首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although praised for their rationality, humans often make poor decisions, even in simple situations. In the repeated binary choice experiment, an individual has to choose repeatedly between the same two alternatives, where a reward is assigned to one of them with fixed probability. The optimal strategy is to perseverate with choosing the alternative with the best expected return. Whereas many species perseverate, humans tend to match the frequencies of their choices to the frequencies of the alternatives, a sub-optimal strategy known as probability matching. Our goal was to find the primary cognitive constraints under which a set of simple evolutionary rules can lead to such contrasting behaviors. We simulated the evolution of artificial populations, wherein the fitness of each animat (artificial animal) depended on its ability to predict the next element of a sequence made up of a repeating binary string of varying size. When the string was short relative to the animats' neural capacity, they could learn it and correctly predict the next element of the sequence. When it was long, they could not learn it, turning to the next best option: to perseverate. Animats from the last generation then performed the task of predicting the next element of a non-periodical binary sequence. We found that, whereas animats with smaller neural capacity kept perseverating with the best alternative as before, animats with larger neural capacity, which had previously been able to learn the pattern of repeating strings, adopted probability matching, being outperformed by the perseverating animats. Our results demonstrate how the ability to make predictions in an environment endowed with regular patterns may lead to probability matching under less structured conditions. They point to probability matching as a likely by-product of adaptive cognitive strategies that were crucial in human evolution, but may lead to sub-optimal performances in other environments.  相似文献   

2.
This paper distinguishes two categories of questions that the Price equation can help us answer. The two different types of questions require two different disciplines that are related, but nonetheless move in opposite directions. These disciplines are probability theory on the one hand and statistical inference on the other. In the literature on the Price equation this distinction is not made. As a result of this, questions that require a probability model are regularly approached with statistical tools. In this paper, we examine the possibilities of the Price equation for answering questions of either type. By spending extra attention on mathematical formalities, we avoid the two disciplines to get mixed up. After that, we look at some examples, both from kin selection and from group selection, that show how the inappropriate use of statistical terminology can put us on the wrong track. Statements that are 'derived' with the help of the Price equation are, therefore, in many cases not the answers they seem to be. Going through the derivations in reverse can, however, be helpful as a guide how to build proper (probabilistic) models that do give answers.  相似文献   

3.
Summary We introduce a correction for covariate measurement error in nonparametric regression applied to longitudinal binary data arising from a study on human sleep. The data have been surveyed to investigate the association of some hormonal levels and the probability of being asleep. The hormonal effect is modeled flexibly while we account for the error‐prone measurement of its concentration in the blood and the longitudinal character of the data. We present a fully Bayesian treatment utilizing Markov chain Monte Carlo inference techniques, and also introduce block updating to improve sampling and computational performance in the binary case. Our model is partly inspired by the relevance vector machine with radial basis functions, where usually very few basis functions are automatically selected for fitting the data. In the proposed approach, we implement such data‐driven complexity regulation by adopting the idea of Bayesian model averaging. Besides the general theory and the detailed sampling scheme, we also provide a simulation study for the Gaussian and the binary cases by comparing our method to the naive analysis ignoring measurement error. The results demonstrate a clear gain when using the proposed correction method, particularly for the Gaussian case with medium and large measurement error variances, even if the covariate model is misspecified.  相似文献   

4.
Bayesian phylogenetic methods require the selection of prior probability distributions for all parameters of the model of evolution. These distributions allow one to incorporate prior information into a Bayesian analysis, but even in the absence of meaningful prior information, a prior distribution must be chosen. In such situations, researchers typically seek to choose a prior that will have little effect on the posterior estimates produced by an analysis, allowing the data to dominate. Sometimes a prior that is uniform (assigning equal prior probability density to all points within some range) is chosen for this purpose. In reality, the appropriate prior depends on the parameterization chosen for the model of evolution, a choice that is largely arbitrary. There is an extensive Bayesian literature on appropriate prior choice, and it has long been appreciated that there are parameterizations for which uniform priors can have a strong influence on posterior estimates. We here discuss the relationship between model parameterization and prior specification, using the general time-reversible model of nucleotide evolution as an example. We present Bayesian analyses of 10 simulated data sets obtained using a variety of prior distributions and parameterizations of the general time-reversible model. Uniform priors can produce biased parameter estimates under realistic conditions, and a variety of alternative priors avoid this bias.  相似文献   

