首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
BackgroundIn photosynthetic organisms, transketolase (TK) is involved in the Calvin-Benson cycle and participates to the regeneration of ribulose-5-phosphate. Previous studies demonstrated that TK catalysis is strictly dependent on thiamine pyrophosphate (TPP) and divalent ions such as Mg2 +.MethodsTK from the unicellular green alga Chlamydomonas reinhardtii (CrTK) was recombinantly produced and purified to homogeneity. Biochemical properties of the CrTK enzyme were delineated by activity assays and its structural features determined by CD analysis and X-ray crystallography.ResultsCrTK is homodimeric and its catalysis depends on the reconstitution of the holo-enzyme in the presence of both TPP and Mg2 +. Activity measurements and CD analysis revealed that the formation of fully active holo-CrTK is Mg2 +-dependent and proceeds with a slow kinetics. The 3D–structure of CrTK without cofactors (CrTKapo) shows that two portions of the active site are flexible and disordered while they adopt an ordered conformation in the holo-form. Oxidative treatments revealed that Mg2 + participates in the redox control of CrTK by changing its propensity to be inactivated by oxidation. Indeed, the activity of holo-form is unaffected by oxidation whereas CrTK in the apo-form or reconstituted with the sole TPP show a strong sensitivity to oxidative inactivation.ConclusionThese evidences indicate that Mg2 + is fundamental to allow gradual conformational arrangements suited for optimal catalysis. Moreover, Mg2 + is involved in the control of redox sensitivity of CrTK.General significanceThe importance of Mg2 + in the functionality and redox sensitivity of CrTK is correlated to light-dependent fluctuations of Mg2 + in chloroplasts.  相似文献   

2.
Most of type II restriction endonucleases show an absolute requirement for divalent metal ions as cofactors for DNA cleavage. While Mg2+ is the natural cofactor other metal ions can substitute it and mediate the catalysis, however Ca2+ (alone) only supports DNA binding. To investigate the role of Mg2+ in DNA cleavage by restriction endonucleases, we have studied the Mg2+ and Mn2+ concentration dependence of DNA cleavage by SepMI and EhoI. Digestion reactions were carried out at different Mg2+ and Mn2+ concentrations at constant ionic strength. These enzymes showed different behavior regarding the ions requirement, SepMI reached near maximal level of activity between 10 and 20 mM while no activity was detected in the presence of Mn2+ and in the presence of Ca2+ cleavage activity was significantly decreased. However, EhoI was more highly active in the presence of Mn2+ than in the presence of Mg2+ and can be activated by Ca2+. Our results propose the two-metal ion mechanism for EhoI and the one-metal ion mechanism for SepMI restriction endonuclease. The analysis of the kinetic parameters under steady state conditions showed that SepMI had a Km value for pTrcHisB DNA of 6.15 nM and a Vmax of 1.79 × 10?2 nM min?1, while EhoI had a Km for pUC19 plasmid of 8.66 nM and a Vmax of 2 × 10?2 nM min?1.  相似文献   

3.
Among bacterial topoisomerase I enzymes, a conserved methionine residue is found at the active site next to the nucleophilic tyrosine. Substitution of this methionine residue with arginine in recombinant Yersinia pestis topoisomerase I (YTOP) was the only substitution at this position found to induce the SOS response in Escherichia coli. Overexpression of the M326R mutant YTOP resulted in ~4 log loss of viability. Biochemical analysis of purified Y. pestis and E. coli mutant topoisomerase I showed that the Met to Arg substitution affected the DNA religation step of the catalytic cycle. The introduction of an additional positive charge into the active site region of the mutant E. coli topoisomerase I activity shifted the pH for optimal activity and decreased the Mg2+ binding affinity. This study demonstrated that a substitution outside the TOPRIM motif, which binds Mg2+directly, can nonetheless inhibit Mg2+ binding and DNA religation by the enzyme, increasing the accumulation of covalent cleavage complex, with bactericidal consequence. Small molecules that can inhibit Mg2+ dependent religation by bacterial topoisomerase I specifically could be developed into useful new antibacterial compounds. This approach would be similar to the inhibition of divalent ion dependent strand transfer by HIV integrase in antiviral therapy.  相似文献   

