首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 925 毫秒
1.
Jordan D. Ward 《Genetics》2015,201(4):1279-1294
Recent and rapid advances in genetic and molecular tools have brought spectacular tractability to Caenorhabditis elegans, a model that was initially prized because of its simple design and ease of imaging. C. elegans has long been a powerful model in biomedical research, and tools such as RNAi and the CRISPR/Cas9 system allow facile knockdown of genes and genome editing, respectively. These developments have created an additional opportunity to tackle one of the most debilitating burdens on global health and food security: parasitic nematodes. I review how development of nonparasitic nematodes as genetic models informs efforts to import tools into parasitic nematodes. Current tools in three commonly studied parasites (Strongyloides spp., Brugia malayi, and Ascaris suum) are described, as are tools from C. elegans that are ripe for adaptation and the benefits and barriers to doing so. These tools will enable dissection of a huge array of questions that have been all but completely impenetrable to date, allowing investigation into host–parasite and parasite–vector interactions, and the genetic basis of parasitism.  相似文献   

2.
Lysophosphatidic acid (LPA) signaling is known to play biological and pathophysiological roles in many types of animals. Medaka (Oryzias latipes) is an experimental fish that can be easily maintained, propagated, and analyzed, and whose genome has been completely sequenced. However, there is limited information available regarding medaka LPA receptors. Here, using information from the medaka genome database, we examine the genomic structures, expression, and functions of six LPA receptor genes, Lpar1Lpar6. Our analyses reveal that the genomic structures of Lpar1 and Lpar4 are different from those deduced from the database. Functional analyses using a heterologous expression system demonstrate that all medaka LPA receptors except for LPA5b respond to LPA treatment with cytoskeletal changes. These findings provide useful information on the structure and function of medaka LPA receptor genes, and identify medaka as a useful experimental model for exploration of the biological significance of LPA signaling.  相似文献   

3.
Female multiple mating (polyandry) is widespread across many animal taxa and indirect genetic benefits are a major evolutionary force favouring polyandry. An incentive for polyandry arises when multiple mating leads to sperm competition that disadvantages sperm from genetically inferior mates. A reduction in genetic quality is associated with costly selfish genetic elements (SGEs), and studies in invertebrates have shown that males bearing sex ratio distorting SGEs are worse sperm competitors than wild-type males. We used a vertebrate model species to test whether females can avoid an autosomal SGE, the t haplotype, through polyandry. The t haplotype in house mice exhibits strong drive in t heterozygous males by affecting spermatogenesis and is associated with homozygous in utero lethality. We used controlled matings to test the effect of the t haplotype on sperm competitiveness. Regardless of mating order, t heterozygous males sired only 11% of zygotes when competing against wild-type males, suggesting a very strong effect of the t haplotype on sperm quality. We provide, to our knowledge, the first substantial evidence that polyandry ameliorates the harmful effects of an autosomal SGE arising through genetic incompatibility. We discuss potential mechanisms in our study species and the broader implications for the benefits of polyandry.  相似文献   

4.
Agents that kill or induce suicide in the organisms that produce them or other individuals of the same genotype are intriguing puzzles for ecologists and evolutionary biologists. When those organisms are pathogenic bacteria, these suicidal toxins have the added appeal as candidates for the development of narrow spectrum antibiotics to kill the pathogens that produce them. We show that when clinical as well as laboratory strains of Streptococcus pneumoniae are maintained in continuous culture (chemostats), their densities oscillate by as much as five orders of magnitude with an apparently constant period. This dynamic, which is unanticipated for single clones of bacteria in chemostats, can be attributed to population-wide die-offs and recoveries. Using a combination of mathematical models and experiments with S. pneumoniae, we present evidence that these die-offs can be attributed to the autocatalytic production of a toxin that lyses or induces autolysis in members of the clone that produces it. This toxin, which our evidence indicates is a protein, appears to be novel; S. pneumoniae genetic constructs knocked out for lytA and other genes coding for known candidates for this agent oscillate in chemostat culture. Since this toxin lyses different strains of S. pneumoniae as well as other closely related species of Streptococcus, we propose that its ecological role is as an allelopathic agent. Using a mathematical model, we explore the conditions under which toxins that kill members of the same clone that produces them can prevent established populations from invasion by different strains of the same or other species. We postulate that the production of the toxin observed here as well as other bacteria-produced toxins that kill members of the same genotype, ‘clonal suicide’, evolved and are maintained to prevent colonization of established populations by different strains of the same and closely related species.  相似文献   

