首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acrolein is a highly reactive alpha,beta-unsaturated aldehyde, but the factors that control its reactions with nucleophilic groups on proteins remain poorly understood. Lipid peroxidation and threonine oxidation by myeloperoxidase are potential sources of acrolein during inflammation. Because both pathways are implicated in atherogenesis and high density lipoprotein (HDL) is anti-atherogenic, we investigated the possibility that acrolein might target the major protein of HDL, apolipoprotein A-I (apoA-I), for modification. Tandem mass spectrometric analysis demonstrated that lysine 226, located near the center of helix 10 in apoA-I, was the major site modified by acrolein. Importantly, this region plays a critical role in the cellular interactions and ability of apoA-I to transport lipid. Indeed, we found that conversion of Lys-226 to N(epsilon)-(3-methylpyridinium)lysine by acrolein associated quantitatively with decreased cholesterol efflux from cells via the ATP-binding cassette transporter A1 pathway. In the crystal structure of truncated apoA-I, Glu-234 lies adjacent to Lys-226, suggesting that negatively charged residues might direct the modification of specific lysine residues in proteins. Finally, immunohistochemical studies with a monoclonal antibody revealed co-localization of apoA-I with acrolein adducts in human atherosclerotic lesions. Our observations suggest that acrolein might interfere with normal reverse cholesterol transport by HDL by modifying specific sites in apoA-I. Thus, acrolein might contribute to atherogenesis by impairing cholesterol removal from the artery wall.  相似文献   

2.
Elevated plasma levels of high-density lipoprotein cholesterol (HDL-C) are atheroprotective and HDL-dependent reverse cholesterol transport has been related to this effect. HDL particles may, however, undergo modifications that affect their biological activities. Lipoxygenases (LOs) belong to a family of lipid peroxidizing enzymes; among them, reticulocyte-type 15-lipoxygenase (15-LO-1) appears to play a pathophysiological role in atherosclerosis, as its expression is increased in atherosclerotic plaques and it has been shown to oxidize low-density lipoproteins to an atherogenic form. In this work we investigated the impact of in vitro 15-lipoxygenase-catalyzed modification of HDL3 on their ability to act as cholesterol acceptor and found that 15-LO-modified HDL3 were less effective in mediating cholesterol efflux from lipid-laden J774 cells. A reduced binding of 15-LO-modified HDL3 to scavenger receptor class B, type I (SR-BI), due to HDL apoproteins cross-linking, explained, at least in part, the observed reduction of cholesterol efflux. In addition, ATP-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux was also reduced, as a consequence of pre-beta-particles loss after HDL3 modification. These results suggest that 15-lipoxygenase might induce structural alterations of HDL3 particles that impair their capability of triggering reverse cholesterol transport.  相似文献   

3.
The present study was aimed at investigating effects of hypochlorite (HOCl) modification of high density lipoproteins subclass 3 (HDL3) on their ability for cellular cholesterol removal from permanent J774 macrophages. Our findings indicate that HOCl (added as reagent or generated enzymatically by the myeloperoxidase/H2O2/Cl- system) damages apolipoprotein A-I, the major protein component of HDL3. Fatty acid analysis of native and HOCl-modified HDL3 revealed that unsaturated fatty acids in both major lipid subclasses (phospholipids and cholesteryl esters) are targets for HOCl attack. HOCl modification resulted in impaired HDL3-mediated cholesterol efflux from J774 cells, regardless of whether reagent or enzymatically generated HOCl was used to modify the lipoprotein. Decreased cholesterol efflux was also observed after HOCl modification of reconstituted HDL particles. Impairment of cholesterol efflux from macrophages was noticed at low and physiologically occurring HOCl concentrations.  相似文献   