4.
Magnesium (Mg2 +) plays a critical role in many physiological processes. Mg2 + transport systems in Salmonella have been well documented, but those in Escherichia coli have not been fully elucidated. We examined the effects of corA, mgtA, yhiD and corC gene deletion on Mg2 + transport in E. coli. We obtained every combination of double, triple and quadruple mutants. The corA and mgtA double mutant required addition of 10 mM Mg2 + to Luria-Bertani (LB) medium for growth, and the corA, mgtA and yhiD triple mutant TM2 required a higher Mg2 + concentration. The Mg2 + requirement of the quadruple mutant was similar to that of TM2. The results demonstrated that either CorA or MgtA is necessary for normal E. coli growth in LB medium and that YhiD plays a role in Mg2 + transport under high Mg2 + growth conditions in E. coli. The Arabidopsis Mg2 + transporters, AtMRS2-10 and AtMRS2-11, were heterologously expressed in TM2 cells. TM2 cells expressing AtMRS2-10 and AtMRS2-11 could grow in LB medium that had been supplemented with 1 mM Mg2 + and without Mg2 + supplementation, respectively, and cell growth was inhibited by 2 mM AlCl3. The results indicated that the growth of TM2 expressing AtMRS2-10 and AtMRS2-11 reflected these AtMRS2 function for Mg2 + and aluminum. The E. coli TM2 cells are useful for functional analysis of Arabidopsis MRS2 proteins.  相似文献   

5.
We demonstrated a role for the Mg2 + transporter TRPM7, a bifunctional protein with channel and α-kinase domains, in aldosterone signaling. Molecular mechanisms underlying this are elusive. Here we investigated the function of TRPM7 and its α-kinase domain on Mg2 + and pro-inflammatory signaling by aldosterone. Kidney cells (HEK-293) expressing wild-type human TRPM7 (WThTRPM7) or constructs in which the α-kinase domain was deleted (ΔKinase) or rendered inactive with a point mutation in the ATP binding site of the α-kinase domain (K1648R) were studied. Aldosterone rapidly increased [Mg2 +]i and stimulated NADPH oxidase-derived generation of reactive oxygen species (ROS) in WT hTRPM7 and TRPM7 kinase dead mutant cells. Translocation of annexin-1 and calpain-II and spectrin cleavage (calpain target) were increased by aldosterone in WT hTRPM7 cells but not in α-kinase-deficient cells. Aldosterone stimulated phosphorylation of MAP kinases and increased expression of pro-inflammatory mediators ICAM-1, Cox-2 and PAI-1 in Δkinase and K1648R cells, effects that were inhibited by eplerenone (mineralocorticoid receptor (MR) blocker). 2-APB, a TRPM7 channel inhibitor, abrogated aldosterone-induced Mg2 + responses in WT hTRPM7 and mutant cells. In 2-APB-treated ΔKinase and K1648R cells, aldosterone-stimulated inflammatory responses were unchanged. These data indicate that aldosterone stimulates Mg2 + influx and ROS production in a TRPM7-sensitive, kinase-insensitive manner, whereas activation of annexin-1 requires the TRPM7 kinase domain. Moreover TRPM7 α-kinase modulates inflammatory signaling by aldosterone in a TRPM7 channel/Mg2 +-independent manner. Our findings identify novel mechanisms for non-genomic actions of aldosterone involving differential signaling through MR-activated TRPM7 channel and α-kinase.  相似文献   

