOH-terminal short-chain alcohol dehydrogenase/reductase domain. Together WOX1 binds Tau via its short-chain alcohol dehydrogenase/reductase domain and is likely to play a critical role in regulating Tau hyperphosphorylation and NFT formation in vivo.  相似文献   

8.
Transglutaminase-catalyzed epsilon(gamma-glutamyl)lysine cross-links exist in Alzheimer's disease (AD) paired helical filament (PHF) tau protein but not normal soluble tau. To test the hypothesis that these cross-links could play a role in the formation of neurofibrillary tangles (NFT), we used single- and double-label immunofluorescence confocal microscopy and immunoaffinity purification and immunoblotting to examine epsilon(gamma-glutamyl)lysine cross-links in AD and control brains. The number of neurons that are immunoreactive with an antibody directed at the epsilon-(gamma-glutamyl)lysine bond was significantly higher in AD cortex compared with age-matched controls and schizophrenics. PHF tau-directed antibodies AT8, MC-1 and PHF-1 co-localized with epsilon(gamma-glutamyl)lysine immunolabeling in AD NFT. Immunoaffinity purification and immunoblotting experiments demonstrated that PHF tau contains epsilon(gamma-glutamyl)lysine bonds in parietal and frontal cortex in AD. In control cases with NFT present in the entorhinal cortex and hippocampus, indicative of Braak and Braak stage II, epsilon(gamma-glutamyl)lysine bonds were present in PHF tau in parietal and frontal cortex, despite the lack of microscopically detectable NFT or senile plaques in these cortical regions. The presence of PHF tau with epsilon(gamma-glutamyl)lysine bonds in brain regions devoid of NFT in stage II (but regions, which would be expected to contain NFT in stage III) suggests that these bonds occur early in the formation of NFT.  相似文献   

9.
Cultured bovine capillary endothelial (BCE) cells synthesize heparan sulfate proteoglycans (HSPG), which are both secreted into the culture medium and deposited in the cell layer. The nonsoluble HSPGs can be isolated as two predominant species: a larger 800-kD HSPG, which is recovered from preparations of extracellular matrix, and a 250-kD HSPG, which is solubilized by nonionic detergent extraction of the cells. Both HSPG species bind bFGF. 125I-bFGF bound to BCE cell cultures is readily released by either heparinase or plasmin. When released by plasmin, the growth factor is recovered from the incubation medium as a complex with the partly degraded high molecular mass HSPG. Endogenous bFGF activity is released by a proteolytic treatment of cultured BCE cells. The bFGF-binding HSPGs are also released when cultures are incubated with the inactive proenzyme plasminogen. Under such experimental conditions, the release of the extracellular proteoglycans can be enhanced by treating the cells either with bFGF, which increases the plasminogen activating activity expressed by the cells, or decreased by treating the cells with transforming growth factor beta, which decreases the plasminogen activating activity of the cells. Specific immune antibodies raised against bovine urokinase also block the release of HSPG from BCE cell cultures. We propose that this plasminogen activator-mediated proteolysis provides a mechanism for the release of biologically active bFGF-HSPG complexes from the extracellular matrix and that bFGF release can be regulated by the balance between factors affecting the pericellular proteolytic activity.  相似文献   

10.
In Alzheimer cortex tissue sections, thioflavine stained three patterns of amyloid lesions: neurofibrillary tangles (NFT), senile plaques (SP) and vessel walls (amyloid angiopathy AA). An anti serum against Tau proteins detected NFT but neither SP nor AA. In contrast, an anti serum against beta protein amyloid (BP A4) revealed SP and AA but not NFT. A periodic acid pretreatment dramatically enhanced the anti-BP A4 immunolabelling corresponding to microplaques as well as a large amount of diffuse extracellular amyloid substance, but never stained NFT. Pretreatment of tissue sections with a mixture of endo and exoglycosidases gave identical results and corroborates the extraneuronal processing of BP A4 that appears in a glycosylated form in the extracellular compartment.  相似文献   

11.
Heparan sulphate proteoglycans (HSPGs) are widely distributed in animal tissues, but their most prominent locations are cell surface membranes and basement membranes. Their influence on various fundamental aspects of cell behaviour (e.g. cell adhesion, growth and morphogenesis) are dependent on the specific binding properties of the heparan sulphate (HS) chains. These polysaccharides are complex structures in which N-sulphated glucosamine and ester sulphate groups tend to be clustered in discrete regions of the chain separated by sequences enriched in N-acetylglucosamine residues, but with a low sulphate concentration. The sulphated domains contain the sugar residue sequences for interaction with specific proteins essential for HS function. In this review, we describe the plasma membrane HSPGs and their role in regulating the activity of basic fibroblast growth factor (bFGF).  相似文献   