5.
The zebrafish has become a mainstream vertebrate model that is relevant for many disciplines of scientific study. Zebrafish are especially well suited for forward genetic analysis of developmental processes due to their external fertilization, embryonic size, rapid ontogeny, and optical clarity – a constellation of traits that enable the direct observation of events ranging from gastrulation to organogenesis with a basic stereomicroscope. Further, zebrafish embryos can survive for several days in the haploid state. The production of haploid embryos in vitro is a powerful tool for mutational analysis, as it enables the identification of recessive mutant alleles present in first generation (F1) female carriers following mutagenesis in the parental (P) generation. This approach eliminates the necessity to raise multiple generations (F2, F3, etc.) which involves breeding of mutant families, thus saving the researcher time along with reducing the needs for zebrafish colony space, labor, and the husbandry costs. Although zebrafish have been used to conduct forward screens for the past several decades, there has been a steady expansion of transgenic and genome editing tools. These tools now offer a plethora of ways to create nuanced assays for next generation screens that can be used to further dissect the gene regulatory networks that drive vertebrate ontogeny. Here, we describe how to prepare haploid zebrafish embryos. This protocol can be implemented for novel future haploid screens, such as in enhancer and suppressor screens, to address the mechanisms of development for a broad number of processes and tissues that form during early embryonic stages.  相似文献   

6.
7.
Aspergillus oryzae has been utilized for over 1000 years in Japan for the production of various traditional foods, and a large number of A. oryzae strains have been isolated and/or selected for the effective fermentation of food ingredients. Characteristics of genetic alterations among the strains used are of particular interest in studies of A. oryzae. Here, we have sequenced the whole genome of an industrial fungal isolate, A. oryzae RIB326, by using a next-generation sequencing system and compared the data with those of A. oryzae RIB40, a wild-type strain sequenced in 2005. The aim of this study was to evaluate the mutation pressure on the non-syntenic blocks (NSBs) of the genome, which were previously identified through comparative genomic analysis of A. oryzae, Aspergillus fumigatus, and Aspergillus nidulans. We found that genes within the NSBs of RIB326 accumulate mutations more frequently than those within the SBs, regardless of their distance from the telomeres or of their expression level. Our findings suggest that the high mutation frequency of NSBs might contribute to maintaining the diversity of the A. oryzae genome.  相似文献   

8.
Electroporation is an efficient method of delivering DNA and other charged macromolecules into tissues at precise time points and in precise locations. For example, electroporation has been used with great success to study neural and retinal development in Xenopus, chicken and mouse 1-10. However, it is important to note that in all of these studies, investigators were not targeting soft tissues. Because we are interested in craniofacial development, we adapted a method to target facial mesenchyme.When we searched the literature, we found, to our surprise, very few reports of successful gene transfer into cartilaginous tissue. The majority of these studies were gene therapy studies, such as siRNA or protein delivery into chondrogenic cell lines, or, animal models of arthritis 11-13. In other systems, such as chicken or mouse, electroporation of facial mesenchyme has been challenging (personal communications, Dept of Craniofacial Development, KCL). We hypothesized that electroporation into procartilaginous and cartilaginous tissues in Xenopus might work better. In our studies, we show that gene transfer into the facial cartilages occurs efficiently at early stages (28), when the facial primordium is still comprised of soft tissue prior to cartilage differentiation.Xenopus is a very accessible vertebrate system for analysis of craniofacial development. Craniofacial structures are more readily visible in Xenopus than in any other vertebrate model, primarily because Xenopus embryos are fertilized externally, allowing analyses of the earliest stages, and facilitating live imaging at single cell resolution, as well as reuse of the mothers 14. Among vertebrate models developing externally, Xenopus is more useful for craniofacial analysis than zebrafish, as Xenopus larvae are larger and easier to dissect, and the developing facial region is more accessible to imaging than the equivalent region in fish. In addition, Xenopus is evolutionarily closer to humans than zebrafish (˜100 million years closer) 15. Finally, at these stages, Xenopus tadpoles are transparent, and concurrent expression of fluorescent proteins or molecules will allow easy visualization of the developing cartilages. We anticipate that this approach will allow us to rapidly and efficiently test candidate molecules in an in vivo model system.  相似文献   