4.
As most of peripheral cells are not able to catabolize cholesterol, the transport of cholesterol excess from peripheral tissues back to the liver, namely "reverse cholesterol transport", is the only way by which cholesterol homeostasis is maintained in vivo. Reverse cholesterol transport pathway can be divided in three major steps: 1) uptake of cellular cholesterol by the high density lipoproteins (HDL), 2) esterification of HDL cholesterol by the lecithin: cholesterol acyltransferase and 3) captation of HDL cholesteryl esters by the liver where cholesterol can be metabolized and excreted in the bile. In several species, including man, cholesteryl esters in HDL can also follow an alternative pathway which consists in their transfer from HDL to very low density (VLDL) and low density (LDL) lipoproteins. The transfer of cholesteryl esters to LDL, catalyzed by the Cholesteryl Ester Transfer Protein (CETP), might affect either favorably or unfavorably the reverse cholesterol transport pathway, depending on whether LDL are finally taken up by the liver or by peripheral tissues, respectively. In order to understand precisely the implication of CETP in reverse cholesterol transport, it is essential to determine its role in HDL metabolism, to know the potential regulation of its activity and to identify the mechanism by which it interacts with lipoprotein substrates. Results from recent studies have demonstrated that CETP can promote the size redistribution of HDL particles. This may be an important process in the reverse cholesterol transport pathway as HDL particles with various sizes have been shown to differ in their ability to promote cholesterol efflux from peripheral cells and to interact with lecithin: cholesterol acyltransferase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Cultured extrahepatic cells possess a specific high affinity binding site (receptor) for high density lipoprotein (HDL) that is induced by cholesterol delivery to cells. To characterize the binding recognition site(s) on HDL, the ability of HDL to interact with cultured human fibroblasts was assayed after chemical alteration of specific apoprotein amino acid residues. Reduction and alkylation, acetylation, and cyclohexanedione treatment of HDL3 had little or no effect on its cellular binding. Treatment of HDL3 with tetranitromethane (TNM), however, caused a large dose-dependent decrease in binding, with maximum inhibition at 3 mM. Amino acid analysis of the TNM-treated particles showed specific alteration of tyrosine residues, but sodium dodecyl sulfate-gel electrophoresis demonstrated apoprotein cross-linking coincident with decreased binding. These results suggest that modification of HDL tyrosine residues and/or cross-linking of HDL apoproteins alters the ligand site recognized by the HDL receptor. Gradient gel electrophoresis, molecular sieve chromatography, and electron microscopy showed only minor changes in size distribution and shape of HDL3 particles after treatment with 3 mM TNM, but at higher TNM concentrations, coalescence and aggregation of particles was evident. Treatment of HDL3 with 3 mM TNM affected neither its promotion of the low affinity (receptor-independent) cholesterol efflux from cells nor its ability to accept cholesterol from an albumin suspension, yet promotion of high affinity (receptor-dependent) cholesterol efflux from cells was abolished. The finding that TNM treatment of HDL3 decreases both its receptor binding and its promotion of cholesterol efflux from cells without substantial alteration of its physical properties supports the hypothesis that the HDL receptor functions to facilitate cholesterol transport from cells.  相似文献   

6.
ABCA1. The gatekeeper for eliminating excess tissue cholesterol   总被引:38,自引:0,他引:38  
It is widely believed that HDL functions to transport cholesterol from peripheral cells to the liver by reverse cholesterol transport, a pathway that may protect against atherosclerosis by clearing excess cholesterol from arterial cells. A cellular ATP-binding cassette transporter (ABC) called ABCA1 mediates the first step of reverse cholesterol transport: the transfer of cellular cholesterol and phospholipids to lipid-poor apolipoproteins. Mutations in ABCA1 cause Tangier disease (TD), a severe HDL deficiency syndrome characterized by accumulation of cholesterol in tissue macrophages and prevalent atherosclerosis. Studies of TD heterozygotes revealed that ABCA1 activity is a major determinant of plasma HDL levels and susceptibility to CVD. Drugs that induce ABCA1 in mice increase clearance of cholesterol from tissues and inhibit intestinal absorption of dietary cholesterol. Multiple factors related to lipid metabolism and other processes modulate expression and tissue distribution of ABCA1.Therefore, as the primary gatekeeper for eliminating tissue cholesterol, ABCA1 has a major impact on cellular and whole body cholesterol metabolism and is likely to play an important role in protecting against cardiovascular disease.  相似文献   

