首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大戟科麻疯树属三种植物花器官发生   总被引:1,自引:0,他引:1  
利用扫描电子显微镜观察了大戟科Euphorbiaceae麻疯树属Jatropha麻疯树J. curcas L.、佛肚树J. podagrica Hook.和棉叶麻疯树J. gossypifolia L.花器官发生。结果表明: 麻疯树、佛肚树和棉叶麻疯树花萼原基均为2/5型螺旋发生。在同一个种不同的花蕾中, 花萼的发生有两种顺序: 逆时针方向和顺时针方向。远轴面非正中位的1枚先发生。5枚花瓣原基几乎同时发生。雄花中雄蕊两轮, 外轮对瓣, 内轮对萼。研究的3种麻疯树属植物雄蕊发生方式有两种类型: 麻疯树亚属麻疯树的5枚外轮雄蕊先同时发生, 5枚内轮雄蕊后同时发生, 佛肚树亚属佛肚树和棉叶麻疯树雄蕊8-9枚, 排成两轮, 内外轮雄蕊同时发生。雌花的3枚心皮原基为同时发生。麻疯树属单性花, 雌花的子房膨大而雄蕊退化, 雄花的雄蕊正常发育, 子房缺失。根据雄蕊发生方式, 支持将麻疯树属分为麻疯树亚属subgen. Jatropha和佛肚树亚属subgen. Curcas。  相似文献   

2.
为进一步研究商陆科的系统位置提供花器官发生和发育的证据,在扫描电子显微镜下观察了商陆Phytolacca acinosa、多雄蕊商陆P. polyandra和垂序商陆P. americana的花器官发生.结果表明: 商陆属植物花被的发生均为2/5型螺旋发生.在同一个种不同的花蕾中,花被的发生有两种顺序:逆时针方向和顺时针方向.远轴侧非正中位的1枚先发生.雄蕊发生于环状分生组织.在单轮雄蕊的种中8-10枚雄蕊为近同时发生;两轮雄蕊的种8枚内轮雄蕊先发生,6-8枚外轮雄蕊随后发生,内轮雄蕊为同时发生,外轮雄蕊发生次序不规则.心皮原基也发生于环状分生组织,8-10枚心皮原基为同时发生.在后来的发育过程中,商陆的心皮发育成近离生心皮雌蕊;其他2种心皮侧壁联合发育成合生心皮雌蕊.对商陆属植物花器官发生的类型及发育形态学做了分析,结果支持商陆科在石竹目系统发育中处于原始地位的观点.  相似文献   

3.
以不同发育时期的长角凤仙花Impatiens longicornuta Y.L.Chen(凤仙花科Balsaminaceae)为材料,利用扫描电镜技术观察了其花器官的分化及其发育过程。长角凤仙花为两侧对称花,具2枚侧生萼片,唇瓣囊状,旗瓣具鸡冠状突起,雄蕊5枚,子房上位,5心皮5室。其花器官分化顺序为向心式,萼片—花瓣—雄蕊—雌蕊原基。2枚侧生萼片先发生,然后近轴萼片(即唇瓣)原基和2枚前外侧萼片原基近同时发生;但是这3枚萼片原基的发育不同步,远轴的2枚前外侧萼片原基的发育渐渐滞后,然后停止发育,最后渐渐为周围组织所吸收,直至消失不见。花瓣原基中,旗瓣原基最先发生,4个侧生花瓣原基相继成对发生,且之后在基部成对愈合形成翼瓣;5枚雄蕊原基几乎同时发生,5个心皮原基轮状同时发生。本文结果支持凤仙花属植物为5基数的花,并进一步证实了唇瓣的萼片来源;此外,研究结果表明花器官早期发育资料对植物系统与进化研究具有重要参考价值。  相似文献   

4.
The floral organogenesis and development of Delavaya toxocarpa Franch. (Sapindaceae) were studied under scanning electron microscope and light microscope to determine its systematic position within Sapindaceae. Flowers arise in terminal thyrses. The sepal primordia initiate in a spiral (2/5) sequence, which are not synchronous. The five petal primordia initiate almost synchronously and alternate with sepal primordia. Eight stamens initiate almost simultaneously and their differentiation precedes that of the petals. The last formed petal and one stamen initiate from a common primordium. Mature stamens curve inwards and cover the ovary in bud. The gynoecium begins as a hemispheric primordium on which two carpellary lobes arise simultaneously. Later in development a single gynocium is formed with two locules and two ovules per locule. Floral morphology suggests a closer affinity with Sapindaceae, although certain features of floral ontogenesis are similar to those observed in certain members of the former Hippocastanaceae, such as Handeliodendron.  相似文献   

