首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pyocyanin (1-hydroxy-N-methylphenazine) is a cytotoxic pigment secreted by the bacterial species Pseudomonas aeruginosa, which frequently infects the lungs of immunosuppressed patients as well as those with cystic fibrosis. Pyocyanin toxicity results presumably from the ability of the compound to undergo reduction by NAD(P)H and subsequent generation of superoxide and H2O2 directly in the lungs. We report that in the presence of peroxidase mimics, microperoxidase 11, or hemin, pyocyanin undergoes oxidation by H2O2, as evidenced by loss of the pigment's characteristic absorption spectrum and by EPR detection of a free radical metabolite. The oxidation of pyocyanin is irreversible, suggesting an extensive modification of the pigment's phenazine chromophore. Oxidation of pyocyanin was observed also when exogenous H2O2 was replaced by a H2O2-generating system consisting of NADH and the pigment itself. That the oxidation involves the phenolate group of pyocyanin was verified by the observation that a related pigment, phenazine methosulfate, which is devoid of this group, does not undergo oxidation by microperoxidase 11/H2O2. In contrast to intact pyocyanin, oxidized pyocyanin was less efficient in NADH oxidation and stimulation of interleukin-8 release by human alveolar epithelial A549 cells in vitro, suggesting that oxidation of pyocyanin leads to its inactivation. This study demonstrates that pyocyanin may play a dual role in biological systems, first as an oxidant and ROS generator, and second as a substrate for peroxidases, contributing to H2O2 removal. This latter property may cause pyocyanin degradation and inactivation, which may be of considerable biomedical interest.  相似文献   

3.
The dual oxidase-thiocyanate-lactoperoxidase (Duox/SCN(-)/LPO) system generates the microbicidal oxidant hypothiocyanite in the airway surface liquid by using LPO, thiocyanate, and Duox-derived hydrogen peroxide released from the apical surface of the airway epithelium. This system is effective against several microorganisms that infect airways of cystic fibrosis and other immunocompromised patients. We show herein that exposure of airway epithelial cells to Pseudomonas aeruginosa obtained from long-term cultures inhibits Duox1-dependent hydrogen peroxide release, suggesting that some microbial factor suppresses Duox activity. These inhibitory effects are not seen with the pyocyanin-deficient P. aeruginosa strain PA14 Phz1/2. We show that purified pyocyanin, a redox-active virulence factor produced by P. aeruginosa, inhibits human airway cell Duox activity by depleting intracellular stores of NADPH, as it generates intracellular superoxide. Long-term exposure of human airway (primary normal human bronchial and NCI-H292) cells to pyocyanin also blocks induction of Duox1 by Th2 cytokines (IL-4, IL-13), which was prevented by the antioxidants glutathione and N-acetylcysteine. Furthermore, we showed that low concentrations of pyocyanin blocked killing of wild-type P. aeruginosa by the Duox/SCN(-)/LPO system on primary normal human bronchial epithelial cells. Thus, pyocyanin can subvert Pseudomonas killing by the Duox-based system as it imposes oxidative stress on the host. We also show that lactoperoxidase can oxidize pyocyanin, thereby diminishing its cytotoxicity. These data establish a novel role for pyocyanin in the survival of P. aeruginosa in human airways through competitive redox-based reactions between the pathogen and host.  相似文献   