7.
When stimulated, rat serosal mast cells degranulate and secrete a cytoplasmic neutral protease, chymase. We studied the fragmentation of apolipoprotein (apo) A-I during proteolysis of HDL(3) by chymase, and examined how chymase-dependent proteolysis interfered with the binding of eight murine monoclonal antibodies (Mabs) against functional domains of apoA-I. Size exclusion chromatography of HDL(3) revealed that proteolysis for up to 24 h did not alter the integrity of the alpha-migrating HDL, whereas a minor peak containing particles of smaller size with prebeta mobility disappeared after as little as 15 min of incubation. At the same time, generation of a large (26 kDa) polypeptide containing the N-terminus of apoA-I was detected. This large fragment and other medium-sized fragments of apoA-I produced after prolonged treatment with chymase were found to be associated with the alphaHDL; meanwhile, small lipid-free peptides were rapidly produced. Incubation of HDL(3) with chymase inhibited binding of Mab A-I-9 (specific for prebeta(1)HDL) most rapidly (within 15 min) of the eight studied Mabs. This rapid loss of binding was paralleled by a similar reduction in the ability of HDL(3) to induce high-affinity efflux of cholesterol from macrophage foam cells, indicating that proteolysis had destroyed an epitope that is critical for this function. In sharp contrast, prolonged degradation of HDL(3) by chymase failed to reduce the ability of HDL(3) to activate LCAT, even though it led to modification of three epitopes in the central region of apoA-I that are involved in lecithin cholesterol acyltransferase (LCAT) activation. This differential sensitivity of the two key functions of HDL(3) to the proteolytic action of mast cell chymase is compatible with the notion that, in reverse cholesterol transport, intactness of apoA-I is essential for prebeta(1)HDL to promote the high-affinity efflux of cellular cholesterol, but not for the alpha-migrating HDL particles to activate LCAT.  相似文献   

8.
HDL plays an initial role in reverse cholesterol transport by mediating cholesterol removal from cells. During infection and inflammation, several changes in HDL composition occur that may affect the function of HDL; therefore, we determined the ability of acute-phase HDL to promote cholesterol removal from cells. Acute-phase HDL was isolated from plasma of Syrian hamsters injected with lipopolysaccharide. Cholesterol removal from J 774 murine macrophages by acute-phase HDL was less efficient than that by control HDL because of both a decrease in cholesterol efflux and an increase in cholesterol influx. LCAT activity of acute-phase HDL was significantly lower than that of control HDL. When LCAT activity of control HDL was inactivated, cholesterol efflux decreased and cholesterol influx increased to the level observed in acute-phase HDL. Inactivation of LCAT had little effect on acute-phase HDL. In GM 3468A human fibroblasts, the ability of acute-phase HDL to remove cholesterol from cells was also lower than that of normal HDL. The impaired cholesterol removal, however, was primarily a result of an increase in cholesterol influx without changes in cholesterol efflux. When control HDL in which LCAT had been inactivated was incubated with fibroblasts, cholesterol influx increased to a level comparable to that of acute-phase HDL, without any change in cholesterol efflux. These results suggest that the ability of acute-phase HDL to mediate cholesterol removal was impaired compared with that of control HDL and the lower LCAT activity in acute-phase HDL may be responsible for this impairment. The decreased ability of acute-phase HDL to remove cholesterol from cells may be one of the mechanisms that account for the well-known relationship between infection/inflammation and atherosclerosis.  相似文献   