5.
The interaction between figs and fig pollinators is one of the most species-specific mutualisms. Recently, phylogenies of both partners based on molecular data provided insights into a wide spectrum of co-evolutionary questions. However, for the phylogeny of fig pollinators, there are some discrepancies between different studies and left some relationships unresolved, especially for deep nodes. The phylogenetic uncertainties of pollinators prohibit our further understanding of the history of the mutualism. Here, we present phylogenetic analyses of a larger COI sequence dataset that includes previously published datasets and our sequences from 20 species using Bayesian method and maximum parsimony. The analyses using different methods share similar topologies. Bayesian analyses provide high level of confidence for most internal nodes in terms of posterior probability. This study also clarifies some discrepancies between previous studies. After rooting with Tetrapus, other pollinators split into two clades. Wiebesia and Blastophaga are at basal positions in respective clade. Ceratosolen is not monophyletic because Kradibia and Liporrhopalum fall inside this group. Three subgenera of Ceratosolen: subgen. Ceratosolen, subgen. Rothropus, and subgen. Strepitus are not supported. Therefore, Ceratosolen is suggested to be re-divided into three groups. Urostigma pollinators (including Dolichoris and Blastophaga psenes) are clustered together. The monophylies of Wiebesia, Blastophaga, Dolichoris are not supported in this analysis. This study also provides a new framework for re-evaluating character evolution and re-inspecting the definition of some genera.  相似文献   

6.
Recent advances in statistical software have led to the rapid diffusion of new methods for modelling longitudinal data. Multilevel (also known as hierarchical or random effects) models for binary outcomes have generally been based on a logistic-normal specification, by analogy with earlier work for normally distributed data. The appropriate application and interpretation of these models remains somewhat unclear, especially when compared with the computationally more straightforward semiparametric or 'marginal' modelling (GEE) approaches. In this paper we pose two interrelated questions. First, what limits should be placed on the interpretation of the coefficients and inferences derived from random-effect models involving binary outcomes? Second, what diagnostic checks are appropriate for evaluating whether such random-effect models provide adequate fits to the data? We address these questions by means of an extended case study using data on adolescent smoking from a large cohort study. Bayesian estimation methods are used to fit a discrete-mixture alternative to the standard logistic-normal model, and posterior predictive checking is used to assess model fit. Surprising parallels in the parameter estimates from the logistic-normal and mixture models are described and used to question the interpretability of the so-called 'subject-specific' regression coefficients from the standard multilevel approach. Posterior predictive checks suggest a serious lack of fit of both multilevel models. The results do not provide final answers to the two questions posed, but we expect that lessons learned from the case study will provide general guidance for further investigation of these important issues.  相似文献   

7.
Animals living in groups make movement decisions that depend, among other factors, on social interactions with other group members. Our present understanding of social rules in animal collectives is mainly based on empirical fits to observations, with less emphasis in obtaining first-principles approaches that allow their derivation. Here we show that patterns of collective decisions can be derived from the basic ability of animals to make probabilistic estimations in the presence of uncertainty. We build a decision-making model with two stages: Bayesian estimation and probabilistic matching. In the first stage, each animal makes a Bayesian estimation of which behavior is best to perform taking into account personal information about the environment and social information collected by observing the behaviors of other animals. In the probability matching stage, each animal chooses a behavior with a probability equal to the Bayesian-estimated probability that this behavior is the most appropriate one. This model derives very simple rules of interaction in animal collectives that depend only on two types of reliability parameters, one that each animal assigns to the other animals and another given by the quality of the non-social information. We test our model by obtaining theoretically a rich set of observed collective patterns of decisions in three-spined sticklebacks, Gasterosteus aculeatus, a shoaling fish species. The quantitative link shown between probabilistic estimation and collective rules of behavior allows a better contact with other fields such as foraging, mate selection, neurobiology and psychology, and gives predictions for experiments directly testing the relationship between estimation and collective behavior.  相似文献   

8.
Basket trials simultaneously evaluate the effect of one or more drugs on a defined biomarker, genetic alteration, or molecular target in a variety of disease subtypes, often called strata. A conventional approach for analyzing such trials is an independent analysis of each of the strata. This analysis is inefficient as it lacks the power to detect the effect of drugs in each stratum. To address these issues, various designs for basket trials have been proposed, centering on designs using Bayesian hierarchical models. In this article, we propose a novel Bayesian basket trial design that incorporates predictive sample size determination, early termination for inefficacy and efficacy, and the borrowing of information across strata. The borrowing of information is based on the similarity between the posterior distributions of the response probability. In general, Bayesian hierarchical models have many distributional assumptions along with multiple parameters. By contrast, our method has prior distributions for response probability and two parameters for similarity of distributions. The proposed design is easier to implement and less computationally demanding than other Bayesian basket designs. Through a simulation with various scenarios, our proposed design is compared with other designs including one that does not borrow information and one that uses a Bayesian hierarchical model.  相似文献   