6.
Mycobacterium smegmatis topoisomerase I (MstopoI) is distinct from typical type IA topoisomerases. The enzyme binds to both single- and double-stranded DNA with high affinity, making specific contacts. The enzyme comprises conserved regions similar to type IA topoisomerases from Escherichia coli and other eubacteria but lacks the typically found zinc fingers in the carboxy-terminal domain. The enzyme can perform DNA cleavage in the absence of Mg2+, but religation needs exogenously added Mg2+. One molecule of Mg2+ tightly bound to the enzyme has no role in DNA cleavage but is needed only for the religation reaction. The toprim (topoisomerase-primase) domain in MstopoI comprising the Mg2+ binding pocket, conserved in both type IA and type II topoisomerases, was subjected to mutagenesis to understand the role of Mg2+ in different steps of the reaction. The residues D108, D110, and E112 of the enzyme, which form the acidic triad in the DXDXE motif, were changed to alanines. D108A mutation resulted in an enzyme that is Mg2+ dependent for DNA cleavage unlike MstopoI and exhibited enhanced DNA cleavage property and reduced religation activity. The mutant was toxic for cell growth, most likely due to the imbalance in cleavage-religation equilibrium. In contrast, the E112A mutant behaved like wild-type enzyme, cleaving DNA in a Mg2+-independent fashion, albeit to a reduced extent. Intra- and intermolecular religation assays indicated specific roles for D108 and E112 residues during the reaction. Together, these results indicate that the D108 residue has a major role during cleavage and religation, while E112 is important for enhancing the efficiency of cleavage. Thus, although architecturally and mechanistically similar to topoisomerase I from E. coli, the metal coordination pattern of the mycobacterial enzyme is distinct, opening up avenues to exploit the enzyme to develop inhibitors.  相似文献   

7.
BackgroundCytosolic Ca2 + buffers are members of the large family of Ca2 +-binding proteins and are essential components of the Ca2 + signaling toolkit implicated in the precise regulation of intracellular Ca2 + signals. Their physiological role in excitable cells has been investigated in vivo by analyzing the phenotype of mice either lacking one of the Ca2 + buffers or mice with ectopic expression.Scope of ReviewIn this review, results obtained with knockout mice for the three most prominent Ca2 + buffers, parvalbumin, calbindin-D28k and calretinin are summarized.Major ConclusionsThe absence of Ca2 + buffers in specific neuron subpopulations, and for parvalbumin additionally in fast-twitch muscles, leads to Ca2 + buffer-specific changes in intracellular Ca2 + signals. This affects the excitation–contraction cycle in parvalbumin-deficient muscles, and in Ca2 + buffer-deficient neurons, properties associated with synaptic transmission (e.g. short-term modulation), excitability and network oscillations are altered. These findings have not only resulted in a better understanding of the physiological function of Ca2 + buffers, but have revealed that the absence of Ca2 + signaling toolkit components leads to protein-and neuron-specific adaptive/homeostatic changes that also include changes in neuron morphology (e.g. altered spine morphology, changes in mitochondria content) and network properties.General SignificanceThe complex phenotype of Ca2 + buffer knockout mice arises from the direct effect of these proteins on Ca2 + signaling and moreover from the homeostatic mechanisms induced in these mice. For a better mechanistic understanding of neurological diseases linked to disturbed/altered Ca2 + signaling, a global view on Ca2 + signaling is expected to lead to new avenues for specific therapies. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.  相似文献   

8.
《Journal of Asia》2014,17(1):67-71
While screening for cellulase-producing fungi from insect gut, a fungus with high endoglucanase (carboxymethyl cellulase; CMCase) activity was isolated from the larval gut of Bombyx mori. Based on morphological characteristics and using an 18S rRNA-based molecular phylogenetic approach, the fungus, strain BMC-2, was identified as a Mucor sp. expressing a novel alkalotolerant cellulase. The maximum production of cellulase by the BMC-2 strain was observed at 55 °C and pH 8.0. The CMCase activity was inhibited by Cu2 + > Na+ > Zn2 + > Mg2 + > Ba2 +, and induced by Ca2 +, Mn2 +, Fe2 +, and K+.  相似文献   