5.
The floral organogenesis of Phytolacca dodecandra L′Her. (Phytolaccaceae) has been observed under both scanning electron microscope (SEM) and light microscope. The primordia of the floral appendage are arranged according to a pentamerous pattern and acropetal succession. Five sepal primordia arise in a 2/5 sequence, and no petal primordia have been observed. The stamen primordia arise centrifugally. The first two pairs arise successively opposite sepal one and two. In the subsequent initiation of inner and outer stamens, P. dodecandra differs from other species in the genus Phytolacca. The four or five carpel primordia arise in rapid succession, usually equal in number and alternating with the inner stamens. The effects of temporal and spatial factors during the floral organogenesis of P. dodecandra are discussed. The data on the androecial ontogeny in P. dodecandra refute the existence of diplostemony in Phytolaccaceae, in which P. dodecandra occupies a pivotal systematic position. The androecial ontogeny in P. dodecandra supports the viewpoint that in the genus Phytolacca pentamerous flowers have been derived from trimerous flowers.  相似文献   

6.
The Scutellaria is a Labiatae genus (subfamily Scutellarioideae) with a highly specialised floral structure. The genus is characterised by a peculiar two‐lobed calyx with a projecting appendage, named the scutellum. Here, we present a detailed analysis of floral development, using epi‐illumination light microscopy, to clarify open questions about its floral organisation. Floral whorls appeared in an acropetal sequence, with a marked temporal overlap of petal and stamen appearance. Organ appearance in each whorl proceeded unidirectionally from the abaxial to the adaxial side. Significant developmental features included the formation of the scutellum, reduction of sepal lobes and formation of a three‐lobed nectary disc. Our study revealed that both loss of organ initiation and fusion of primordia are responsible for the reduction in sepal members in Scutellaria. The nectary structure was markedly different from most other studied Lamiaceae.  相似文献   

7.
Utilizing scanning electron microscopy, we studied the early floral ontogeny of three species of Caesalpinia (Leguminosae: Caesalpinioideae): C. cassioides, C. pulcherrima, and C. vesicaria. Interspecific differences among the three are minor at early and middle stages of floral development. Members of the calyx, corolla, first stamen whorl, and second stamen whorl appear in acropetal order, except that the carpel is present before appearance of the last three inner stamens. Sepals are formed in generally unidirectional succession, beginning with one on the abaxial side next to the subtending bracts, followed by the two lateral sepals and adaxial sepal, then lastly the other adaxial sepal. In one flower of C. vesicaria, sepals were helically initiated. In the calyx, the first-initiated sepal maintains a size advantage over the other four sepals and eventually becomes cucullate, enveloping the remaining parts of the flower. The cucullate abaxial sepal is found in the majority of species of the genus Caesalpinia. Petals, outer stamens, and inner stamens are formed unidirectionally in each whorl from the abaxial to the adaxial sides of the flower. Abaxial stamens are present before the last petals are visible as mounds on the adaxial side, so that the floral apex is engaged in initiation of different categories of floral organs at the same time.  相似文献   

8.
Initiation of floral primordia begins in Agalinis densiflora with production of two lateral adaxial calyx lobe primordia followed by a midadaxial primordium, and then primordia of two abaxial calyx lobes. Initiation of three abaxial corolla lobe primordia is succeeded by that of two stamen pairs and then by primordia of two adaxial corolla lobes. The primordium of the abaxial carpel appears before the adaxial one. Except for the calyx, initiation of primordia proceeds unidirectionally from the abaxial to the adaxial side of the floral apex. Zygomorphy in the calyx, corolla, and androecium is evident during initiation of primordia and is accentuated during organogenesis. The calyx undergoes comparatively rapid organogenesis, but the inner three floral series undergo a protracted period of organogenesis. The perianth series reach maturation prior to meiosis in the anthers. Maturation of the androecium and gynoecium are postmeiotic events.  相似文献   

