首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Floral morphology and anatomy of 15 genera in thePolygalaceae have been studied. The pentamerous origin of the polygalaceous flower is confirmed and shown to apply to all genera in the family. The keel is interpreted as a single petal, and the androecium as of bimeric origin. Vascular structure in the receptacles ofCarpolobia andMonnina subg.Monnina is described in detail, and a compilation of results, focusing on the vascular supply for the androecium and gynoecium, is given for all genera. Based on similarities and differences in vascularization it is concluded that present taxonomy, in particular the tribal system, needs to be reviewed.  相似文献   

2.
The serological investigations support the opinion ofJanchen (1942) to combine the generaBunias, Isatis, andSisymbrium in the tribeSisymbrieae; Cheiranthus, Erysimum, andMatthiola in the tribeHesperideae; andBrassica, Crambe, Sinapis, andSuccowia in the tribeBrassiceae. They further underline the central position of theSisymbrieae and the isolated position of theHeliophileae. In accordance withEigner (1973) theBrassiceae are placed closer to theSisymbrieae than inJanchen; the same holds for thePringleeae. No serological justification could be found to uniteArabis andBarbarea in the tribeArabideae, andAlyssum andLunaria in theAlysseae. From the antigen-systems used among the representatives ofJanchen's Lepidieae the generaLepidium andNeslia show remarkable correspondence both toCamelina andThlaspi, but not toCochlearia which appears distant fromCamelina andThlaspi also.
Teil 1/Part 1.  相似文献   

3.
Phylogenetic relationships within the tribe Antirrhineae (Scrophulariaceae) are analysed and discussed on the basis of parsimony analyses of morphological andndhF gene sequence data. The results indicate that the tribe Antirrhineae consists of four major groups of genera, theAnarrhinum clade, theGambelia clade, theMaurandya clade, and theAntirrhinum clade. TheAnarrhinum clade, consisting of the Old World bee-pollinated generaAnarrhinum andKickxia, is sister to the rest of the tribe. TheGambelia clade consists of the New World generaGambelia andGalvezia, which are very closely related and pollinated by hummingbirds. TheMaurandya clade consists of one subclade includingMaurandya and a number of related bee- or hummingbird-pollinated New World genera and another subclade with the Old World bee-pollinated generaAsarina andCymbalaria. TheAntirrhinum clade consists mainly of bee-pollinated Old World genera, such asAntirrhinum, Linaria, Chaenorhinum, and their segregates, but also includes the New World generaMohavea andHowelliella, of which the latter is known to be partly pollinated by hummingbirds. It is concluded that hummingbirdpollination has evolved independently within Antirrhineae at least three times from bee-pollinated ancestors.  相似文献   

4.
The phylogeny of the subfamilyRubioideae (Rubiaceae) was estimated from sequence variation in therps16 intron (cpDNA) in 143 ingroup and 5 outgroup taxa. The analysis largely confirms a recent one based onrbcL sequences, but branch support is often much stronger. Three of the traditional subfamilies are supported,Rubioideae, Cinchonoideae s. str., andIxoroideae s. l. while there is no support forAntirheoideae. TheRubioideae are the sister group of all otherRubiaceae and comprise the tribesAnthospermeae, Coccocypseleae, Cruckshanksieae, Coussareeae, Gaertnereae, Hedyotideae, Knoxieae, Morindeae, Ophiorrhizeae, Paederieae, Pauridiantheae, Perameae, Psychotrieae, Rubieae, Spermacoceae, Theligoneae, andUrophylleae. TheHamelieae andHillieae belong to theCinchonoideae. Rachicallis andSiemensia should be transferred from theHedyotideae to theCinchonoideae. ThePauridiantheae, Urophylleae, Ophiorrhizeae, andRaritebe form the basalmost subclade of theRubioideae. The second basalmost clade consists of the generaLasianthus andPerama. The third basalmost clade consists of the tribesCoussareeae, Coccocypseleae andCruckshanksieae, and the generaDeclieuxia andHindsia. The tribesKnoxieae, Anthospermeae, Argostemmateae, Paederieae, Theligoneae, Rubieae, Hedyotideae, andSpermacoceae are members of one clade. TheKnoxieae are monophyletic ifOtiophora, Otomeria, andPentas are included. The tribeAnthospermeae is supported as monophyletic, but its subtribes are not. ThePaederieae, together withTheligonum, form a paraphyletic grade basal to theRubieae. TheHedyotideae, includingSchismatoclada, form a grade at the base of theSpermacoceae. TheGaertnereae are monophyletic and distinct from thePsychotrieae. TheMorindeae are monophyletic and includeDamnacanthus andMitchella. Schradera is the sister group of theMorindeae. ThePsychotrieae are monophyletic when theGaertnereae, Lasianthus, andDeclieuxia are excluded. The recognition of a subtribeHydnophytineae leaves the rest of thePsychotrieae paraphyletic.Psychotria is paraphyletic with respect to all other genera of the tribe. Approximately 50 genera are here classified for the first time based on molecular data.  相似文献   