4.
Pseudomonas aeruginosa is a ubiquitous and opportunistic bacterium that inhibits the growth of different microorganisms, including Gram-positive bacteria and fungi such as Candida spp. and Aspergillus fumigatus. In this study, we investigated the interaction between P. aeruginosa and Cryptococcus spp. We found that P. aeruginosa PA14 and, to a lesser extent, PAO1 significantly inhibited the growth of Cryptococcus spp. The inhibition of growth was observed on solid medium by the visualization of a zone of inhibition of yeast growth and in liquid culture by viable cell counting. Interestingly, such inhibition was only observed when P. aeruginosa and Cryptococcus were co-cultured. Minimal inhibition was observed when cell-cell contact was prevented using a separation membrane, suggesting that cell contact is required for inhibition. Using mutant strains of Pseudomonas quinoline signaling, we showed that P. aeruginosa inhibited the growth of Cryptococcus spp. by producing antifungal molecules pyocyanin, a redox-active phenazine, and 2-heptyl-3,4-dihydroxyquinoline (PQS), an extracellular quorum-sensing signal. Because both P. aeruginosa and Cryptococcus neoformans are commonly found in lung infections of immunocompromised patients, this study may have important implication for the interaction of these microbes in both an ecological and a clinical point of view.  相似文献   

5.
Pyocyanin is an important redox toxin produced by the common human pathogen Pseudomonas aeruginosa. It generates reactive oxygen species (ROS) that alter intracellular redox status and cell function. Reducing equivalents for pyocyanin are provided by intracellular NAD(P)H and, it has been reported, glutathione (GSH). Cellular GSH levels are at least 1-2 orders of magnitude greater than NAD(P)H; therefore GSH should represent the major reductant for pyocyanin and potentiate its toxicity. Paradoxically, GSH has been found to inhibit pyocyanin toxicity in cellular models. This study was undertaken to evaluate the potential of GSH as a biologically relevant reductant for pyocyanin. As observed using spectrophotometry, under aerobic conditions pyocyanin readily oxidized NADPH, whereas oxidation of GSH could not be detected. Under anaerobic conditions pyocyanin was reduced by NADPH, but reduction by GSH could not be detected. Reduction of molecular oxygen and the formation of ROS readily proceeded in the presence of pyocyanin and NADPH, whereas GSH was without effect. Finally, exposure of normal human dermal fibroblasts to subcytotoxic concentrations of pyocyanin did not lead to depletion of endogenous GSH, but exogenous GSH provided protection against the senescence-inducing effects of the toxin. In summary, GSH does not reduce pyocyanin under physiologically relevant conditions or contribute to pyocyanin toxicity. However, GSH does provide protection against the deleterious effects of this important bacterial toxin on mammalian cells.  相似文献   

6.
Pseudomonas aeruginosa is a gram-negative bacterium that causes both acute and chronic lung disease in susceptible patient populations. P. aeruginosa secretes numerous proteins and secondary metabolites, many of which have biological effects that likely contribute to disease pathogenesis. An unidentified small-molecular-weight factor was previously reported to increase IL-8 release both in vitro and in vivo. To identify this factor, we subjected the <3-kDa fraction from P. aeruginosa-conditioned medium to HPLC analysis. A peak fraction that stimulated IL-8 release was found by mass spectrometry to have a molecular mass (MM) of 224 Da. On the basis of this MM and other biochemical properties, we hypothesized that the factor was phenazine-1-carboxylic acid (PCA). Subsequent studies and comparison with purified PCA confirmed this hypothesis. Purified PCA exhibited a number of biological effects in human airway epithelial cells, including increasing IL-8 release and ICAM-1 expression, as well as decreasing RANTES and monocyte chemoattractant protein-1 (MCP-1) release. PCA also increased intracellular oxidant formation as measured by electron paramagnetic resonance and by an intracellular oxidant-sensitive probe. Antioxidants inhibited PCA-dependent increases in IL-8 and ICAM-1, suggesting that oxidants contributed to these effects. However, in contrast to the related phenazine compound pyocyanin, PCA did not oxidize NAD(P)H at physiologically relevant pH, providing preliminary evidence that PCA and pyocyanin may have distinct redox chemistries within the cell. Thus PCA is a biologically active factor secreted by P. aeruginosa that has several activities that could alter the host immune and inflammatory response and thereby contribute to bacterial disease pathogenesis.  相似文献   