9.
The role of high density lipoprotein (HDL) phospholipid in scavenger receptor BI (SR-BI)-mediated free cholesterol flux was examined by manipulating HDL(3) phosphatidylcholine and sphingomyelin content. Both phosphatidylcholine and sphingomyelin enrichment of HDL enhanced the net efflux of cholesterol from SR-BI-expressing COS-7 cells but by two different mechanisms. Phosphatidylcholine enrichment of HDL increased efflux, whereas sphingomyelin enrichment decreased influx of HDL cholesterol. Although similar trends were observed in control (vector-transfected) COS-7 cells, SR-BI overexpression amplified the effects of phosphatidylcholine and sphingomyelin enrichment of HDL 25- and 2.8-fold, respectively. By using both phosphatidylcholine-enriched and phospholipase A(2)-treated HDL to obtain HDL with a graded phosphatidylcholine content, we showed that SR-BI-mediated cholesterol efflux was highly correlated (r(2) = 0.985) with HDL phosphatidylcholine content. The effects of varying HDL phospholipid composition on SR-BI-mediated free cholesterol flux were not correlated with changes in either the K(d) or B(max) values for high affinity binding to SR-BI. We conclude that SR-BI-mediated free cholesterol flux is highly sensitive to HDL phospholipid composition. Thus, factors that regulate cellular SR-BI expression and the local modification of HDL phospholipid composition will have a large impact on reverse cholesterol transport.  相似文献   

10.
Hepatic lipase (HL) and endothelial lipase (EL) are negative regulators of plasma HDL cholesterol (HDLc) levels and presumably could affect two main HDL atheroprotective functions, macrophage-to-feces reverse cholesterol transport (RCT) and HDL antioxidant properties. In this study, we assessed the effects of both HL and EL deficiency on macrophage-specific RCT process and HDL ability to protect against LDL oxidation. HL- and EL-deficient and wild-type mice were injected intraperitoneally with [3H]cholesterol-labeled mouse macrophages, after which the appearance of [3H]cholesterol in plasma, liver, and feces was determined. The degree of HDL oxidation and the protection of oxidative modification of LDL co-incubated with HDL were evaluated by measuring conjugated diene kinetics. Plasma levels of HDLc, HDL phospholipids, apoA-I, and platelet-activated factor acetyl-hydrolase were increased in both HL- and EL-deficient mice. These genetically modified mice displayed increased levels of radiolabeled, HDL-bound [3H]cholesterol 48 h after the label injection. The magnitude of macrophage-derived [3H]cholesterol in feces was also increased in both the HL- and EL-deficient mice. HDL from the HL- and EL-deficient mice was less prone to oxidation and had a higher ability to protect LDL from oxidation, compared with the HDL derived from the wild-type mice. These changes were correlated with plasma apoA-I and apoA-I/HDL total protein levels. In conclusion, targeted inactivation of both HL and EL in mice promoted macrophage-to-feces RCT and enhanced HDL antioxidant properties.  相似文献   

11.
The two main functions of phospholipid transfer protein (PLTP) are the transfer of phospholipids between plasma lipoproteins and the conversion of high density lipoprotein (HDL), where prebeta-HDL particles are generated. HDL is considered an anti-atherogenic lipoprotein due to its function in the reverse cholesterol transport, where prebeta-HDL accepts cellular membrane cholesterol from peripheral tissues. However, the anti-atherogenic properties of native HDL may be abolished by oxidation/modification. Hypochlorous acid/hypochlorite (HOCl/OCl-)-a potent oxidant generated in vivo only by the myeloperoxidase-H2O2-chloride system of activated phagocytes-alters the physiological properties of HDL by generating a pro-atherogenic lipoprotein particle. Therefore, we have studied the effect of HOCl on the function of HDL subclass 3 (HDL3) and triglyceride-enriched HDL3 (TG-HDL3) in PLTP-mediated processes in vitro. Modification of HDL3 and TG-HDL3 with increasing HOCl concentrations (oxidant:lipoprotein molar ratio between 25:1 and 200:1) decreased the capacity of the corresponding lipoprotein particles to accept phospholipids. Although binding of PLTP to unmodified and HOCl-modified lipoprotein particles was similar, the degree of PLTP-mediated HDL conversion was decreased upon HOCl oxidation. PLTP released apolipoprotein A-I (apoA-I) from HOCl-modified HDL3, but the particles formed displayed no prebeta-mobility. Based on these findings, we conclude that the substrate properties of HOCl-modified HDL3 and TG-HDL3 in PLTP-mediated processes are impaired, which indicates that the anti-atherogenic properties of HDL are impaired.  相似文献   