9.
Zebrafish models have significantly contributed to our understanding of vertebrate development and, more recently, human disease. The growing number of genetic tools available in zebrafish research has resulted in the identification of many genes involved in developmental and disease processes. In particular, studies in the zebrafish have clarified roles of the p53 tumor suppressor in the formation of specific tumor types, as well as roles of p53 family members during embryonic development. The zebrafish has also been instrumental in identifying novel mechanisms of p53 regulation and highlighting the importance of these mechanisms in vivo. This article will summarize how zebrafish models have been used to reveal numerous, important aspects of p53 function.The zebrafish, Danio rerio, is a small model organism that has long been used to study vertebrate development. Zebrafish embryos are optically clear and develop externally to the mother, facilitating the study of early developmental processes. In addition, zebrafish have increasingly been used in modeling human diseases, including a number of cancers. The availability of forward and reverse genetic tools in the zebrafish has resulted in the identification and characterization of many genes involved in development and disease. One gene that has been extensively studied is the p53 tumor suppressor gene, which is structurally and functionally conserved in the zebrafish. This article will discuss how studies in the zebrafish have increased our understanding of how p53 contributes to the formation of specific tumor types, resulted in the identification of novel mechanisms of p53 regulation, and showed how p53 and p53 family members are involved in embryonic development.  相似文献   

10.
Medakafish as a model system for vertebrate developmental genetics   总被引:9,自引:0,他引:9  
Several teleosts, such as the zebrafish and the medakafish or medaka (Oryzias latipes), are used as vertebrate model systems in various fields of biology. The medaka is suitable for use in genomic studies because of its small genome size. Moreover, our recent results of small-scale mutagenesis in the medaka indicate that it is possible to identify mutations, the phenotypes of which could not be found in zebrafish mutants obtained by large-scale mutagenesis. An example is Oot (One-sided optic tectum), a maternal-effect mutation. In the Oot phenotype, bilateral symmetry is broken in the optic tectum in the early developmental stages, and either the left or right morphology is duplicated on both sides. Medaka inbred strains can be produced and used to study quantitative traits in vertebrate development. Data presented support the use of medaka as another important fish model for the study of vertebrate developmental genetics.  相似文献   

11.
12.
13.
Duabanga moluccana (or locally known as sawih) is an indigenous fast growing tropical tree species that confers various advantages for the timber industry and for planted forests development. In this paper, we isolated and characterized 8 polymorphic microsatellite markers from the D. moluccana genome using ISSR-suppression PCR techniques. The number of alleles and PIC values ranged from 3 to 8 alleles per locus and from 0.488 to 0.792, respectively. Three microsatellite loci were deviated from Hardy-Weinberg equilibrium (P < 0.05). The transferability rate ranged from 24 to 100 % among the three indigenous tree species tested. This indicates that the newly developed microsatellite markers would be useful tools for population genetic studies on D. moluccana and other indigenous tree species.  相似文献   