7.
Two anthranilate synthase gene pairs have been identified in Pseudomonas aeruginosa. They were cloned, sequenced, inactivated in vitro by insertion of an antibiotic resistance gene, and returned to P. aeruginosa, replacing the wild-type gene. One anthranilate synthase enzyme participates in tryptophan synthesis; its genes are designated trpE and trpG. The other anthranilate synthase enzyme, encoded by phnA and phnB, participates in the synthesis of pyocyanin, the characteristic phenazine pigment of the organism. trpE and trpG are independently transcribed; homologous genes have been cloned from Pseudomonas putida. The phenazine pathway genes phnA and phnB are cotranscribed. The cloned phnA phnB gene pair complements trpE and trpE(G) mutants of Escherichia coli. Homologous genes were not found in P. putida PPG1, a non-phenazine producer. Surprisingly, PhnA and PhnB are more closely related to E. coli TrpE and TrpG than to Pseudomonas TrpE and TrpG, whereas Pseudomonas TrpE and TrpG are more closely related to E. coli PabB and PabA than to E. coli TrpE and TrpG. We replaced the wild-type trpE on the P. aeruginosa chromosome with a mutant form having a considerable portion of its coding sequence deleted and replaced by a tetracycline resistance gene cassette. This resulted in tryptophan auxotrophy; however, spontaneous tryptophan-independent revertants appeared at a frequency of 10(-5) to 10(6). The anthranilate synthase of these revertants is not feedback inhibited by tryptophan, suggesting that it arises from PhnAB. phnA mutants retain a low level of pyocyanin production. Introduction of an inactivated trpE gene into a phnA mutant abolished residual pyocyanin production, suggesting that the trpE trpG gene products are capable of providing some anthranilate for pyocyanin synthesis.  相似文献   

8.
Formation of dichlorofluorescein (DCF), the fluorescent oxidation product of 2',7'-dichlorodihydrofluorescein (DCFH2), in cells loaded with the latter compound is often used to detect ROS formation. We previously found that exposure of DCFH2-loaded A549 cells to the Pseudomonas aeruginosa secretory product pyocyanin results in DCF formation, consistent with ROS production. However, since pyocyanin directly accepts electrons from NAD(P)H, we hypothesized that pyocyanin might directly oxidize DCFH2 to DCF without an ROS intermediate. Incubation of DCFH2 with pyocyanin rapidly resulted in DCF formation, the rate of which was proportional to the [pyocyanin] and was not inhibited by SOD or catalase. Phenazine methosulfate, a pyocyanin analog, was more effective than pyocyanin in generating DCF. Mitoxantrone and ametantrone also produced DCF. However, menadione, paraquat, plumbagin, streptonigrin, doxorubicin, daunorubicin, and 5-iminodaunorubicin did not. Pyocyanin, phenazine methosulfate, mitoxantrone, and ametantrone also oxidized dihydrofluorescein and 5- (and 6-) -carboxy-2',7'-dichlorodihydrofluorescein, whereas dihydrorhodamine was oxidized only by pyocyanin or phenazine methosulfate. Under aerobic conditions, the interaction of DCFH2 with pyocyanin or phenazine methosulfate (but not mitoxantrone or ametantrone) produced superoxide, as detected by spin trapping. Direct oxidation of the fluorescent probes needs to be controlled for when employing these compounds to assess ROS formation by biological systems exposed to redox active compounds.  相似文献   