9.
A multistage single arm phase II trial with binary endpoint is considered. Bayesian posterior probabilities are used to monitor futility in interim analyses and efficacy in the final analysis. For a beta‐binomial model, decision rules based on Bayesian posterior probabilities are converted to “traditional” decision rules in terms of number of responders among patients observed so far. Analytical derivations are given for the probability of stopping for futility and for the probability to declare efficacy. A workflow is presented on how to select the parameters specifying the Bayesian design, and the operating characteristics of the design are investigated. It is outlined how the presented approach can be transferred to statistical models other than the beta‐binomial model.  相似文献   

10.
The objective of this study was to obtain a quantitative assessment of the monophyly of morning glory taxa, specifically the genus Ipomoea and the tribe Argyreieae. Previous systematic studies of morning glories intimated the paraphyly of Ipomoea by suggesting that the genera within the tribe Argyreieae are derived from within Ipomoea; however, no quantitative estimates of statistical support were developed to address these questions. We applied a Bayesian analysis to provide quantitative estimates of monophyly in an investigation of morning glory relationships using DNA sequence data. We also explored various approaches for examining convergence of the Markov chain Monte Carlo (MCMC) simulation of the Bayesian analysis by running 18 separate analyses varying in length. We found convergence of the important components of the phylogenetic model (the tree with the maximum posterior probability, branch lengths, the parameter values from the DNA substitution model, and the posterior probabilities for clade support) for these data after one million generations of the MCMC simulations. In the process, we identified a run where the parameter values obtained were often outside the range of values obtained from the other runs, suggesting an aberrant result. In addition, we compared the Bayesian method of phylogenetic analysis to maximum likelihood and maximum parsimony. The results from the Bayesian analysis and the maximum likelihood analysis were similar for topology, branch lengths, and parameters of the DNA substitution model. Topologies also were similar in the comparison between the Bayesian analysis and maximum parsimony, although the posterior probabilities and the bootstrap proportions exhibited some striking differences. In a Bayesian analysis of three data sets (ITS sequences, waxy sequences, and ITS + waxy sequences) no supoort for the monophyly of the genus Ipomoea, or for the tribe Argyreieae, was observed, with the estimate of the probability of the monophyly of these taxa being less than 3.4 x 10(-7).  相似文献   

11.
Although recent research has investigated animal decision-making under risk, little is known about how animals choose under conditions of ambiguity when they lack information about the available alternatives. Many models of choice behaviour assume that ambiguity does not impact decision-makers, but studies of humans suggest that people tend to be more averse to choosing ambiguous options than risky options with known probabilities. To illuminate the evolutionary roots of human economic behaviour, we examined whether our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus), share this bias against ambiguity. Apes chose between a certain option that reliably provided an intermediately preferred food type, and a variable option that could vary in the probability that it provided a highly preferred food type. To examine the impact of ambiguity on ape decision-making, we interspersed trials in which chimpanzees and bonobos had no knowledge about the probabilities. Both species avoided the ambiguous option compared with their choices for a risky option, indicating that ambiguity aversion is shared by humans, bonobos and chimpanzees.  相似文献   

12.
Bivariate samples may be subject to censoring of both random variables. For example, for two toxins measured in batches of wheat grain, there may be specific detection limits. Alternatively, censoring may be incomplete over a certain domain, with the probability of detection depending on the toxin level. In either case, data are not missing at random, and the missing data pattern bears some information on the parameters of the underlying model (informative missingness), which can be exploited for a fully efficient analysis. Estimation (after suitable data transformation) of the correlation in such samples is the subject of the present paper. We consider several estimators. The first is based on the tetrachoric correlation. It is simple to compute, but does not exploit the full information. The other two estimators exploit all information and use full maximum likelihood, but involve heavier computations. The one assumes fixed detection limits, while the other involves a logistic model for the probability of detection. For a real data set, a logistic model for the probability of detection fitted markedly better than a model with fixed detection limits, suggesting that censoring is not complete.  相似文献   

