首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Macaranga myrmecophytes (ant-plants) provide their partner symbiotic ants (plant-ants) with food bodies as their main food, and they are protected by the plant-ants from herbivores. The amount of resource allocated to food bodies determines the plant-ant colony size and consequently determines the intensity of ant defense (anti-herbivore defense by plant-ants). As constraints in resource allocation change as plants grow, the plant-ant colony size is hypothesized to change with the ontogenesis of Macaranga myrmecophyte. To determine the ontogenetic change in the relative size of the plant-ant colony, we measured the dry weights of the whole plant-ant colony and all of the aboveground parts of trees at various ontogenetic stages for a myrmecophytic species (Macaranga beccariana) in a Bornean lowland tropical rain forest. Ant biomass increased as plant biomass increased. However, the rate of increase gradually declined, and the ant biomass appeared to reach a ceiling once trees began to branch. The ant/plant biomass ratio consistently decreased as plant biomass increased, with the rate of decrease gradually accelerating. We infer that the ontogenetic reduction in ant/plant biomass ratio is caused by an ontogenetic change in resource allocation to food rewards for ants related to the physiological changes accompanying the beginning of branching.  相似文献   

2.
Summary Many species of the paleotropic plant genus Macaranga (Euphorbiaceae) live in symbiosis with the ant genus Cremastogaster (Myrmicinae), especially with C. borneensis. The ants protect their plants from many herbivorous enemies. The plants provide food-bodies and nesting space in the internodes. In addition the ants care for honeydew producing scale insects in these spaces. The caterpillars of several species of the genus Arhopala (Lycaenidae) parasitize on this symbiosis system. With the aid of their myrmecophilic organs the caterpillars overcome the aggressivity of the ants and feed on the Macaranga leaves without disturbance. Moreover the caterpillars and their pupae are protected against parasites and predators by the ants. As the female butterflies oviposit the eggs only in low numbers upon young leaves, the plants are not seriously affected.The larvae of the three Arhopala species; A. amphimuta, A. moolaiana, and A. zylda are adapted to their host plant species Macaranga triloba, M. hulletti, and M. hypoleuca by means of color, shape, and behavior. In addition, the different larval stages change their appearance according to the parts of the plant on which they feed and rest. These cryptic adaptations point to a distinct monophagy of these butterflies.The state of phylogenetic relationship within the three lycaenids is parallel to the relationship among the three host plants.This work was supported by the Deutsche Forschungsgemeinschaft. We are indebted to Mr. Eliot, Taunton, UK, for the identification of the lycaenids, for stimulating discussions and literature hints  相似文献   

3.
Many ant partners of tropical ant-plants prune the leaves and shoot tips of other plants growing around their hosts. According to the hypothesis proposed by Davidson et al. (Ecology 69:801-808), this specialized behaviour not only protects the host plants against overgrowth, but it also conveys a direct benefit to the ant colony as it removes contact points to the neighbouring vegetation where invasions of enemy ants could occur. Here we test this hypothesis by comparing pruning intensity in five closely related Crematogaster (subgenus Decacrema) plant-ant species (and one species of Technomyrmex) that differ in their exposure to competition by other ants. Pruning intensity was quantified by measuring the area loss of paper tape pieces wrapped around the stems of Macaranga host plants. All Crematogaster (Decacrema) ants tested but not Technomyrmex sp. pruned, but the intensity of the behaviour varied strongly between and within species. Pruning was significantly weaker in the three tested Crematogaster species inhabiting Macaranga host plants with a slippery, waxy stem surface, which functions as a mechanical barrier protecting the specific ant partners against generalist competitors. Pruning was generally stronger on more densely ant-populated trees. Even though the number of ants per twig length was lower in associations of ants with glaucous Macaranga hosts, only part of the variation of pruning activity could be explained by "ant density". When corrected for ant density, "wax-running" Crematogaster (Decacrema) ants still pruned more weakly than their congeners inhabiting non-glaucous Macaranga hosts. Pruning is obviously most important when an ant-plant is potentially accessible to intruders, but less necessary when the ant colony is isolated by a protective wax barrier. Our results support the hypothesis that "selfish" defence against invasions is the major selective pressure that has led to the development and maintenance of pruning behaviour in weakly competitive plant-ants.  相似文献   