9.
Clearance of neutrophils from inflamed sites is critical for resolution of inflammation, but pathogen-driven neutrophil apoptosis can impair host defenses. We previously showed that pyocyanin, a phenazine toxic metabolite produced by Pseudomonas aeruginosa, accelerates neutrophil apoptosis in vitro. We compared wild-type and pyocyanin-deficient strains of P. aeruginosa in a murine model of acute pneumonia. Intratracheal instillation of either strain of P. aeruginosa caused a rapid increase in bronchoalveolar lavage neutrophil counts up to 18 h after infection. In wild-type infection, neutrophil numbers then declined steadily, whereas neutrophil numbers increased up to 48 h in mice infected with pyocyanin-deficient P. aeruginosa. In keeping with these differences, pyocyanin production was associated with reduced bacterial clearance from the lungs. Neutrophil apoptosis was increased in mice infected with wild-type compared with the phenazine-deficient strain or two further strains that lack pyocyanin production, but produce other phenazines. Concentrations of potent neutrophil chemokines (MIP-2, KC) and cytokines (IL-6, IL-1beta) were significantly lower in wild-type compared with phenazine-deficient strain-infected mice at 18 h. We conclude that pyocyanin production by P. aeruginosa suppresses the acute inflammatory response by pathogen-driven acceleration of neutrophil apoptosis and by reducing local inflammation, and that this is advantageous for bacterial survival.  相似文献   

10.
11.
The rhizobacterium Pseudomonas aeruginosa 7NSK2 produces secondary metabolites such as pyochelin (Pch), its precursor salicylic acid (SA), and the phenazine compound pyocyanin. Both 7NSK2 and mutant KMPCH (Pch-negative, SA-positive) induced resistance to Botrytis cinerea in wild-type but not in transgenic NahG tomato. SA-negative mutants of both strains lost the capacity to induce resistance. On tomato roots, KMPCH produced SA and induced phenylalanine ammonia lyase activity, while this was not the case for 7NSK2. In 7NSK2, SA is probably very efficiently converted to Pch. However, Pch alone appeared not to be sufficient to induce resistance. In mammalian cells, Fe-Pch and pyocyanin can act synergistically to generate highly reactive hydroxyl radicals that cause cell damage. Reactive oxygen species are known to play an important role in plant defense. To study the role of pyocyanin in induced resistance, a pyocyanin-negative mutant of 7NSK2, PHZ1, was generated. PHZ1 is mutated in the phzM gene encoding an O-methyltransferase. PHZ1 was unable to induce resistance to B. cinerea, whereas complementation for pyocyanin production or co-inoculation with mutant 7NSK2-562 (Pch-negative, SA-negative, pyocyanin-positive) restored induced resistance. These results suggest that pyocyanin and Pch, rather than SA, are the determinants for induced resistance in wild-type P. aeruginosa 7NSK2.  相似文献   

12.
Pseudomonas aeruginosa colonizes and infects human tissues, although the mechanisms by which the organism evades the normal, predominantly neutrophilic, host defenses are unclear. Phenazine products of P. aeruginosa can induce death in Caenorhabditis elegans. We hypothesized that phenazines induce death of human neutrophils, and thus impair neutrophil-mediated bacterial killing. We investigated the effects of two phenazines, pyocyanin and 1-hydroxyphenazine, upon apoptosis of neutrophils in vitro. Pyocyanin induced a concentration- and time-dependent acceleration of neutrophil apoptosis, with 50 microM pyocyanin causing a 10-fold induction of apoptosis at 5 h (p < 0.001), a concentration that has been documented in sputum from patients colonized with P. aeruginosa. 1-hydroxyphenazine was without effect. In contrast to its rapid induction of neutrophil apoptosis, pyocyanin did not induce significant apoptosis of monocyte-derived macrophages or airway epithelial cells at time points up to 24 h. Comparison of wild-type and phenazine-deleted strains of P. aeruginosa showed a highly significant reduction in neutrophil killing by the phenazine-deleted strain. In clinical isolates of P. aeruginosa pyocyanin production was associated with a proapoptotic effect upon neutrophils in culture. Pyocyanin-induced neutrophil apoptosis was not delayed either by treatment with LPS, a powerfully antiapoptotic bacterial product, or in neutrophils from cystic fibrosis patients. Pyocyanin-induced apoptosis was associated with rapid and sustained generation of reactive oxygen intermediates and subsequent reduction of intracellular cAMP. Treatment of neutrophils with either antioxidants or synthetic cAMP analogues significantly abrogated pyocyanin-induced apoptosis. We conclude that pyocyanin-induced neutrophil apoptosis may be a clinically important mechanism of persistence of P. aeruginosa in human tissue.  相似文献   