12.
The mechanisms that deprive HDL of its cardioprotective properties are poorly understood. One potential pathway involves oxidative damage of HDL proteins by myeloperoxidase (MPO) a heme enzyme secreted by human artery wall macrophages. Mass spectrometric analysis demonstrated that levels of 3-chlorotyrosine and 3-nitrotyrosine - two characteristic products of MPO - are elevated in HDL isolated from patients with established cardiovascular disease. When apolipoprotein A-I (apoA-I), the major HDL protein, is oxidized by MPO, its ability to promote cellular cholesterol efflux by the membrane-associated ATP-binding cassette transporter A1 (ABCA1) pathway is diminished. Biochemical studies revealed that oxidation of specific tyrosine and methionine residues in apoA-I contributes to this loss of ABCA1 activity. Another potential mechanism for generating dysfunctional HDL involves covalent modification of apoA-I by reactive carbonyls, which have been implicated in atherogenesis and diabetic vascular disease. Indeed, modification of apoA-I by malondialdehyde (MDA) or acrolein also markedly impaired the lipoprotein's ability to promote cellular cholesterol efflux by the ABCA1 pathway. Tandem mass spectrometric analyses revealed that these reactive carbonyls target specific Lys residues in the C-terminus of apoA-I. Importantly, immunochemical analyses showed that levels of MDA-protein adducts are elevated in HDL isolated from human atherosclerotic lesions. Also, apoA-I co-localized with acrolein adducts in such lesions. Thus, lipid peroxidation products might specifically modify HDL in vivo. Our observations support the hypotheses that MPO and reactive carbonyls might generate dysfunctional HDL in humans. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

13.
The mechanisms that deprive HDL of its cardioprotective properties are poorly understood. One potential pathway involves oxidative damage of HDL proteins by myeloperoxidase (MPO) a heme enzyme secreted by human artery wall macrophages. Mass spectrometric analysis demonstrated that levels of 3-chlorotyrosine and 3-nitrotyrosine - two characteristic products of MPO - are elevated in HDL isolated from patients with established cardiovascular disease. When apolipoprotein A-I (apoA-I), the major HDL protein, is oxidized by MPO, its ability to promote cellular cholesterol efflux by the membrane-associated ATP-binding cassette transporter A1 (ABCA1) pathway is diminished. Biochemical studies revealed that oxidation of specific tyrosine and methionine residues in apoA-I contributes to this loss of ABCA1 activity. Another potential mechanism for generating dysfunctional HDL involves covalent modification of apoA-I by reactive carbonyls, which have been implicated in atherogenesis and diabetic vascular disease. Indeed, modification of apoA-I by malondialdehyde (MDA) or acrolein also markedly impaired the lipoprotein's ability to promote cellular cholesterol efflux by the ABCA1 pathway. Tandem mass spectrometric analyses revealed that these reactive carbonyls target specific Lys residues in the C-terminus of apoA-I. Importantly, immunochemical analyses showed that levels of MDA-protein adducts are elevated in HDL isolated from human atherosclerotic lesions. Also, apoA-I co-localized with acrolein adducts in such lesions. Thus, lipid peroxidation products might specifically modify HDL in vivo. Our observations support the hypotheses that MPO and reactive carbonyls might generate dysfunctional HDL in humans. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