4.
Previous studies have demonstrated that the obligate myrmecophytism between Macaranga ant-plants and Crematogaster plant-ants is highly species specific, although multiple Macaranga species can coexist in a microhabitat. However, the species specificity has been described based on the study of trees with established plant-ant colonies. We studied how the process of settling into the partner Macaranga seedlings by single foundress Crematogaster queens contributes to species specificity. By sampling seedlings of three sympatric Macaranga myrmecophytes species in the field, we tested two hypotheses. The first is that foundresses correctly select their specific partner plant species when they settle into seedlings. The second hypothesis is that the seasons in which seedlings available for settling by foundresses appear are segregated among the Macaranga species, and the seasons in which foundress queens settle are synchronized to the appearance of seedlings of specific partner species; thus species specificity is consequently generated. Our results support the former hypothesis but not the latter: we always observed foundresses settling species-specific host plants, and seedlings suitable for settling were always available in each Macaranga species. Electronic Publication  相似文献   

5.
Summary In the humid tropics of SE Asia there are some 14 myrmecophytic species of the pioneer tree genus Macaranga (Euphorbiaceae). In Peninsular Malaysia a close association exists between the trees and the small, non-stinging myrmicine Crematogaster borneensis. These ants feed mainly on food bodies provided by the plants and have their colonies inside the hollow internodes. In a ten months field study we were able to demonstrate for four Macaranga species (M. triloba, M. hypoleuca, M. hosei, M. hulletti) that host plants also benefit considerably from ant-occupation. Ants do not contribute to the nutrient demands of their host plant, they do, however, protect it against herbivores and plant competition. Cleaning behaviour of the ants results in the removal of potential hervivores already in their earliest developmental stages. Strong aggressiveness and a mass recruiting system enable the ants to defend the host plant against many herbivorous insects. This results in a significant decrease in leaf damage due to herbivores on ant-occupied compared to ant-free myrmecophytes as well as compared to non-myrmecophytic Macaranga species. Most important is the ants' defense of the host plant against plant competitors, especially vines, which are abundant in the well-lit pioneer habitats where Macaranga grows. Ants bite off any foreign plant part coming into contact with their host plant. Both ant-free myrmecophytes and non-myrmecophytic Macaranga species had a significantly higher incidence of vine growth than specimens with active ant colonies. This may be a factor of considerable importance allowing Macaranga plants to grow at sites of strongest competition.  相似文献   

6.
The remarkable ability of slave-making ants to integrate chemically in the colonies of their host species makes them useful model systems for investigating the role of cuticular hydrocarbons in chemical recognition. The purpose of our study was to examine the influence of the rearing host species on the cuticular hydrocarbon profile and on the mating behaviour of sexuals of the slave-making ant Chalepoxenus muellerianus. Sexuals from a population parasitizing exclusively the host species Temnothorax unifasciatus were reared in the laboratory either with their natural host or another potential host species, Temnothorax recedens. C. muellerianus males reared with T. unifasciatus investigated and mounted female sexuals reared with the same host significantly more often than female sexuals reared with T. recedens. Similarly, C. muellerianus males reared with T. unifasciatus discriminated against female sexuals from natural T. recedens colonies. Males experimentally or naturally reared with T. recedens did not clearly discriminate between female sexuals reared by the two host species and only rarely engaged in mating attempts with either type of female sexuals. Chemical analyses showed that host species affect the chemical profile of C. muellerianus sexuals and vice versa. Our findings indicate that cuticular hydrocarbons might be important in the mating success of this ant species. Received 21 June 2006; revised 20 February 2007; accepted 1 March 2007.  相似文献   

7.
Antagonistic interactions between host and parasites are often embedded in networks of interacting species, in which hosts may be attacked by competing parasites species, and parasites may infect more than one host species. To better understand the evolution of host defenses and parasite counterdefenses in the context of a multihost, multiparasite system, we studied two sympatric species, of congeneric fungus‐growing ants (Attini) species and their symbiotic fungal cultivars, which are attacked by multiple morphotypes of parasitic fungi in the genus, Escovopsis. To assess whether closely related ant species and their cultured fungi are evolving defenses against the same or different parasitic strains, we characterized Escovopsis that were isolated from colonies of sympatric Apterostigma dentigerum and A. pilosum. We assessed in vitro and in vivo interactions of these parasites with their hosts. While the ant cultivars are parasitized by similar Escovopsis spp., the frequency of infection by these pathogens differs between the two ant species. The ability of the host fungi to suppress Escovopsis growth, as well as ant defensive responses toward the parasites, differs depending on the parasite strain and on the host ant species.  相似文献   