13.
The consumption of molecular oxygen by Pseudomonas aeruginosa can lead to the production of reduced oxygen species, including superoxide, hydrogen peroxide, and the hydroxyl radical. As a first line of defense against potentially toxic levels of endogenous superoxide, P. aeruginosa possesses an iron- and manganese-cofactored superoxide dismutase (SOD) to limit the damage evoked by this radical. In this study, we have generated mutants which possess an interrupted sodA (encoding manganese SOD) or sodB (encoding iron SOD) gene and a sodA sodB double mutant. Mutagenesis of sodA did not significantly alter the aerobic growth rate in rich medium (Luria broth) or in glucose minimal medium in comparison with that of wild-type bacteria. In addition, total SOD activity in the sodA mutant was decreased only 15% relative to that of wild-type bacteria. In contrast, sodB mutants grew much more slowly than the sodA mutant or wild-type bacteria in both media, and sodB mutants possessed only 13% of the SOD activity of wild-type bacteria. There was also a progressive decrease in catalase activity in each of the mutants, with the sodA sodB double mutant possessing only 40% of the activity of wild-type bacteria. The sodA sodB double mutant grew very slowly in rich medium and required approximately 48 h to attain saturated growth in minimal medium. There was no difference in growth of either strain under anaerobic conditions. Accordingly, the sodB but not the sodA mutant demonstrated marked sensitivity to paraquat, a superoxide-generating agent. P. aeuroginosa synthesizes a blue, superoxide-generating antibiotic similar to paraquat in redox properties which is called pyocyanin, the synthesis of which is accompanied by increased iron SOD and catalase activities (D.J. Hassett, L. Charniga, K. A. Bean, D. E. Ohman, and M. S. Cohen, Infect. Immun. 60:328-336, 1992). Pyocyanin production was completely abolished in the sodB and sodA sodB mutants and was decreased approximately 57% in sodA mutants relative to that of the wild-type organism. Furthermore, the addition of sublethal concentrations of paraquat to wild-type bacteria caused a concentration-dependent decrease in pyocyanin production, suggesting that part of the pyocyanin biosynthetic cascade is inhibited by superoxide. These results suggest that iron SOD is more important than manganese SOD for aerobic growth, resistance to paraquat, and optimal pyocyanin biosynthesis in P. aeruginosa.  相似文献   

14.
15.
To investigate the pathogenicity of Pseudomonas aeruginosa in insects, a gacA mutant of P. aeruginosa PA01 was constructed by site-directed mutagenesis. The mutant was designated as C1. C1 was less virulent to Bombyx mori than the parent strain. To complement the gacA gene, P. aeruginosa C1 was transformed with the broad host range plasmid pJB3Km1 carrying a 3.9-kbp gacA fragment. The expression of the gacA mRNA in C1 (pgacA) was detected. In addition, the complemented mutant restored the level and timing of pyocyanin production, indicating that functional GacA is produced in the complemented strain. However, no significant difference was observed between C1 and C1 (pgacA) with respect to the killing of B. mori larvae.  相似文献   