14.
To examine the potential of high density lipoproteins (HDL) to ameliorate atherosclerotic plaques in vivo, we examined the ability of native HDL, lipid-free HDL apolipoproteins (apo HDL), cholesterol-free discoidal reconstituted HDL (R-HDL) comprised of apo HDL and phosphatidylcholine (PC) and PC liposomes to release cholesterol from cholesterol-rich insoluble components of plaques (ICP) isolated from atherosclerotic human aorta. Isolated ICP had a free cholesterol (FC) to phospholipid (PL) mass ratio (0.8-3.1) and a sphingomyelin (SPM) to PC mass ratio (1.2-4.2) that exceeded those of plasma membranes of cultured cells. Surprisingly, native HDL and its apolipoproteins were not able to release cholesterol from ICP. However, R-HDL and PC liposomes were effectively released cholesterol from ICP. The release of ICP cholesterol by R-HDL was dose-dependent and accompanied by the transfer of > 8 x more PC in the reverse direction (i.e., from R-HDL to ICP), resulting in a marked enrichment of ICP with PC. Compared to R-HDL, PC liposomes were significantly less effective in releasing cholesterol from ICP but were somewhat more effective in enriching ICP with PC. Native HDL was minimally effective in enriching ICP with PC, but became effective after prior in vitro enrichment of HDL with PC from multilamellar PC liposomes. The enrichment of ICP with PC resulted in the dissolution of cholesterol crystals on ICP and allowed the removal of ICP cholesterol by apo HDL and plasma. Our study revealed that the removal of cholesterol from ICP in vivo will be possible through a change in the level, composition, and physical state of ICP lipids mediated by PC-enriched HDL.  相似文献   

15.
PURPOSE OF REVIEW: This review will survey recent findings on the cholesterol transport and scavenger functions of scavenger receptor BI. Although scavenger receptor BI and CD36 bind many of the same ligands, these two receptors have very specific lipid transport functions: CD36 facilitates the uptake of long chain fatty acids and SR-BI mediates the transport of cholesterol and cholesteryl ester from HDL particles. Scavenger receptor BI is a physiologically relevant HDL receptor that, along with HDL, is protective against cardiovascular disease. Its atheroprotective role has been hypothesized to be due to its function in the reverse cholesterol transport pathway. RECENT FINDINGS: Recent studies suggest that scavenger receptor BI function is not only crucial for cholesterol delivery to the liver but is also important for cholesterol efflux at the vessel wall. Therefore, the receptor acts at both ends of the reverse cholesterol transport pathway. In addition, it stimulates nitric oxide production in endothelial cells, which may also contribute to its positive influence on the vasculature. Lastly, the glycoprotein was cloned as a scavenger receptor and in some cases is still thought to operate in this fashion. SUMMARY: It will be interesting to follow future research on scavenger receptor BI that will delineate its functions in cholesterol transport as well as its scavenger functions. Additionally, we are only beginning to learn of the glycoprotein's effects on disease states besides atherosclerosis and cardiovascular disease.  相似文献   

16.
HDL-cholesterol levels are inversely correlated to the risk of cardiovascular disease. In recent years the concept that not only the quantity, but also the quality of HDL is related to their atheroprotective function has gained momentum. In fact several studies have showed that HDL can shift their properties from anti-atherogenic to pro-atherogenic upon chemical or enzymatic "modification". However, not all kind of modifications affect the antiatherogenic properties of HDL. For example, tyrosylation of HDL improves its ability to remove cholesterol from cultured cells and inhibits mice atherosclerotic lesion formation; oxidation of HDL(3) with 15-lipoxygenase or with copper ions for short time induce the formation of pre-β-migrating particles that are highly effective as cholesterol acceptors from lipid laden cells. Myeloperoxidase modifies HDL and apoA-I and reduces their ability to promote ABCA1-mediated cholesterol efflux. In the present study we show that modification with low concentration HOCl (a myeloperoxidase product) induces the formation of pre-β-migrating particles, thus improving the function of HDL in the reverse cholesterol transport, without affecting the anti-inflammatory activity. At higher HOCl concentration, pre-β-migrating particles were not detectable and the anti-inflammatory properties of HDL were lost. These findings suggest that during early phases of inflammation, when a low HOCl concentration is generated, changes in HDL occur that increase their ability to remove cholesterol and sparing anti-inflammatory properties; later during acute inflammation, when higher HOCl concentration are present changes in HDL occur that severely decrease their ability to remove cholesterol from macrophages and to protect endothelial cells from pro-inflammatory stimuli.  相似文献   