8.
The exploitation of parental care is common in avian and insect 'cuckoos' and these species engage in a coevolutionary arms race. Caterpillars of the lycaenid butterfly Niphanda fusca develop as parasites inside the nests of host ants (Camponotus japonicus) where they grow by feeding on the worker trophallaxis. We hypothesized that N. fusca caterpillars chemically mimic host larvae, or some particular castes of the host ant, so that the caterpillars are accepted and cared for by the host workers. Behaviourally, it was observed that the host workers enthusiastically tended glass dummies coated with the cuticular chemicals of larvae or males and those of N. fusca caterpillars living together. Cuticular chemical analyses revealed that N. fusca caterpillars grown in a host ant nest acquired a colony-specific blend of cuticular hydrocarbons (CHCs). Furthermore, the CHC profiles of the N. fusca caterpillars were particularly close to those of the males rather than those of the host larvae and the others. We suggest that N. fusca caterpillars exploit worker care by matching their cuticular profile to that of the host males, since the males are fed by trophallaxis with workers in their natal nests for approximately ten months.  相似文献   

9.
Obligate ant–plant interactions are known to be mutualistic but plant-ants that destroy flowers of their hosts have been reported. They were regarded as parasites in myrmecophytic systems. The mechanisms that lead to flower damage (sterilization) by plant-ants are not easy to understand as most sterilizing ants are actually regular colonizers of their plants and normally offer protection against herbivores and/or plant competition. It is difficult to find general patterns of ant or plant traits even in the few yet known associations of flower sterilization. We here present the first study from Southeast Asia where flower sterilizing occurs in the complex mutualistic MacarangaCrematogaster system that differs from other cases. Flowers of M. hullettii in the Gombak Valley were destroyed by all three associated specific and otherwise protective Crematogaster species. The hypotheses that limitation of nesting space or food are main proximate factors for flower destruction were not strongly supported in our study system. Ants are even attracted to flowers by special food bodies produced by the plants. Only younger, not yet reproductive colonies were found to destroy flowers but not colonies with alates, indicating that flower sterilization behavior may only occur when the onset of host reproduction precedes ant reproduction, perhaps leading to a change in ant behavior. Fruit set always occurred in larger trees, and saplings for colonizing ant queens were therefore always present in the local population, stabilizing the association.  相似文献   

10.
《Journal of Asia》2020,23(4):1255-1263
Thrips constitute several families of slender insects with fringed wings and unique asymmetrical mouthparts. They have become globally important pests, infesting a variety of agriculturally important crops. Species of thrips are difficult to identify due to their small size and similarities in morphology. Recently, in addition to morphology, both molecular and non-molecular taxonomic tools have been used to identify species differences. Insect cuticular hydrocarbons have been widely used in chemotaxonomy. In this study, a Thermal Separation Probe was used to identify the cuticular hydrocarbons of Frankliniella occidentalis, Frankliniella intonsa, Thrips palmi, Thrips hawaiiensis, Haplothrips chinensis and Gynaikothrips ficorum. We analyzed the hydrocarbon composition of adults in all 6 species, and in the larvae of F. occidentalis, T. hawaiiensis and T. palmi. The results showed that the composition of cuticular hydrocarbons differed between species. All 6 species of adults and 3 species of larvae were easily distinguishable by quantitative analysis of hydrocarbon profiles. These results provide a possible method for the identification of thrips.  相似文献   

11.
Myrmecophytes depend on symbiotic ants (plant‐ants) to defend against herbivores. Although these defensive mechanisms are highly effective, some herbivorous insects can use myrmecophytes as their host‐plants. The feeding habits of these phytophages on myrmecophytes and the impacts of the plant‐ants on their feeding behavior have been poorly studied. We examined two phasmid species, Orthomeria alexis and O. cuprinus, which are known to feed on Macaranga (Euphorbiaceae) myrmecophytes in a Bornean primary forest. Our observations revealed that: (i) each phasmid species relied on two closely‐related myrmecophytic Macaranga species for its host‐plants in spite of their normal plant‐ant symbioses; and (ii) there was little overlap between their host‐plant preferences. More O. cuprinus adults and nymphs were found on new leaves, which were attended by more plant‐ants than mature leaves, while most adults and nymphs of O. alexis tended to avoid new leaves. In a feeding choice experiment under ant‐excluded conditions, O. alexis adults chose a non‐host Macaranga myrmecophyte that was more intensively defended by plant‐ants and was more palatable than their usual host‐plants almost as frequently as their usual host‐plant, suggesting that the host‐plant range of O. alexis was restricted by the presence of plant‐ants on non‐host‐plants. Phasmid behavior that appeared to minimize plant‐ant attacks is described.  相似文献   