12.
In Alzheimer's disease, the most characteristic neuropathological changes are the formation of neurofibrillary tangles (NFT) and neuritic plaques (NP) characterized by the presence of bundles of paired helical filaments (PHF) that accumulate in the degenerating neurites and neuronal cell bodies. Although the protein composition of the PHF is ill-defined, a number of microtubule-associated proteins have been implicated in these lesions. Here we report results with an antiserum monospecific for the microtubule-associated protein MAP 2 which does not cross-react with any other microtubular protein. Immunostaining with this antibody of sections from an Alzheimer's brain show a strong reactivity with NFT but no reactivity at the level of the NP. On the other hand, immunostaining of Alzheimer's brain sections with another antibody specific for the microtubule-associated protein tau shows strong staining of PHF on both NFT and NP. These findings confirm the presence of the tau proteins in the PHF and strongly suggest that MAP 2 may not be a main structural component of the PHF. Labelling of NFT with the anti-MAP 2 antiserum suggests a non-specific binding of MAP 2 to the PHF during the process of NFT formation.  相似文献   

13.
Two abnormal entities of 69 and 130 kDa, immunologically related to the microtubule-associated tau proteins, are present in the hippocampus and the frontal cortex of the Alzheimer brain, which contain a large number of neurofibrillary tangles (NFTs), but are absent in the cerebellum, which does not contain these structures. Epitope mapping with antibodies spanning domains present in the N-terminal, middle, and C-terminal tau sequence demonstrated that the 69- and 130-kDa entities belong to the tau family. Both the 69- and the 130-kDa proteins were found in an insoluble form and were the major tau species present in purified NFTs. A procedure was devised that allowed us to prepare from Alzheimer hippocampi two NFT fractions differing in size (20 and 3 microns), both of which contained the tau entities of 130 and 69 kDa.  相似文献   

14.
Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized microtubules, their binding to MAP-tau, and molecular dynamics involved in cognition. Further, our theory supports novel AD therapeutic strategies targeting intra-neuronal zinc homeostasis and microtubule dynamics to prevent neurodegeneration and cognitive decline.  相似文献   

15.
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized clinically by progressive memory loss and decline in cognitive abilities and characterized pathologically by the presence of two types of abnormal deposits, i.e., senile plaques (SP) and neurofibrillary tangles (NFT), and by extensive synapse and neuronal loss. SP are composed of fibrillar amyloid beta-peptide (Abeta) surrounded by dystrophic neurites. Recent studies suggest two prospective mechanisms for Abeta-associated membrane dysfunction and subsequent neurotoxicity. One suggests that Abeta oligomers can form heterogeneous ion-channels in the cell membrane leading to cellular degeneration, while the second suggests insertion of Abeta oligomers in membrane lipid bilayers could induce the dysfunction of ion-channels or pumps by binding to or inducing oxidative modification of membrane proteins. In this review, we discuss the effects of Abeta on membrane proteins that are involved in cholinergic and glutamatergic pathways, and some ion-channels.  相似文献   

16.
Abstract

Sugar induced protein-protein interactions play an important role in several biological processes. The carbohydrate moieties of proteoglycans, the glycosaminoglycans, bind to growth factors with a high degree of specificity and induce interactions with growth factor receptors, thereby regulate the growth factor activity. We have used molecular modeling method to study the modes of binding of heparin or heparan sulfate proteoglycans (HSPGs) to bFGF that leads to the dimerization of FGF receptor 1 (FGFR1) and activation of receptor tyrosine kinase. Homology model of FGFR1 Ig D(II)-D(III) domains was built to investigate the interactions between heparin, bFGF and FGFR1. The structural requirements to bridge the two monomeric bFGF molecules by heparin or HSPGs and to simulate the dimerization and activation of FGFR1 have been examined. A structural model of the biologically functional dimeric bFGF-heparin complex is proposed based on: (a) the stability of dimeric complex, (b) the favorable binding energies between heparin and bFGF molecules, and (c) its accessibility to FGFR1. The modeled complex between heparin, bFGF and FGFR1 has a stoichiometry of 1 heparin: 2 bFGF: 2 FGFR1. The structural properties of the proposed model of bFGF/heparin/FGFR1 complex are consistent with the binding mechanism of FGF to its receptor, the receptor dimerization, and the reported site-specific mutagenesis and biochemical cross-linking data. In the proposed model heparin bridges the two bFGF monomers in a specific orientation and the resulting complex induces FGF receptor dimerization, suggesting that in the oligosaccharide induced recognition process sugars orient the molecules in a way that brings about specific protein-protein or protein-carbohydrate interactions.  相似文献   