9.
In this study, we performed all-atom long-timescale molecular dynamics simulations of phospholipid bilayers incorporating three different proportions of negatively charged lipids in the presence of K+, Mg2 +, and Ca2 + ions to systemically determine how membrane properties are affected by cations and lipid compositions. Our simulations revealed that the binding affinity of Ca2 + ions with lipids is significantly stronger than that of K+ and Mg2 + ions, regardless of the composition of the lipid bilayer. The binding of Ca2 + ions to the lipids resulted in bilayers having smaller lateral areas, greater thicknesses, greater order, and slower rotation of their lipid head groups, relative to those of corresponding K+- and Mg2 +-containing systems. The Ca2 + ions bind preferentially to the phosphate groups of the lipids. The complexes formed between the cations and the lipids further assembled to form various multiple-cation-centered clusters in the presence of anionic lipids and at higher ionic strength—most notably for Ca2 +. The formation of cation–lipid complexes and clusters dehydrated and neutralized the anionic lipids, creating a more-hydrophobic environment suitable for membrane aggregation. We propose that the formation of Ca2 +–phospholipid clusters across apposed lipid bilayers can work as a “cation glue” to adhere apposed membranes together, providing an adequate configuration for stalk formation during membrane fusion.  相似文献   

10.
AimsPrevious studies reported that FK506 influences bone mineralizing and hypomagnesemia, and also has immune modifying properties. This study examined whether or not the function of Mg2+ in bone metabolism plays a role in the loss of bone volume caused by immunosuppressants.Main methodsThe effects of the FK506 treatment on the intracellular magnesium and lactate dehydrogenase (LDH) activity were examined in cultured human osteoblasts (HOB) cells. The magnesium concentration was determined using microfluorescence techniques and atomic absorption spectrophotometry. Western blotting was used to measure the level of extracellular signal-regulated kinases 1/2 (ERK 1/2) activation.Key findingsFK506 (0.1 μM) did not affect cell death in HOB cells after a 24 hour treatment but decreased the level of ERK 1/2 activation. In HOB cells, the mean [Mg2+]i after exposure to a 1 mM extracellular Mg2+ ([Mg2+]o) buffer was 0.53 ± 0.01 mM (n = 25). Exposure to 100 nM FK506 produced a significant decrease in [Mg2+]i (0.41 ± 0.01 mM). The ERK inhibitor (PD98059) and FK506 produced similar effects but they were not cumulative.SignificanceThis study examined the role of ERK1/2 activation on the regulation of magnesium in HOB. These results suggest that the inhibition of ERK phosphorylation is an essential intermediate in the effects of FK506 on magnesium. Overall, FK506 causes bone disorders partly by decreasing [Mg2+]i accompanied by the inhibition of ERK 1/2.  相似文献   

11.
12.
BackgroundThe human telomere contains tandem repeat of (TTAGG) capable of forming a higher order DNA structure known as G-quadruplex. Porphyrin molecules such as TMPyP4 bind and stabilize G-quadruplex structure.MethodsIsothermal titration calorimetry (ITC), circular dichroism (CD), and mass spectroscopy (ESI/MS), were used to investigate the interactions between TMPyP4 and the Co(III), Ni(II), Cu(II), and Zn(II) complexes of TMPyP4 (e.g. Co(III)-TMPyP4) and a model human telomere G-quadruplex (hTel22) at or near physiologic ionic strength ([Na+] or [K+]  0.15 M).ResultsThe apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4 all formed complexes having a saturation stoichiometry of 4:1, moles of ligand per mole of DNA. Binding of apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4 is described by a “four-independent-sites model”. The two highest-affinity sites exhibit a K in the range of 108 to 1010 M 1 with the two lower-affinity sites exhibiting a K in the range of 104 to 105 M 1. Binding of Co(III)-TMPyP4, and Zn(II)-TMPyP4, is best described by a “two-independent-sites model” in which only the end-stacking binding mode is observed with a K in the range of 104 to 105 M 1.ConclusionsIn the case of apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4, the thermodynamic signatures for the two binding modes are consistent with an “end stacking” mechanism for the higher affinity binding mode and an “intercalation” mechanism for the lower affinity binding mode. In the case of Co(III)-TMPyP4 and Zn(II)-TMPyP4, both the lower affinity for the “end-stacking” mode and the loss of the intercalative mode for forming the 2:1 complexes with hTel22 are attributed to the preferred metal coordination geometry and the presence of axial ligands.General significanceThe preferred coordination geometry around the metal center strongly influences the energetics of the interactions between the metallated-TMPyP4 and the model human telomeric G-quadruplex. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