13.
Many resources are both stochastic and variable in their average profitability. Animals have to sample them to track their current states, but whether it is economic to attempt this depends on many factors. Furthermore, there are many interruptions and distractions from foraging (e.g. escape from predators, bad weather, displacement by competitors) which interfere with the acquisition of information. We present a dynamic model of foraging in a stochastic and varying environment, under the constant threat of interruption, to investigate this very general problem. A forager faces two foraging options, one of which provides a known and constant reward, the other providing a reward that is not only stochastic, but whose mean payoff varies in time. The forager has to learn which option has the highest current payoff by sampling. However, interruptions to foraging can occur at any time, the timing and duration of which are beyond the animal's control. When there is a small probability of foraging being interrupted, the forager should forage extensively on the unknown option, but as the probability of interruptions is increased, there is a sudden transition to foraging only on the known option. This occurs because interruptions affect both the level of information required to make exploitation of the unknown option profitable, and the ability to acquire and maintain that information. At what probability of being interrupted this threshold emerges is affected by the value of learning about the unknown option and the duration of interruptions. We discuss the generality of our results with reference to the pervasive problem of updating information in the face of different types of interruption. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

14.
Bayesian inference in ecology   总被引:14,自引:1,他引:13  
Bayesian inference is an important statistical tool that is increasingly being used by ecologists. In a Bayesian analysis, information available before a study is conducted is summarized in a quantitative model or hypothesis: the prior probability distribution. Bayes’ Theorem uses the prior probability distribution and the likelihood of the data to generate a posterior probability distribution. Posterior probability distributions are an epistemological alternative to P‐values and provide a direct measure of the degree of belief that can be placed on models, hypotheses, or parameter estimates. Moreover, Bayesian information‐theoretic methods provide robust measures of the probability of alternative models, and multiple models can be averaged into a single model that reflects uncertainty in model construction and selection. These methods are demonstrated through a simple worked example. Ecologists are using Bayesian inference in studies that range from predicting single‐species population dynamics to understanding ecosystem processes. Not all ecologists, however, appreciate the philosophical underpinnings of Bayesian inference. In particular, Bayesians and frequentists differ in their definition of probability and in their treatment of model parameters as random variables or estimates of true values. These assumptions must be addressed explicitly before deciding whether or not to use Bayesian methods to analyse ecological data.  相似文献   

15.
The study of evolutionary quantitative genetics has been advanced by the use of methods developed in animal and plant breeding. These methods have proved to be very useful, but they have some shortcomings when used in the study of wild populations and evolutionary questions. Problems arise from the small size of data sets typical of evolutionary studies, and the additional complexity of the questions asked by evolutionary biologists. Here, we advocate the use of Bayesian methods to overcome these and related problems. Bayesian methods naturally allow errors in parameter estimates to propagate through a model and can also be written as a graphical model, giving them an inherent flexibility. As packages for fitting Bayesian animal models are developed, we expect the application of Bayesian methods to evolutionary quantitative genetics to grow, particularly as genomic information becomes more and more associated with environmental data.  相似文献   

16.
Animals often select one item from a set of candidates, as when choosing a foraging site or mate, and are expected to possess accurate and efficient rules for acquiring information and making decisions. Little is known, however, about the decision rules animals use. We compare patterns of information sampling by western scrub-jays (Aphelocoma californica) when choosing a nut with three decision rules: best of n (BN), flexible threshold (FT), and comparative Bayes (CB). First, we use a null hypothesis testing approach and find that the CB decision rule, in which individuals use past experiences to make nonrandom assessment and choice decisions, produces patterns of behavior that more closely correspond to observed patterns of nut sampling in scrub-jays than the other two rules. This approach does not allow us to quantify how much better CB is at predicting scrub-jay behavior than the other decision rules. Second, we use a model selection approach that uses Akaike Information Criteria to quantify how well alternative models approximate observed data. We find that the CB rule is much more likely to produce the observed patterns of scrub-jay behavior than the other rules. This result provides some of the best empirical evidence of the use of Bayesian information updating by a nonhuman animal.  相似文献   