5.
TheSimaroubaceae generally have no true stipules. The stipule-like appendages of some genera proved to be pseudo- or metastipules (Weberling & Leenhouts 1965). There seem to be some exceptions, however: the generaCadellia (incl.Guilfoylia) andRecchia on the one hand, and theIrvingioideae on the other. As these taxa, with exception ofRecchia, have simple leaves, there are no indications that their stipule-like appendages might be pseudo- or metastipules. In regard to their position and ontogeny these appendages behave completely like true stipules. Assuming the view ofForman, one could conceive a morphological line from the long, broadly inserted axillary stipules of mostIrvingioideae to the small scaly triangular stipules ofIxonanthoideae. The similarities between the stipules ofIrvingioideae andErythroxylaceae (already emphasized byHallier and others), become even more evident when their ontogeny is investigated. TheIrvingioideae, therefore, might be regarded as a separate family (perhaps with some relation to theErythroxylaceae,Hallier) or as a subfamily ofIxonanthaceae (Forman).—In addition to data on stipules some results on the palynology and shoot anatomy of the generaCadellia (incl.Guilfoylia) andRecchia are reported. Their relationship with theSimaroubaceae also appears doubtful. If they are to be included, they represent a somewhat isolated group near the base of the family which otherwise has lost its stipules.
Herrn Univ.-Prof. Dr.Walter Leinfellner zum 70. Geburtstag gewidmet.  相似文献   

6.
A cladistic analysis was performed using nucleotide sequence variation in therps16 intron and thetrmL-F region (plastid DNA).Arcytophyllum belongs in a subclade of the tribe Spermacoceae (s.l.) together with the American species presently classified in the generaHedyotis andHoustonia. This subclade is morphologically characterized by cymbiform seeds.Arcytophyllum is the sister group of all AmericanHedyotis andHoustonia and it is suggeste that these latter would be most conveniently treated as a single genus, the correct name of which would beHoustonia.Arcytophyllum should be circumscribed such that it excludesA. serpyllaceum, which is not a member of theArcytophyllum-Houstonia clade but more closely related toBouvardia. The phylogeny that was reconstructed suggests that the ancestral area of theArcytophyllum-Houstonia clade is the South American tectonic plate.  相似文献   

7.
A phylogenetic analysis of 25 species, representing eight genera of theRubieae tribe (Rubiaceae), has been made using the DNA sequence of the chloroplastatp B-rbc L intergene region. Six tropical genera from other tribes ofRubiaceae have been used as outgroups. Whatever the method of analysis (distance, parsimony or maximum likelihood), five groups are clearly separated and described as informal clades. Their relative relationships are not clearly resolved by the parsimony analysis, resulting in eight equally parsimonious trees, 327 steps long, with a consistency index (CI) of 0.749 (excluding uninformative sites). TheRubieae tribe appears monophyletic from the data available. Some new and partly unexpected phylogenetic relationships are suggested. The genusRubia forms a separate clade and appears to be the relatively advanced sister group of the remaining taxa. TheSherardia clade also includes the generaCrucianella andPhuopsis. Galium sect.Aparinoides appears closely attached to theAsperula sect.Glabella clade. The remaining taxa ofGalium are paraphyletic:Galium sect.Platygalium (in theCruciata clade) is linked to the advanced generaCruciata andValantia; the more apomorphic groups ofGalium form theGalium sect.Galium clade, including the perennial sectionsGalium, Leiogalium, andLeptogalium as well as the annual (and possibly polyphyletic) sect.Kolgyda.  相似文献   

8.
9.
The chemotaxonomic findings relating to the generaBoletinus, Suillus, Gastroboletus, Gomphidius, andChroogomphus are summarized and discussed, using published data as well as our own hitherto unpublished evidence of pigments and chromogens. The study confirms repeatedly made claims that these genera are closely related. In addition to the presence of pigments which are typical for most members of theBoletales (e.g., pulvinic acid derivatives, terphenyl quinones, cyclopentenones), prenylated phenols and quinones can also be constantly detected here (with the exception ofBoletinus), just as inRhizopogon. Accordingly,Suillus is more closely related to theGomphidiaceae andRhizopogonaceae than to the remaining boletes. It is therefore necessary to establish a new family (Suillaceae which includeBoletinus, Suillus, andGastrosuillus) and a new suborder (Suillineae which includeSuillaceae, Gomphidiaceae, andRhizopogonaceae) within theBoletales. Chemosystematics ofBoletales 2. For part 1 seeBesl & al. (1986). Dedicated to emer. Univ.-Prof. DrFriedrich Ehrendorfer on the occasion of his 70th birthday  相似文献   