13.
AimsThis study investigates the actions of KMUP-1 on RhoA/Rho-kinase (ROCK)-dependent Ca2+ sensitization and the K+-channel in chronic pulmonary arterial hypertension (PAH) rats.Main methodsSprague–Dawley rats were divided into control, monocrotaline (MCT), and MCT + KMUP-1 groups. PAH was induced by a single intraperitoneal injection (i.p.) of MCT (60 mg/kg). KMUP-1 (5 mg/kg, i.p.) was administered once daily for 21 days to prevent MCT-induced PAH. All rats were sacrificed on day 22.Key findingsMCT-induced increased right ventricular systolic pressure (RVSP) and right ventricular hypertrophy were prevented by KMUP-1. In myograph experiments, KCl (80 mM), phenylephrine (10 µM) and K+ channel inhibitors (TEA, 10 mM; paxilline, 10 µM; 4-AP, 5 mM) induced weak PA contractions in MCT-treated rats compared to controls, but the PA reactivity was restored in MCT + KMUP-1-treated rats. By contrast, in β-escin- or α-toxin-permeabilized PAs, CaCl2-induced (1.25 mM, pCa 5.1) contractions were stronger in MCT-treated rats, and this action was suppressed in MCT + KMUP-1-treated rats. PA relaxation in response to the ROCK inhibitor Y27632 (0.1 μM) was much higher in MCT-treated rats than in control rats. In Western blot analysis, the expression of Ca2+-activated K+ (BKCa) and voltage-gated K+ channels (Kv2.1 and Kv1.5), and ROCK II proteins was elevated in MCT-treated rats and suppressed in MCT + KMUP-1-treated rats. We suggest that MCT-treated rats upregulate K+-channel proteins to adapt to chronic PAH.SignificanceKMUP-1 protects against PAH and restores PA vessel tone in MCT-treated rats, attributed to alteration of Ca2+ sensitivity and K+-channel function.  相似文献   

14.
15.
Background aimsA phase I trial examined the ability of immunotherapy to mobilize progenitor and activated T cells.MethodsInterleukin (IL)-2 was administered subcutaneously for 11 days, with granulocyte (G)-colony-stimulating factor (CSF) (5 mcg/kg/day) and granulocyte–macrophage (GM)-CSF (7.5 mcg/kg/day) added for the last 5 days. Leukapheresis was initiated on day 11. Thirteen patients were treated (myeloma n = 11, non-Hodgkin's lymphoma n = 2).ResultsToxicities were minimal. IL-2 was stopped in two patients because of capillary leak (n = 1) and diarrhea (n = 1). Each patient required 2.5 leukaphereses (median; range 1–3) to collect 3.2 × 106 CD34+ cells/kg (median; range 1.9–6.6 × 106/kg). Immune mobilization increased the number of CD3+ CD8+ T cells (P = 0.002), CD56+ natural killer (NK) cells (P = 0.0001), CD8+ CD56+ T cells (P = 0.002) and CD4+ CD25+ cells (P = 0.0001) compared with cancer patients mobilized with G-CSF alone. There was increased lysis of myeloma cells after 7 days (P = 0.03) or 11 days (P = 0.02). The maximum tolerated dose of IL-2 was 1 × 106 IU/m2/day.ConclusionsImmune mobilization is well tolerated with normal subsequent marrow engraftment. As cells within the graft influence lymphocyte recovery, an increased number of functional lymphocytes may result in more rapid immune reconstitution.  相似文献   