14.
Zebrafish (Danio rerio) embryos are increasingly used as a model for studying the function of the vertebrate innate immune system in host-pathogen interactions 1. The major cell types of the innate immune system, macrophages and neutrophils, develop during the first days of embryogenesis prior to the maturation of lymphocytes that are required for adaptive immune responses. The ease of obtaining large numbers of embryos, their accessibility due to external development, the optical transparency of embryonic and larval stages, a wide range of genetic tools, extensive mutant resources and collections of transgenic reporter lines, all add to the versatility of the zebrafish model. Salmonella enterica serovar Typhimurium (S. typhimurium) and Mycobacterium marinum can reside intracellularly in macrophages and are frequently used to study host-pathogen interactions in zebrafish embryos. The infection processes of these two bacterial pathogens are interesting to compare because S. typhimurium infection is acute and lethal within one day, whereas M. marinum infection is chronic and can be imaged up to the larval stage 2, 3. The site of micro-injection of bacteria into the embryo (Figure 1) determines whether the infection will rapidly become systemic or will initially remain localized. A rapid systemic infection can be established by micro-injecting bacteria directly into the blood circulation via the caudal vein at the posterior blood island or via the Duct of Cuvier, a wide circulation channel on the yolk sac connecting the heart to the trunk vasculature. At 1 dpf, when embryos at this stage have phagocytically active macrophages but neutrophils have not yet matured, injecting into the blood island is preferred. For injections at 2-3 dpf, when embryos also have developed functional (myeloperoxidase-producing) neutrophils, the Duct of Cuvier is preferred as the injection site. To study directed migration of myeloid cells towards local infections, bacteria can be injected into the tail muscle, otic vesicle, or hindbrain ventricle 4-6. In addition, the notochord, a structure that appears to be normally inaccessible to myeloid cells, is highly susceptible to local infection 7. A useful alternative for high-throughput applications is the injection of bacteria into the yolk of embryos within the first hours after fertilization 8. Combining fluorescent bacteria and transgenic zebrafish lines with fluorescent macrophages or neutrophils creates ideal circumstances for multi-color imaging of host-pathogen interactions. This video article will describe detailed protocols for intravenous and local infection of zebrafish embryos with S. typhimurium or M. marinum bacteria and for subsequent fluorescence imaging of the interaction with cells of the innate immune system.  相似文献   

15.
Viral vectors hold promise and challenges in gene therapy. Specifically, we have previously shown that baculoviral (BV) vectors have a high efficiency of gene delivery in human embryonic stem (ES) cells. Here we report the development of a complementary system to further our evaluation by utilizing the laboratory fish medaka that has ES cell lines and tools for experimental analyses in vitro and in vivo. We show that BV vectors can give rise to almost 100% of transient gene delivery in the medaka ES cell line MES1. BV-transduced MES1 cells reproducibly (at approximately 10− 5) produce GFP-expressing colonies that, upon manual isolation, develop into stable clones during 300 days of culture. Surprisingly, BV transduction can also mediate efficient gene integration in the medaka genome, as fluorescent in situ hybridization revealed the presence of the BV-delivered gfp transgene in multiple locations in nuclei and on various chromosomes of metaphase spreads. We show that BV transduction does not compromise the genome stability and pluripotency of MES1 cells. We conclude that BV can efficiently mediate gene delivery and chromosomal integration in medaka ES cells. Therefore, medaka provides a powerful system for analyzing the potential of BV-mediated gene delivery in stem cells and gene therapy.  相似文献   

16.
The evolutionarily conserved Dock proteins function as unconventional guanine nucleotide exchange factors (GEFs). Upon binding to engulfment and cell motility (ELMO) proteins, Dock–ELMO complexes activate the Rho family of small GTPases to mediate a diverse array of biological processes, including cell motility, apoptotic cell clearance, and axon guidance. Overlapping expression patterns and functional redundancy among the 11 vertebrate Dock family members, which are subdivided into four families (Dock A, B, C, and D), complicate genetic analysis. In both vertebrate and invertebrate systems, the actin dynamics regulator, Rac, is the target GTPase of the Dock-A subfamily. However, it remains unclear whether Rac or Rap1 are the in vivo downstream GTPases of the Dock-B subfamily. Drosophila melanogaster is an excellent genetic model organism for understanding Dock protein function as its genome encodes one ortholog per subfamily: Myoblast city (Mbc; Dock A) and Sponge (Spg; Dock B). Here we show that the roles of Spg and Mbc are not redundant in the Drosophila somatic muscle or the dorsal vessel. Moreover, we confirm the in vivo role of Mbc upstream of Rac and provide evidence that Spg functions in concert with Rap1, possibly to regulate aspects of cell adhesion. Together these data show that Mbc and Spg can have different downstream GTPase targets. Our findings predict that the ability to regulate downstream GTPases is dependent on cellular context and allows for the fine-tuning of actin cytoskeletal or cell adhesion events in biological processes that undergo cell morphogenesis.  相似文献   