10.
The phylogenetic relationships of the angiosperm generaByblis andRoridula have been the subject of ongoing taxonomic controversy. Twenty-eight taxa of varying degrees of alleged relationship, including 3 members of theWinteraceae (as an outgroup), were investigated using partial sequences of 18S rRNA (small subunit) and also compared against the morphological data set fromHufford's (1992) cladistic treatment of 80 members of theRosidae-Asteridae. The morphological analysis placed the two genera in a clade with theSarraceniaceae in theCorniflorae-Asterid group as a sister taxon to anEricales-Hydrangeales clade. The 18S rRNA analysis supports the recently publishedrbcL DNA analysis ofAlbert & al. (1992), withRoridula joined to taxa in the lowerRosidae, butByblis joining instead to members of theAsteridae near theSolanaceae. Comparisons for congruence between the three analyses placeByblis in the higher Asterid group near theSolanaceae, andRoridula possibly nearer theSarraceniaceae andEricales. These results imply that the traditional morphological characters used to relate the two genera are possibly the result of convergence towards similar ecological and life-history strategies rather than synapomorphies.  相似文献   

11.
12.
Nutritional physiological and tolerance tests were performed for all type strains of species currently classified in the black yeast generaExophiala andPhaeococcomyces, including some additional type strains of taxa recently reidentified asExophiala species. Most describedExophiala species can be distinguished by physiological characters.Exophiala jeanselmei with its varieties, andE. castellanii should all be retained as separate taxa. The pairs of strainsMycotorula schawii/Exophiala dermatitidis, Hormodendrum negronii/Exophiala jeanselmei var.lecaniicorni andSporotrichum gougerotii/Torula bergeri were found to be conspecific. Phenetic analyses of physiological data support the identity ofPhaeococcomyces exophialae as a yeast-like synanamorph ofExophiala spinifera. The taxonomic positions of the generaNadsoniella, Phaeoannellomyces andWangiella are discussed. The generaExophiala andPhaeococcomyces are unrelated.  相似文献   

13.
Nine species ofNeochloris can be divided into three groups on the basis of comparative ultrastructure of the flagellar apparatus, the cell wall and the pyrenoid of zoospores. In Group I,N. wimmeri andN. minuta, zoospores are thin-walled, pyrenoids are penetrated by stromal channels, and the basal bodies are in the clockwise absolute orientation and connected by the distal and two proximal fibers. In Group II,N. aquatica, N. vigenis, N. terrestris, N. pyenoidosa, andN. pseudostigmatica, zoospores are naked or covered by fuzzy material, pyrenoids are covered by a continuous starch sheath or invaginated by cytoplasmic channels, basal bodies are directly opposed, the distal fiber is differentiated into a ribbed structure at the central region, a striated microtubule-associated component (SMAC) is continuous between opposite two-membered rootlets and connected to the ribbed structure, proximal ends of basal bodies are covered by partial caps, each two-membered rootlet and a basal body are connected by a striated fiber to the X-membered rootlet associated with the opposite basal body, and the basal bodies, when oriented at wide angles, are joined at their proximal ends by core extensions. In Group III,N. pseudoalveolaris andN. cohaerens, zoospores are naked, pyrenoids are traversed by parallel thylakoids, basal bodies are in the counterclockwise absolute orientation and overlapped, and each X-membered rootlet is connected to the end of the opposite basal body by a terminal cap. It is suggested that the genusChlorococcopsis gen. nov. be erected for the Group I species. Group II, which includes the type species,N. aquatica, should be preserved asNeochloris. The group appears to be closely related to the coenobial generaPediastrum, Hydrodictyon, andSorastrum, and to have affinities with the coenocytic generaSphaeroplea andAtractomorpha as well. It is also suggested that the genusParietochloris gen. nov. be erected in thePleurastrophyceae for the species of Group III.  相似文献   

14.
An analysis of the morphology, anatomy and ontogeny of the flowers, particularly of the gynoecium ofLagoecieae is presented. 1. The gynoecial model of angiosperms can be applied to all three generaArctopus, Lagoecia andPetagnia. 2. In the case ofArctopus an additional Apikalseptum is developed. 3. In the synascidiate region of the gynoecium the adaxial carpel is reduced inArctopus andPetagnia, the abaxial inLagoecia. 4. The reduced carpel produces either one mature ovule inArctopus, a rudimentary ovule inPetagnia, or none inLagoecia. 5.Petagnia andLagoecia have a completely pseudomonomerous gynoecium. 6.Arctopus displays many flower characteristics which lack in theSaniculoideae but occur in theHydrocotyloideae. 7. ForPetagnia andLagoecia an independent phylogenetic development within theSaniculoideae is assumed.
Herrn Univ.-Prof. Dr.Walter Leinfellner zum 70. Geburtstag gewidmet.  相似文献   