12.
Although it has always been assumed that chemical mimicry and camouflage play a major role in the penetration of ant societies by social parasites, this paper provides the first direct evidence for such a mechanism between the larvae of the parasitic butterfly Maculinea rebeli and its ant host Myrmica schencki. In the wild, freshly moulted fourth-instar caterpillars, which have no previous contact with ants, appear to be recognized as ant larvae by foraging Myrmica workers, which return them to their nest brood chambers. Three hypotheses concerning the mechanism controlling this behaviour were tested: (i) the caterpillars produce surface chemicals that allow them to be treated as ant larvae; (ii) mimetic compounds would include hydrocarbons similar to those employed by Myrmica to recognize conspecifics and brood; and (iii) the caterpillars'' secretions would more closely mimic the profile of their main host in the wild, M. schencki, than that of other species of Myrmica. Results of behavioural bioassays and chemical analyses confirmed all three hypotheses, and explained the high degree of host specificity found in this type of highly specialized myrmecophile. Furthermore, although caterpillars biosynthesized many of the recognition pheromones of their host species (chemical mimicry), they later acquired additional hydrocarbons within the ant nest (chemical camouflage), making them near-perfect mimics of their individual host colony''s odour.  相似文献   

13.
Bacteria living on the cuticle of ants are generally studied for their protective role against pathogens, especially in the clade of fungus‐growing ants. However, little is known regarding the diversity of cuticular bacteria in other ant host species, as well as the mechanisms leading to the composition of these communities. Here, we used 16S rRNA gene amplicon sequencing to study the influence of host species, species interactions and the pool of bacteria from the environment on the assembly of cuticular bacterial communities on two phylogenetically distant Amazonian ant species that frequently nest together inside the roots system of epiphytic plants, Camponotus femoratus and Crematogaster levior. Our results show that (a) the vast majority of the bacterial community on the cuticle is shared with the nest, suggesting that most bacteria on the cuticle are acquired through environmental acquisition, (b) 5.2% and 2.0% of operational taxonomic units (OTUs) are respectively specific to Ca. femoratus and Cr. levior, probably representing their respective core cuticular bacterial community, and (c) 3.6% of OTUs are shared between the two ant species. Additionally, mass spectrometry metabolomics analysis of metabolites on the cuticle of ants, which excludes the detection of cuticular hydrocarbons produced by the host, were conducted to evaluate correlations among bacterial OTUs and m/z ion mass. Although some positive and negative correlations are found, the cuticular chemical composition was weakly species‐specific, suggesting that cuticular bacterial communities are prominently environmentally acquired. Overall, our results suggest the environment is the dominant source of bacteria found on the cuticle of ants.  相似文献   

14.
The study of geographical variation is a key approach to understand evolution of ecological interactions. We investigated geographical variation in the interaction among Crotalaria pallida (Leguminosae: Papilionideae), its specialized herbivore, Utetheisa ornatrix L. (Lepidoptera: Arctiidae), and ants attracted to extrafloral nectaries (EFNs). First, we used common-garden experiments with plants collected in different sites at different geographical scales to test for differences among populations in C. pallida attractiveness to ants. When we compared three populations from Southeast Brazil (150 km apart), the number of visiting ants per plant, and the percent of termite baits attacked by ants, were significantly different among plant populations. In a comparison of populations from SE Brazil and Florida (USA), there was no significant difference between the populations in the number of ants per plant or the frequency of baits attacked. Second, we tested in a common garden if U. ornatrix larvae present any behavior to avoid ant predation, and if there were genetic differences among populations. We observed that most larvae moved away from the vicinity of the EFNs (flowers and fruits) to the plant leaves. Of the larvae that moved to leaves, only 10% were attacked by ants while 89% of larvae that stayed near the fruit/flower were attacked. There was a significant difference among populations in the frequency of larvae that moved to the leaves and the frequency of larvae attacked by ants. We discuss the possible causes of the geographical differences observed and propose future research directions in this system.  相似文献   