17.
Elevated levels of p25 and constitutive activation of CDK5 have been observed in AD brains. This has led to the hypothesis that increased p25 levels could promote neurofibrillary tangles (NFT) through CDK5-mediated hyperphosphorylation of tau, the principal component of NFTs. We examined p25 immunoreactivity in brains from sporadic and familial AD cases, as well as other neurologic diseases that exhibit NFT, such as Down's syndrome (DS), Pick's disease (Pick), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), frontotemporal dementia (FTD). Neither the p25 immunoreactivity nor the p25/p35 ratio was elevated in the AD brains or in the other tauopathies (n = 34) compared with controls (n = 11). Although Abeta peptides have been suggested to activate calpain-mediated cleavage of p35 to p25 in cultured neurons, p25 levels in brains of TgCRND8 mice, which express high levels of brain Abeta peptides, were similar to those of non-Tg littermates. Our data suggest that high Abeta levels in brain do not activate p35 proteolysis, and p25 is unlikely to be a causative agent for NFT formation in AD or other tauopathies.  相似文献   

18.
Mitotic-like tau phosphorylation by p25-Cdk5 kinase complex   总被引:1,自引:0,他引:1  
Among tau phosphorylation sites, some phosphoepitopes referred to as abnormal ones are exclusively found on tau aggregated into filaments in Alzheimer's disease. Recent data suggested that molecular mechanisms similar to those encountered during mitosis may play a role in abnormal tau phosphorylation. In particular, TG-3 phosphoepitope is associated with early stages of neurofibrillary tangles (NFTs). In this study, we reported a suitable cell model consisting of SH-SY5Y cells stably transfected with an inducible p25 expression vector. It allows investigation of tau phosphorylation by p25-Cdk5 kinase complex in a neuronal context and avoiding p25-induced cytotoxicity. Immunoblotting analyses showed that p25-Cdk5 strongly phosphorylates tau protein not only at the AT8 epitope but also at the AT180 epitope and at the Alzheimer's mitotic epitope TG-3. Further biochemical analyses showed that abnormal phosphorylated tau accumulated in cytosol as a microtubule-free form, suggesting its impact on tau biological activity. Since tau abnormal phosphorylation occurred in dividing cells, TG-3 immunoreactivity was also investigated in differentiated neuronal ones, and both TG-3-immunoreactive tau and nucleolin, another early marker for NFT, were also generated. These data suggest that p25-Cdk5 is responsible for the mitotic-like phosphoepitopes present in NFT and argue for a critical role of Cdk5 in neurodegenerative mechanisms.  相似文献   

19.
Basic fibroblast growth factor (bFGF) stimulates proliferation of chondrocytes and their extracellular matrix synthesis but inhibits terminal differentiation to hypertrophic cells (Kato, Y., and Iwamoto, M., (1990) J. Biol. Chem. 265, 5903-5909). In the present study, we examined changes in bFGF binding during chondrocyte cytodifferentiation. In cultures of pelleted growth plate chondrocytes, binding of 125I-bFGF to 140-kDa receptors was observed during the mitotic and matrix-forming stages but decreased to a very low level as chondrocytes became hypertrophic. Scatchard plot analysis showed that the decrease in binding of bFGF was due to a decrease in the number not in the affinity of the receptor. The loss of bFGF receptor was associated with a decrease in biological responses to bFGF. On the other hand, the binding of transforming growth factor-beta and epidermal growth factor was constant throughout all stages of growth plate chondrocytes. A rapid decrease in bFGF binding was not observed with articular chondrocytes or bFGF-exposed growth plate chondrocytes, perhaps because they scarcely underwent terminal differentiation. A decrease in bFGF binding associated with terminal differentiation in situ was also demonstrated by examination of sequential slices of growth plates. These observations suggest that rapid reduction in bFGF receptor is a special event during terminal differentiation.  相似文献   

20.
Basic fibroblast growth factor, (bFGF), promotes the formation of new blood capillaries and is sequestered and protected by binding to heparan sulfate (HS), both on the cell surface and in the extracellular matrix. Release of HS-bound bFGF by heparin-like molecules and HS-degrading enzymes (i.e., heparanase) provides a novel mechanism for regulation of the growth of capillary blood vessels in normal and pathological situations. The extracellular matrix also serves as a storage depot for other growth factors and enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号