15.
It is proposed to use amongst other characters the type of cell division in order to delimit theChlorosarcinales from theChlorococcales. A definition of the two processes of division occuring in these orders is given. It differs from that of other authors. In theChlorosarcinales only those genera should be assembled in which vegetative daughter cells arise by bipartition followed by firm association of the wall between the daughter cells with that of the mother cell. In contrast, autospores, the vegetative daughter cells of a number ofChlorococcales, develop by multiple division, their cell walls are formed all around the protoplasts and are free from that of the mother cell. The chlorococcalean generaTrebouxia andDictyochloropsis incorporate species which multiply by zoo-, aplano- and autospores as well as others having no autospores. Autospores possibly have arisen more than once during evolution.
  相似文献   

16.
17.
Nucleotide sequences from the internal transcribed spacer (ITS) regions of the 18S–26S nuclear ribosomal DNA have been studied from ten species ofQuercus (representing four subgenera),Castanea sativa andFagus sylvatica, as a preliminary molecular contribution to the still poorly understood systematics and evolution ofFagaceae. The resulting matrix has been used to calculate pair-wise sequence divergence indices and to construct a maximum parsimony tree forQuercus coding indels as a fifth state. Divergence is greater forQuercus vs.Fagus than forQuercus vs.Castanea. The tree for theQuercus taxa studied reveals two clearly divergent clades. In clade I the evergreen W MediterraneanQ. suber appears in a basal position as sister to more distal deciduous taxa, i.e. the E MediterraneanQ. macrolepis and the E AsiaticQ. acutissima (all formerly united as different sections under the apparently polyphyletic subg.Cerris), andQ. rubra (a representative of the N American subg.Erythrobalanus), forming a pair withQ. acutissima. In clade II the evergreen southeastern N AmericanQ. virginiana is basal and sister to the remaining three branches, i.e. a pair of evergreen Mediterranean taxa withQ. ilex andQ. coccifera (subg.Sclerophyllodrys), the deciduous but otherwise plesiomorphic SE European/SW AsiaticQ. cerris (type species of subg.Cerris), and the related but more apomorphic European pairQ. petraea andQ. robur (subg.Quercus). These results partly conflict with current taxonomic classification but are supported by some anatomical and morphological characters. They document polyphyletic lines from evergreen to deciduous taxa and suggest Tertiary transcontinental connections within the genus.  相似文献   

18.
Clibadium L. (Asteraceae, Heliantheae) is a genus of 29 species distributed throughout latin America, from Mexico to Peru, and in the West Indies, with high numbers of species in Costa Rica, Colombia, and Ecuador.Clibadium includes shrubs and small trees; usually with loosely aggregated capitula; herbaceous phyllaries arranged in 1–5 series; receptacles usually paleaceous throughout; corollas of pistillate florets 2–4-lobed; corollas of the staminate florets 4–5-lobed; purple to black anthers; and chromosome numbers alln=16. Two sections of species previously recognized are here considered as subgenera (subg.Paleata and subg.Clibadium) containing two and four sections, respectively.Clibadium subg.Paleata contains five species distributed in sects.Eggersia (3 spp.) andTrixidium (2 spp.), and subg.Clibadium has 24 species distributed among sects.Clibadium (6 spp.),Glomerata (9 spp.),Grandifolia (5 spp.), andOswalda (4 spp.).  相似文献   

19.
20.
The leaf-anatomy, palynology, seed-morphology, vegetative morphology and especially the highly complicated floral morphology of theCoryciinae s. str. (Diseae: Orchidoideae: Orchidaceae) are described and illustrated in detail. On the basis of these characters the presumed phylogeny, based on a rigorous cladistic analysis, is presented. The cladistic biogeographical analysis of theCoryciinae s. str. shows that it is a member of the Afrotemperate Track, with a pattern of vicariance events typical of the members of this track. An analysis of the patterns of speciation shows that allopatric speciation appears to be rare, and that parapatric speciation across edaphic boundaries may be the most important factor. Proceeding from the information presented, a new classification of the group is proposed in which we recognize the four generaCeratandra, Evotella, Pterygodium andCorycium. The new monotypic genusEvotella comprises a species originally described asPterygodium rubiginosum. The three species of the genusAnochilus are transferred toCorycium andPterygodium. P. magnum, which was originally described asPterygodium but was transferred toCorycium lately, is placed in a monotypic section ofPterygodium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号