15.
D. Jordano  C. D. Thomas 《Oecologia》1992,91(3):431-438
Summary Many lycaenid butterflies are believed to be mutualists of ants — the butterfly larvae secrete sugars and amino acids as rewards for the ants, and the ants protect the larvae from predation or parasitism. We examined the specificity of the relationship between the lycaenid Plebejus argus and ants in the genus Lasius. Eggs were not attractive to Lasius ants until the emerging larvae had broken through the chorion. First instar larvae were palpated and picked up by Lasius workers and taken to the nest. First instars were mostly ignored by Myrmica sabuleti ants and they were rarely detected by Formica fusca. Older larvae were more attractive to Lasius than to the other ant genera. Pupae were very attractive to Lasius, moderately so to Myrmica, and were ignored by Formica fusca. Teneral adults were palpated by Lasius, but were attacked by Myrmica and Formica workers. We conclude that P. argus is a specialist associate of Lasius ants. Two populations of Plebejus argus were compared: one is naturally associated with Lasius niger, and the other with Lasius alienus. In reciprocal trials, larvae were slightly more attractive to their natural host ant species. Since test larvae were reared on a single host plant species in captivity, this differentiation probably has a genetic basis.  相似文献   

16.

Background

Associations between animal species require that at least one of the species recognizes its partner. Parabioses are associations of two ant species which co-inhabit the same nest. Ants usually possess an elaborate nestmate recognition system, which is based on cuticular hydrocarbons and allows them to distinguish nestmates from non-nestmates through quantitative or qualitative differences in the hydrocarbon composition. Hence, living in a parabiotic association probably necessitates changes of the nestmate recognition system in both species, since heterospecific ants have to be accepted as nestmates.

Results

In the present study we report highly unusual cuticular profiles in the parabiotic species Crematogaster modiglianii and Camponotus rufifemur from the tropical rainforest of Borneo. The cuticle of both species is covered by a set of steroids, which are highly unusual surface compounds. They also occur in the Dufour gland of Crematogaster modiglianii in high quantities. The composition of these steroids differed between colonies but was highly similar among the two species of a parabiotic nest. In contrast, hydrocarbon composition of Cr. modiglianii and Ca. rufifemur differed strongly and only overlapped in three regularly occurring and three trace compounds. The hydrocarbon profile of Camponotus rufifemur consisted almost exclusively of methyl-branched alkenes of unusually high chain lengths (up to C49). This species occurred in two sympatric, chemically distinct varieties with almost no hydrocarbons in common. Cr. modiglianii discriminated between these two varieties. It only tolerated workers of the Ca. rufifemur variety it was associated with, but attacked the respective others. However, Cr. modiglianii did not distinguish its own Ca. rufifemur partner from allocolonial Ca. rufifemur workers of the same variety.

Conclusion

We conclude that there is a mutual substance transfer between Cr. modiglianii and Ca. rufifemur. Ca. rufifemur actively or passively acquires cuticular steroids from its Cr. modiglianii partner, while the latter acquires at least two cuticular hydrocarbons from Ca. rufifemur. The cuticular substances of both species are highly unusual regarding both substance classes and chain lengths, which may cause the apparent inability of Cr. modiglianii to discriminate Ca. rufifemur nestmates from allocolonial Ca. rufifemur workers of the same chemical variety.  相似文献   

17.
Abstract. We present a phylogeny for a selection of species of the butterfly genus Arhopala Boisduval, 1832 based on molecular characters. We sequenced 1778 bases of the mitochondrial genes Cytochrome Oxidase 1 and 2 including tRNALeu, and a 393‐bp fragment of the nuclear wingless gene for a total of 42 specimens of 33 species, representing all major species groups. Analyses of mtDNA and wingless genes show congruent phylogenetic signal. The phylogeny presented here confirms the monophyly of the centaurus, eumolphus, camdeo and epimuta groups and the amphimuta subgroup. It confirms close relationships between species within the agelastus group, that together with the amphimuta subgroup, centaurus and camdeo groups form a monophyletic group. However, incongruencies with previous taxonomic studies also occur; the amphimuta and silhetensis groups are not monophyletic, as is the genus Arhopala itself. One enigmatic species, A. kinabala, was evaluated further for topology and the support for basal placement of this species is due mainly to the wingless gene. However, in the Parsimony analysis, and subsequent Maximum Likelihood evaluations, certain nodes could not be resolved due to insufficient support. The mtDNA shows extreme AT bias with compositional heterogeneity at 3rd codon positions, which may result in saturation. By contrast, the wingless gene does not show compositional bias, suggesting that poor support is not due solely to saturation. The evaluation of morphological characters used in previous studies on Arhopala systematics on the molecular tree indicates that the macular pattern and the absence of tails at the hind wings show extensive homoplasy. A significant phylogenetic signal (as indicated by T‐PTP tests) is present in several of these morphological characters, which are nevertheless of limited use in phylogenetic studies due to their labile nature.  相似文献   