16.
BackgroundMitochondrial membrane permeabilisation (MMP) is classically considered as a point of no return in several forms of cell death and is involved in numerous diseases such as cancer, neurodegenerative disorders or ischemia/reperfusion injuries. Many studies established that reactive oxygen species (ROS) and Ca2 + were the prominent inducers of MMP. However, the mechanisms connecting ROS and Ca2 + to the players of MMP are still a matter of debate.Scope of reviewThe aim of this review is to summarise the various studies related to the mechanisms of ROS- and Ca2 +-induced MMP. Several lines of evidence suggest that ROS and Ca2 + cooperate to induce MMP but the molecular details of the ROS–Ca2 +-MMP network remain controversial. We then discuss recent data depicting this topic.Major conclusionsCytotoxic stimuli may be transduced within the cell by ROS and Ca2 + increases. In most models, Ca2 + and ROS can cooperate to induce MMP. Moreover, several data suggest that MMP increases mitochondrial Ca2 + and ROS which therefore amplify the cytotoxic signal. Intriguingly, many reports have identified players of MMP as direct ROS targets. On the contrary, direct targets of Ca2 + remain elusive. At the same time, the mechanisms by which mitochondrial Ca2 + overload induces ROS generation are well documented. Upon these observations, we hypothesise that Ca2 + cannot directly induce MMP and requires ROS production as a mandatory step.General significanceGiven the importance of Ca2 +- and ROS-induced MMP in diseases, we expect that a better understanding of this process will lead to the development of novel therapies.  相似文献   

17.
Human PrimPol is a recently discovered bifunctional enzyme that displays DNA template-directed primase and polymerase activities. PrimPol has been implicated in nuclear and mitochondrial DNA replication fork progression and restart as well as DNA lesion bypass. Published evidence suggests that PrimPol is a Mn2+-dependent enzyme as it shows significantly improved primase and polymerase activities when binding Mn2+, rather than Mg2+, as a divalent metal ion cofactor. Consistently, our fluorescence anisotropy assays determined that PrimPol binds to a primer/template DNA substrate with affinities of 29 and 979 nM in the presence of Mn2+ and Mg2+, respectively. Our pre-steady-state kinetic analysis revealed that PrimPol incorporates correct dNTPs with 100-fold higher efficiency with Mn2+ than with Mg2+. Notably, the substitution fidelity of PrimPol in the presence of Mn2+ was determined to be in the range of 3.4 × 10−2 to 3.8 × 10−1, indicating that PrimPol is an error-prone polymerase. Furthermore, we kinetically determined the sugar selectivity of PrimPol to be 57–1800 with Mn2+ and 150–4500 with Mg2+, and found that PrimPol was able to incorporate the triphosphates of two anticancer drugs (cytarabine and gemcitabine), but not two antiviral drugs (emtricitabine and lamivudine).  相似文献   

18.
AimsCocaine and heroin are frequently co-abused in a combination known as speedball. Despite the relevance of the liver in the metabolism and detoxification of these drugs, little is known about the impact of speedball on liver function.Main methodsIn this work, we evaluated the effects of cocaine, morphine and morphine + cocaine (Mor + Coc) combination (1:1) in isolated rat liver mitochondria, upon glutamate/malate or succinate energization, on bioenergetics and oxidative stress-related parameters by using Clark O2, Ca2 +, TPP+ and pH electrodes and by measuring thiobarbituric acid reactive substances (TBARS) and H2O2 production.Key findingsCocaine and Mor + Coc at the higher concentrations (1 mM) similarly increased O2 consumption at state 2, state 4 and state oligomycin. In these conditions, maximum respiration was decreased only upon glutamate/malate energization, suggesting an involvement of complex I. Morphine (1 mM) only increased state 2 respiration. Cocaine and Mor + Coc induced a similar decrease in maximum mitochondrial membrane potential and in ADP-induced depolarization, whereas morphine had no effect. The drugs and their combination similarly decreased mitochondrial ATPase activity and had no effect on Ca2 +-induced permeability transition. Morphine and Mor + Coc prevented lipid peroxidation, since in these conditions there was a decrease in O2 consumption and in TBARS upon ADP/Fe2 + stimulus, and a decrease in H2O2 formation, suggesting an antioxidant effect. Interestingly, heroin did not share morphine antioxidant properties.SignificanceOur results show that the sequential direct exposure of liver mitochondria to morphine and cocaine does not alter the effects observed in the presence of each drug alone.  相似文献   