17.
A growing goal in the field of metabolism is to determine the impact of genetics on different aspects of mitochondrial function. Understanding these relationships will help to understand the underlying etiology for a range of diseases linked with mitochondrial dysfunction, such as diabetes and obesity. Recent advances in instrumentation, has enabled the monitoring of distinct parameters of mitochondrial function in cell lines or tissue explants. Here we present a method for a rapid and sensitive analysis of mitochondrial function parameters in vivo during zebrafish embryonic development using the Seahorse bioscience XF 24 extracellular flux analyser. This protocol utilizes the Islet Capture microplates where a single embryo is placed in each well, allowing measurement of bioenergetics, including: (i) basal respiration; (ii) basal mitochondrial respiration (iii) mitochondrial respiration due to ATP turnover; (iv) mitochondrial uncoupled respiration or proton leak and (iv) maximum respiration. Using this approach embryonic zebrafish respiration parameters can be compared between wild type and genetically altered embryos (mutant, gene over-expression or gene knockdown) or those manipulated pharmacologically. It is anticipated that dissemination of this protocol will provide researchers with new tools to analyse the genetic basis of metabolic disorders in vivo in this relevant vertebrate animal model.  相似文献   

18.
During the life cycle of heterothallic tetrapolar Agaricomycetes such as Lentinula edodes (Berk.) Pegler, the mating type system, composed of unlinked A and B loci, plays a vital role in controlling sexual development and resulting formation of the fruit body. L. edodes is produced worldwide for consumption and medicinal purposes, and understanding its sexual development is therefore of great importance. A considerable amount of mating type factors has been indicated over the past decades but few genes have actually been identified, and no complete genetic structures of L. edodes B mating-type loci are available. In this study, we cloned the matB regions from two mating compatible L. edodes strains, 939P26 and 939P42. Four pheromone receptors were identified on each new matB region, together with three and four pheromone precursor genes in the respective strains. Gene polymorphism, phylogenetic analysis and distribution of pheromone receptors and pheromone precursors clearly indicate a bipartite matB locus, each sublocus containing a pheromone receptor and one or two pheromone precursors. Detailed sequence comparisons of genetic structures between the matB regions of strains 939P42, 939P26 and a previously reported strain SUP2 further supported this model and allowed identification of the B mating type subloci borders. Mating studies confirmed the control of B mating by the identified pheromone receptors and pheromones in L. edodes.  相似文献   

19.
The implementation of genetic groups in BLUP evaluations accounts for different expectations of breeding values in base animals. Notwithstanding, many feasible structures of genetic groups exist and there are no analytical tools described to compare them easily. In this sense, the recent development of a simple and stable procedure to calculate the Bayes factor between nested competing models allowed us to develop a new approach of that method focused on compared models with different structures of random genetic groups. The procedure is based on a reparameterization of the model in terms of intraclass correlation of genetic groups. The Bayes factor can be easily calculated from the output of a Markov chain Monte Carlo sampling by averaging conditional densities at the null intraclass correlation. It compares two nested models, a model with a given structure of genetic groups against a model without genetic groups. The calculation of the Bayes factor between different structures of genetic groups can be quickly and easily obtained from the Bayes factor between the nested models. We applied this approach to a weaning weight data set of the Bruna dels Pirineus beef cattle, comparing several structures of genetic groups, and the final results showed that the preferable structure was an only group for unknown dams and different groups for unknown sires for each year of calving.  相似文献   

20.
In recent years, the genus Clostridium has risen to the forefront of both medical biotechnology and industrial biotechnology owing to its potential in applications as diverse as anticancer therapy and production of commodity chemicals and biofuels. The prevalence of hyper-virulent strains of C. difficile within medical institutions has also led to a global epidemic that demands a more thorough understanding of clostridial genetics, physiology, and pathogenicity. Unfortunately, Clostridium suffers from a lack of sophisticated genetic tools and techniques which has hindered the biotechnological exploitation of this important bacterial genus. This review provides a comprehensive summary of biotechnological progress made in clostridial genetic tool development, while also aiming to serve as a technical guide for the advancement of underdeveloped clostridial strains, including recalcitrant species, novel environmental samples, and non-type strains. Relevant strain engineering techniques, from genome sequencing and establishment of a gene transfer methodology through to deployment of advanced genome editing procedures, are discussed in detail to provide a blueprint for future clostridial strain construction endeavors. It is expected that a more thorough and rounded-out genetic toolkit available for use in the clostridia will bring about the construction of superior bioprocessing strains and a more complete understanding of clostridial genetics, physiology, and pathogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号