16.
Production of pyocyanin enhances Pseudomonas aeruginosa virulence. Many of pyocyanin's in vitro and in vivo cytotoxic effects on human cells appear to result from its ability to redox cycle. Pyocyanin directly accepts electrons from NADH or NADPH with subsequent electron transfer to oxygen, generating reactive oxygen species. Reduced glutathione (GSH) is an important cellular antioxidant, and it contributes to the regulation of redox-sensitive signaling systems. Using the human bronchial epithelial (HBE) and the A549 human type II alveolar epithelial cell lines, we tested the hypothesis that pyocyanin can deplete airway epithelial cells of GSH. Incubation of both cell types with pyocyanin led to a concentration-dependent loss of cellular GSH (up to 50%) and an increase in oxidized GSH (GSSG) in the HBE, but not A549 cells, at 24 h. An increase in total GSH, mostly as GSSG, was detected in the culture media, suggesting export of GSH or GSSG from the pyocyanin-exposed cells. Loss of GSH could be due to pyocyanin-induced H(2)O(2) formation. However, overexpression of catalase only partially prevented the pyocyanin-mediated decline in cellular GSH. Cell-free electron paramagnetic resonance studies revealed that pyocyanin directly oxidizes GSH, forming pyocyanin free radical and O(2)(-). Pyocyanin oxidized other thiol-containing compounds, cysteine and N-acetyl-cysteine, but not methionine. Thus GSH may enhance pyocyanin-induced cytotoxicity by functioning as an alternative source of reducing equivalents for pyocyanin redox cycling. Pyocyanin-mediated alterations in cellular GSH may alter epithelial cell functions by modulating redox sensitive signaling events.  相似文献   

17.
Pyocyanin is an electrochemically active metabolite produced by the human pathogen Pseudomonas aeruginosa. It is a recognized virulence factor and is involved in a variety of significant biological activities including gene expression, maintaining fitness of bacterial cells and biofilm formation. It is also recognized as an electron shuttle for bacterial respiration and as an antibacterial and antifungal agent. eDNA has also been demonstrated to be a major component in establishing P. aeruginosa biofilms. In this study we discovered that production of pyocyanin influences the binding of eDNA to P. aeruginosa PA14 cells, mediated through intercalation of pyocyanin with eDNA. P. aeruginosa cell surface properties including cell size (hydrodynamic diameter), hydrophobicity and attractive surface energies were influenced by eDNA in the presence of pyocyanin, affecting physico-chemical interactions and promoting aggregation. A ΔphzA-G PA14 mutant, deficient in pyocynain production, could not bind with eDNA resulting in a reduction in hydrodynamic diameter, a decrease in hydrophobicity, repulsive physico-chemical interactions and reduction in aggregation in comparison to the wildtype strain. Removal of eDNA by DNase I treatment on the PA14 wildtype strain resulted in significant reduction in aggregation, cell surface hydrophobicity and size and an increase in repulsive physico-chemical interactions, similar to the level of the ΔphzA-G mutant. The cell surface properties of the ΔphzA-G mutant were not affected by DNase I treatment. Based on these findings we propose that pyocyanin intercalation with eDNA promotes cell-to-cell interactions in P. aeruginosa cells by influencing their cell surface properties and physico-chemical interactions.  相似文献   

18.
The sigma factor RpoS (sigmaS) has been described as a general stress response regulator that controls the expression of genes which confer increased resistance to various stresses in some gram-negative bacteria. To elucidate the role of RpoS in Pseudomonas aeruginosa physiology and pathogenesis, we constructed rpoS mutants in several strains of P. aeruginosa, including PAO1. The PAO1 rpoS mutant was subjected to various environmental stresses, and we compared the resistance phenotype of the mutant to that of the parent. The PAO1 rpoS mutant was slightly more sensitive to carbon starvation than the wild-type strain, but this phenotype was obvious only when the cells were grown in a medium supplemented with glucose as the sole carbon source. In addition, the PAO1 rpoS mutant was hypersensitive to heat shock at 50 degrees C, increased osmolarity, and prolonged exposure to high concentrations of H2O2. In accordance with the hypersensitivity to H2O2, catalase production was 60% lower in the rpoS mutant than in the parent strain. We also assessed the role of RpoS in the production of several exoproducts known to be important for virulence of P. aeruginosa. The rpoS mutant produced 50% less exotoxin A, but it produced only slightly smaller amounts of elastase and LasA protease than the parent strain. The levels of phospholipase C and casein-degrading proteases were unaffected by a mutation in rpoS in PAO1. The rpoS mutation resulted in the increased production of the phenazine antibiotic pyocyanin and the siderophore pyoverdine. This increased pyocyanin production may be responsible for the enhanced virulence of the PAO1 rpoS mutant that was observed in a rat chronic-lung-infection model. In addition, the rpoS mutant displayed an altered twitching-motility phenotype, suggesting that the colonization factors, type IV fimbriae, were affected. Finally, in an alginate-overproducing cystic fibrosis (CF) isolate, FRD1, the rpoS101::aacCI mutation almost completely abolished the production of alginate when the bacterium was grown in a liquid medium. On a solid medium, the FRD1 rpoS mutant produced approximately 70% less alginate than did the wild-type strain. Thus, our data indicate that although some of the functions of RpoS in P. aeruginosa physiology are similar to RpoS functions in other gram-negative bacteria, it also has some functions unique to this bacterium.  相似文献   