17.
The quantitative or qualitative decline of high-density lipoprotein (HDL) is linked to the pathogenesis of atherosclerosis because of its antiatherogenic functions, including the mediation of reverse cholesterol transport from the peripheral cells to the liver. We have recently shown that group X secretory phospholipase A(2) (sPLA(2)-X) is involved in the pathogenesis of atherosclerosis via potent lipolysis of low-density lipoprotein (LDL) leading to macrophage foam cell formation. We demonstrate here that sPLA(2)-X as well as group V secretory PLA(2) (sPLA(2)-V), another group of sPLA(2) that can potently hydrolyze phosphatidylcholine (PC), also possess potent hydrolytic potency for PC in HDL linked to the production of a large amount of unsaturated fatty acids and lysophosphatidylcholine (lysoPC). In contrast, the classical types of group IB and IIA secretory PLA(2)s evoked little, if any, lypolytic modification of HDL. Treatment with sPLA(2)-X or -V also caused an increase in the negative charge of HDL with no oxidation and little modification of apolipoprotein AI (apoAI). Modification with sPLA(2)-X or -V resulted in significant decrease in the capacity of HDL to cause cellular cholesterol efflux from lipid-loaded macrophages. Immunohistochemical analysis revealed significant expression of sPLA(2)-X in foam cell lesions in the arterial intima of Watanabe heritable hyperlipidemic (WHHL) rabbit. These findings suggest that lipolytic modification of HDL by sPLA(2)-X or -V causes drastic change of HDL in terms of the production of a large amount of unsaturated fatty acids and lysoPC linked to the reduction of its antiatherogenic functions. These sPLA(2)-mediated modifications of plasma lipoproteins might be relevant to the pathogenesis of atherosclerosis.  相似文献   

18.
The main antiatherogenic function of HDL is to promote the efflux of cholesterol from peripheral cells and transport it to the liver for excretion in a process termed reverse cholesterol transport. The aim of this study was to evaluate the cholesterol efflux capacity in low- and high-HDL subjects by utilizing monocytes and serum from 18 low-HDL and 15 high-HDL subjects. Low and high HDL levels were defined, respectively, as HDL < or =10(th) and HDL > or =90(th) Finnish age/sex-specific percentile. Cholesterol efflux from [(3)H]cholesterol-oleate-acetyl-LDL-loaded monocyte-derived macrophages to standard apolipoprotein A-I (apoA-I), HDL(2), and serum was measured. In addition, cholesterol efflux from acetyl-LDL-loaded human THP-1 macrophages to individual sera (0.5%) derived from the study subjects was evaluated. Cholesterol efflux to apoA-I, HDL(2), and serum from macrophage foam cells derived from low- and high-HDL subjects was similar. The relative ABCA1 and ABCG1 mRNA expression levels in unloaded macrophages, as well as their protein levels in loaded macrophage foam cells, were similar in the two study groups. Cholesterol efflux from THP-1 foam cells to serum recovered from high-HDL subjects was slightly higher than that to serum from low-HDL subjects (P = 0.046). Cholesterol efflux from THP-1 macrophages to serum from study subjects correlated with serum apoB (P = 0.033), apoA-I (P = 0.004), apoA-II (P < 0.0001), and the percentage of apoA-I present in the form of prebeta-HDL (P = 0.0001). Our data reveal that macrophages isolated from either low- or high-HDL subjects display similar cholesterol efflux capacity to exogenous acceptors. However, sera from low-HDL subjects have poorer cholesterol acceptor ability as compared with sera from high-HDL subjects.  相似文献   