17.
We present a Bayesian statistical analysis of the conformations of side chains in proteins from the Protein Data Bank. This is an extension of the backbone-dependent rotamer library, and includes rotamer populations and average chi angles for a full range of phi, psi values. The Bayesian analysis used here provides a rigorous statistical method for taking account of varying amounts of data. Bayesian statistics requires the assumption of a prior distribution for parameters over their range of possible values. This prior distribution can be derived from previous data or from pooling some of the present data. The prior distribution is combined with the data to form the posterior distribution, which is a compromise between the prior distribution and the data. For the chi 2, chi 3, and chi 4 rotamer prior distributions, we assume that the probability of each rotamer type is dependent only on the previous chi rotamer in the chain. For the backbone-dependence of the chi 1 rotamers, we derive prior distributions from the product of the phi-dependent and psi-dependent probabilities. Molecular mechanics calculations with the CHARMM22 potential show a strong similarity with the experimental distributions, indicating that proteins attain their lowest energy rotamers with respect to local backbone-side-chain interactions. The new library is suitable for use in homology modeling, protein folding simulations, and the refinement of X-ray and NMR structures.  相似文献   

18.
Zeh J  Poole D  Miller G  Koski W  Baraff L  Rugh D 《Biometrics》2002,58(4):832-840
Annual survival probability of bowhead whales, Balaena mysticetus, was estimated using both Bayesian and maximum likelihood implementations of Cormack and Jolly-Seber (JS) models for capture-recapture estimation in open populations and reduced-parameter generalizations of these models. Aerial photographs of naturally marked bowheads collected between 1981 and 1998 provided the data. The marked whales first photographed in a particular year provided the initial 'capture' and 'release' of those marked whales and photographs in subsequent years the 'recaptures'. The Cormack model, often called the Cormack-Jolly-Seber (CJS) model, and the program MARK were used to identify the model with a single survival and time-varying capture probabilities as the most appropriate for these data. When survival was constrained to be one or less, the maximum likelihood estimate computed by MARK was one, invalidating confidence interval computations based on the asymptotic standard error or profile likelihood. A Bayesian Markov chain Monte Carlo (MCMC) implementation of the model was used to produce a posterior distribution for annual survival. The corresponding reduced-parameter JS model was also fit via MCMC because it is the more appropriate of the two models for these photoidentification data. Because the CJS model ignores much of the information on capture probabilities provided by the data, its results are less precise and more sensitive to the prior distributions used than results from the JS model. With priors for annual survival and capture probabilities uniform from 0 to 1, the posterior mean for bowhead survival rate from the JS model is 0.984, and 95% of the posterior probability lies between 0.948 and 1. This high estimated survival rate is consistent with other bowhead life history data.  相似文献   

19.
Bayesian hierarchical models have been applied in clinical trials to allow for information sharing across subgroups. Traditional Bayesian hierarchical models do not have subgroup classifications; thus, information is shared across all subgroups. When the difference between subgroups is large, it suggests that the subgroups belong to different clusters. In that case, placing all subgroups in one pool and borrowing information across all subgroups can result in substantial bias for the subgroups with strong borrowing, or a lack of efficiency gain with weak borrowing. To resolve this difficulty, we propose a hierarchical Bayesian classification and information sharing (BaCIS) model for the design of multigroup phase II clinical trials with binary outcomes. We introduce subgroup classification into the hierarchical model. Subgroups are classified into two clusters on the basis of their outcomes mimicking the hypothesis testing framework. Subsequently, information sharing takes place within subgroups in the same cluster, rather than across all subgroups. This method can be applied to the design and analysis of multigroup clinical trials with binary outcomes. Compared to the traditional hierarchical models, better operating characteristics are obtained with the BaCIS model under various scenarios.  相似文献   

20.
As larger, more complex data sets are being used to infer phylogenies, accuracy of these phylogenies increasingly requires models of evolution that accommodate heterogeneity in the processes of molecular evolution. We investigated the effect of improper data partitioning on phylogenetic accuracy, as well as the type I error rate and sensitivity of Bayes factors, a commonly used method for choosing among different partitioning strategies in Bayesian analyses. We also used Bayes factors to test empirical data for the need to divide data in a manner that has no expected biological meaning. Posterior probability estimates are misleading when an incorrect partitioning strategy is assumed. The error was greatest when the assumed model was underpartitioned. These results suggest that model partitioning is important for large data sets. Bayes factors performed well, giving a 5% type I error rate, which is remarkably consistent with standard frequentist hypothesis tests. The sensitivity of Bayes factors was found to be quite high when the across-class model heterogeneity reflected that of empirical data. These results suggest that Bayes factors represent a robust method of choosing among partitioning strategies. Lastly, results of tests for the inclusion of unexpected divisions in empirical data mirrored the simulation results, although the outcome of such tests is highly dependent on accounting for rate variation among classes. We conclude by discussing other approaches for partitioning data, as well as other applications of Bayes factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号