19.
Pseudomonas aeruginosa produces several phenazines including the recently described 5-methyl-phenazine-1-carboxylic acid (5MPCA), which exhibits a novel antibiotic activity towards pathogenic fungi such as Candida albicans. Here we characterize the unique antifungal mechanisms of 5MPCA using its analogue phenazine methosulphate (PMS). Like 5MPCA, PMS induced fungal red pigmentation and killing. Mass spectrometry analyses demonstrated that PMS can be covalently modified by amino acids, a process that yields red derivatives. Furthermore, soluble proteins from C. albicans grown with either PMS or P. aeruginosa were also red and demonstrated absorbance and fluorescence spectra similar to that of PMS covalently linked to either amino acids or proteins in vitro, suggesting that 5MPCA modification by protein amine groups occurs in vivo. The red-pigmented C. albicans soluble proteins were reduced by NADH and spontaneously oxidized by oxygen, a reaction that likely generates reactive oxygen species (ROS). Additional evidence indicated that ROS generation precedes 5MPCA-induced fungal death. Reducing conditions greatly enhanced PMS uptake by C. albicans and killing. Since 5MPCA was more toxic than other phenazines that are not modified, such as pyocyanin, we propose that the covalent binding of 5MPCA promotes its accumulation in target cells and contributes to its antifungal activity in mixed-species biofilms.  相似文献   

20.
Two seven-gene phenazine biosynthetic loci were cloned from Pseudomonas aeruginosa PAO1. The operons, designated phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2, are homologous to previously studied phenazine biosynthetic operons from Pseudomonas fluorescens and Pseudomonas aureofaciens. Functional studies of phenazine-nonproducing strains of fluorescent pseudomonads indicated that each of the biosynthetic operons from P. aeruginosa is sufficient for production of a single compound, phenazine-1-carboxylic acid (PCA). Subsequent conversion of PCA to pyocyanin is mediated in P. aeruginosa by two novel phenazine-modifying genes, phzM and phzS, which encode putative phenazine-specific methyltransferase and flavin-containing monooxygenase, respectively. Expression of phzS alone in Escherichia coli or in enzymes, pyocyanin-nonproducing P. fluorescens resulted in conversion of PCA to 1-hydroxyphenazine. P. aeruginosa with insertionally inactivated phzM or phzS developed pyocyanin-deficient phenotypes. A third phenazine-modifying gene, phzH, which has a homologue in Pseudomonas chlororaphis, also was identified and was shown to control synthesis of phenazine-1-carboxamide from PCA in P. aeruginosa PAO1. Our results suggest that there is a complex pyocyanin biosynthetic pathway in P. aeruginosa consisting of two core loci responsible for synthesis of PCA and three additional genes encoding unique enzymes involved in the conversion of PCA to pyocyanin, 1-hydroxyphenazine, and phenazine-1-carboxamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号