19.
T Miida  M Kawano  C J Fielding  P E Fielding 《Biochemistry》1992,31(45):11112-11117
A minor fraction of plasma high-density lipoprotein (pre beta-1 HDL) has been shown to promote cholesterol efflux from peripheral cell membranes [Castro, G. R., & Fielding, C. J. (1988) Biochemistry 27, 25-29]. When isolated native plasma is incubated at 37 degrees C, this fraction is specifically decreased. On the other hand, the level of plasma pre beta-1 HDL is fully protected in the presence of even very low levels of fibroblasts, vascular smooth muscle cells, or macrophages. Blood cells were completely inactive in maintaining plasma pre beta-1 HDL levels in the absence of peripheral cells, even at the relatively high levels present in whole blood. The loss of pre beta-1 observed in isolated plasma was dependent upon lecithin-cholesterol acyltransferase (LCAT) activity. These data suggest that reverse cholesterol transport catalyzed by pre beta-1 HDL, and subsequent LCAT-mediated cholesterol esterification, is directly dependent upon the interaction between this HDL species and competent peripheral cells.  相似文献   

20.
Expression of human lecithin cholesterol acyltransferase (LCAT) in mice (LCAT-Tg) leads to increased high density lipoprotein (HDL) cholesterol levels but paradoxically, enhanced atherosclerosis. We have hypothesized that the absence of cholesteryl ester transfer protein (CETP) in LCAT-Tg mice facilitates the accumulation of dysfunctional HDL leading to impaired reverse cholesterol transport and the development of a pro-atherogenic state. To test this hypothesis we cross-bred LCAT-Tg with CETP-Tg mice. On both regular chow and high fat, high cholesterol diets, expression of CETP in LCAT-Tg mice reduced total cholesterol (-39% and -13%, respectively; p < 0.05), reflecting a decrease in HDL cholesterol levels. CETP normalized both the plasma clearance of [(3)H]cholesteryl esters ([(3)H]CE) from HDL (fractional catabolic rate in days(-1): LCAT-Tg = 3.7 +/- 0.34, LCATxCETP-Tg = 6.1 +/- 0.16, and controls = 6.4 +/- 0.16) as well as the liver uptake of [(3)H]CE from HDL (LCAT-Tg = 36%, LCATxCETP-Tg = 65%, and controls = 63%) in LCAT-Tg mice. On the pro-atherogenic diet the mean aortic lesion area was reduced by 41% in LCATxCETP-Tg (21.2 +/- 2.0 micrometer(2) x 10(3)) compared with LCAT-Tg mice (35.7 +/- 2.0 micrometer(2) x 10(3); p < 0.001). Adenovirus-mediated expression of scavenger receptor class B (SR-BI) failed to normalize the plasma clearance and liver uptake of [(3)H]CE from LCAT-Tg HDL. Thus, the ability of SR-BI to facilitate the selective uptake of CE from LCAT-Tg HDL is impaired, indicating a potential mechanism leading to impaired reverse cholesterol transport and atherosclerosis in these animals. We conclude that CETP expression reduces atherosclerosis in LCAT-Tg mice by restoring the functional properties of LCAT-Tg mouse HDL and promoting the hepatic uptake of HDL-CE. These findings provide definitive in vivo evidence supporting the proposed anti-atherogenic role of CETP in facilitating HDL-mediated reverse cholesterol transport and demonstrate that CETP expression is beneficial in pro-atherogenic states that result from impaired reverse cholesterol transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号