19.
A rational design strategy of the novel podophyllum topoisomerase II (Topo II) inhibitors for the synthesis of the esterification and amidation substituted 4′-demethylepipodophyllotoxin (DMEP) derivates was developed in order to discover the potential antitumor prodrug. Firstly, according to the structure–activity relationship, drug combination principle and bioisosterism, the –COO– and the –NH– bond substituents at the 4 position of cycloparaffin would be a great modification direction to improve antitumor activity of 4′-demethylepipodophyllotoxin (DMEP). Secondly, from the prodrug principle view, the esterification and amidation at the C-4 position of DMEP would be two useful structure modifications for improve solubility. Thirdly, from the activity pocket in Topo II-DNA cleavage complex point of view, a series of heterocyclic with pharmacological activity were chosen as module for improving antitumor activity by binding with Topo II. Finally, nine novel esterification and amidation DMEP derivates were designed and synthesized for the potential Topo II inhibitors with the superior biological activity. All the novel compounds exhibited promising in vitro antitumor activity, especially 4-O-(2-pyrazinecarboxylic)-4′-demethylepipodophyllotoxin (compound 1). The antitumor activity of compound 1 against tumor cell line HeLa (i.e., the IC50 value of 0.60 ± 0.20 μM), A549 (i.e., the IC50 value of 3.83 ± 0.08 μM), HepG2 (i.e., the IC50 value of 1.21 ± 0.05 μM), and BGC-823 (i.e., the IC50 value of 4.15 ± 1.13 μM) was significantly improved by 66, 16, 12, and 6 times than that of the clinically important podophyllum anticancer drug etoposide (i.e., the IC50 values of 15.32 ± 0.10, 59.38 ± 0.77, 67.25 ± 7.05, and 30.74 ± 5.13 μM), respectively. Compound 1 could arrest HeLa cell cycle G2/M and induce apoptosis by strongly diminishing the relaxation reaction of Topo II-DNA decatenation. The correctness of rational drug design was strictly demonstrated by the bioactivity test.  相似文献   

20.
AimsHypersensitivity of platelets due to increased platelet cholesterol levels has been reported in hypercholesterolemia. However, the signaling pathways linking increased platelet reactivity and cholesterol contents are not fully understood. This study aims to determine the direct effect of cholesterol enrichment of platelets on the pathways including Ca2 + mobilization and secondary feedback agonists such as adenosine diphosphate (ADP) and thromboxane A2 (TXA2).Main methodsIn vitro cholesterol enrichment of rabbit platelets was performed by incubation with cholesterol complexed with methyl-β-cyclodextrin. Ca2 + mobilization was monitored using platelets loaded with fura-PE3/AM, a fluorescent calcium indicator. Released ATP and TXB2 from platelets were measured by a luciferin–luciferase ATP assay system and a TXB2 ELISA Kit, respectively.Key findingsCholesterol enrichment of rabbit platelets significantly enhanced Ca2 + mobilization induced by thrombin, accompanying an augmented Ca2 + entry. The augmentation of Ca2 + entry by cholesterol enrichment was significantly suppressed by treatment with inhibitors for secondary feedback agonists. In cholesterol-enriched platelets, the amount of released ATP or TXB2 induced by thrombin was not significantly altered in comparison with control platelets, whereas an increase in [Ca2 +]i induced by ADP or U46619, a TXA2 mimetic, was significantly enhanced.SignificanceThese results suggest that cholesterol enrichment of rabbit platelets results in enhanced Ca2 + mobilization via ADP/TXA2-dependent augmentation of the Ca2 + entry pathway. The results reveal a novel mechanism by which platelet hypersensitivity is regulated by cholesterol contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号