18.
Parabiotic ants—ants that share their nest with another ant species—need to tolerate not only conspecific nestmates, but also nestmates of a foreign species. The parabiotic ants Camponotus rufifemur and Crematogaster modiglianii display high interspecific tolerance, which exceeds their respective partner colony and extends to alien colonies of the partner species. The tolerance appears to be related to unusual cuticular substances in both species. Both species possess hydrocarbons of unusually high chain lengths. In addition, Cr. modiglianii carries high quantities of hereto unknown compounds on its cuticle. These unusual features of the cuticular profiles may affect nestmate recognition within both respective species as well. In the present study, we therefore examined inter-colony discrimination within the two parabiotic species in relation to chemical differentiation. Cr. modiglianii was highly aggressive against workers from alien conspecific colonies in experimental confrontations. In spite of high inter-colony variation in the unknown compounds, however, Cr. modiglianii failed to differentiate between intracolonial and allocolonial unknown compounds. Instead, the cuticular hydrocarbons functioned as recognition cues despite low variation across colonies. Moreover, inter-colony aggression within Cr. modiglianii was significantly influenced by the presence of two methylbranched alkenes acquired from its Ca. rufifemur partner. Ca. rufifemur occurs in two varieties (‘red’ and ‘black’) with almost no overlap in their cuticular hydrocarbons. Workers of this species showed low aggression against conspecifics from foreign colonies of the same variety, but attacked workers from the respective other variety. The low inter-colony discrimination within a variety may be related to low chemical differentiation between the colonies. Ca. rufifemur majors elicited significantly more inter-colony aggression than medium-sized workers. This may be explained by the density of recognition cues: majors carried significantly higher quantities of cuticular hydrocarbons per body surface.  相似文献   

19.
Protective ant-plant mutualisms that are exploited by non-defending parasitic ants represent prominent model systems for ecology and evolutionary biology. The mutualist Pseudomyrmex ferrugineus is an obligate plant-ant and fully depends on acacias for nesting space and food. The parasite Pseudomyrmex gracilis facultatively nests on acacias and uses host-derived food rewards but also external food sources. Integrative analyses of genetic microsatellite data, cuticular hydrocarbons and behavioral assays showed that an individual acacia might be inhabited by the workers of several P. gracilis queens, whereas one P. ferrugineus colony monopolizes one or more host trees. Despite these differences in social organization, neither of the species exhibited aggressive behavior among conspecific workers sharing a tree regardless of their relatedness. This lack of aggression corresponds to the high similarity of cuticular hydrocarbon profiles among ants living on the same tree. Host sharing by unrelated colonies, or the presence of several queens in a single colony are discussed as strategies by which parasite colonies could achieve the observed social organization. We argue that in ecological terms, the non-aggressive behavior of non-sibling P. gracilis workers--regardless of the route to achieve this social structure--enables this species to efficiently occupy and exploit a host plant. By contrast, single large and long-lived colonies of the mutualist P. ferrugineus monopolize individual host plants and defend them aggressively against invaders from other trees. Our findings highlight the necessity for using several methods in combination to fully understand how differing life history strategies affect social organization in ants.  相似文献   

20.
《Comptes rendus biologies》2014,337(11):642-645
It was recently shown that Pheidole megacephala colonies (an invasive species originating from Africa) counterattack when raided by the army ant, Eciton burchellii. The subsequent contact permits Pheidole cuticular compounds (that constitute the “colony odour”) to be transferred onto the raiding Eciton, which are then not recognised by their colony-mates and killed. Using a simple method for transferring cuticular compounds, we tested if this phenomenon occurs for Neotropical ants. Eciton workers rubbed with ants from four sympatric species were released among their colony-mates. Individuals rubbed with Solenopsis saevissima or Camponotus blandus workers were attacked, but not those rubbed with Atta sexdens, Pheidole fallax or with colony-mates (control lot). So, the chemicals of certain sympatric ant species, but not others, trigger intra-colonial aggressiveness in Eciton. We conclude that prey-ant chemicals might have played a role in the evolution of army ant predatory behaviour, likely influencing prey specialization in certain cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号