9.
通过扫描电镜观察了宽叶泽苔草Caldesia grandisSamuel.的花器官发生。宽叶泽苔草 的萼片3枚,逆时针螺旋向心发生 ;花瓣3枚,呈一轮近同时发生,未观察到花瓣_雄蕊复合原基;雄蕊、心皮原基皆轮状向心 发生,最先近同时发生的6枚原基全部发育成雄蕊,随后发生的6枚原基早期并无差别,在发 育过程中逐渐出现形态差异,直至其中1-4枚发育成心皮,其余的发育成雄蕊;而后的几轮 心皮原基,6枚一轮,陆续向心相间发生。本文揭示了3枚萼片螺旋状的发生方式,并推测这种螺旋方式是泽泻科植物进化过程中保留下来  相似文献   

10.
马先蒿属花冠无喙类的花器官发生   总被引:4,自引:0,他引:4  
对花冠无喙类密穗马先蒿(Pedicularis densispica)和大王马先蒿(P.rex)的花器官电镜扫描发现,两种不同花冠型(无齿和具齿)的马先蒿花部器官发生和发育初期十分相似,表现为明显的单轴对称。2个萼片原基首先发生于花顶的近轴侧位,然后沿花顶边缘向远轴端发育形成--马蹄形结构。密穗马先蒿在近轴中部又出现1枚萼片原基,随后马蹄形结构分化出4枚萼片,并与近轴中部的原基愈合后构成5齿萼片;而大王马先蒿的2齿萼片直接由马蹄形结构发育而成。5枚独立的花瓣原基随后发生,但发育相对滞后;除近轴中部位置1枚空缺外,4枚雄蕊原基与花瓣原基位置呈交互发生;2个心皮原基同时在拱形花顶的近轴和远轴端发生,剩余的花顶形成中间的隔膜,并与2个心皮形成中轴胎座。对马先蒿与金鱼草(Antirrhinum majus)和毛地黄(Digitalis purpurea)花器官发生和发育初期的特征进行了比较,讨论了马先蒿属花冠对称性变化的意义。  相似文献   

11.
Floral onset in soybean (Glycine max cv. Ransom) is characterized by precocious initiation of axillary meristems in the axils of the most recently initiated leaf primordium. During floral transition, leaf morphology changes from trifoliolate leaf with stipules, to a three-lobed bract, to an unlobed bract. Soybean flowers initiated at 26/22 C day/night temperatures are normal, papilionaceous, and pentamerous. Sepal, petal, and stamen whorls are initiated unidirectionally from the abaxial to adaxial side of the floral apex. The median sepal is located abaxially and the median petal adaxially on the meristem. The organogeny of ‘Ransom’ flowers was found to be: sepals, petals, outer stamens plus carpel, inner stamens; or, sepals, petals, carpel, outer stamens, inner stamens. The outer stamen whorl and the carpel show possible overlap in time of initiation. Equalization of organ size occurs only within the stamen whorls. The sepals retain distinction in size, and the petals exhibit an inverse size to age relationship. The keel petals postgenitally fuse along part of their abaxial margins; their bases, however, remain free. Soybean flowers initiated at cool day/night temperatures of 18/14 C exhibited abnormalities and intermediate organs in all whorls. The gynoecium consisted of one to ten carpels (usually three or four), and carpel connation varied. Fusion of keel petals was often lacking, and stamen filaments fused erratically. Multiple carpellate flowers developed into multiple pods that were separate or variously connate. Intermediate type organs had characteristics only of organs in adjacent whorls. These aberrant flowers demonstrate that the floral meristem of soybean is not fixed or limited in its developmental capabilities and that it has the potential to produce alternate morphological patterns.  相似文献   

12.
掌叶木的花器官发生及其系统学意义   总被引:7,自引:0,他引:7  
利用扫描电子显微镜和光学显微镜观察了掌叶木的花器官发生过程。观察结果表明: 花序原基最先发生, 然后形成两个大小不一的花原基; 萼片原基的发生不同步, 螺旋状向心发生; 4-5枚花瓣原基以接近轮状方式近同时发生; 不存在花瓣-雄蕊复合原基; 7-8枚雄蕊原基为近同时发生, 其生长较花瓣原基快; 心皮原基最后发生, 3枚心皮原基为同时发生。花为单性花。在雌花中, 子房膨大而雄蕊退化。在雄花中, 雄蕊正常发育, 子房退化。讨论了掌叶木花器官发生和发育的系统学意义。  相似文献   

13.
The inflorescence of Hedychium coccineum Smith is thyrse, and the primary bracts are initiated in a spiral phyllotactic pattern on the sides of the inflorescence dome. Cincinnus primordia are initiated on the flank of the inflorescence apex, in the axils of primary bracts. This primordium subsequently develops a bract and a floral primordium. Then, the floral primordium enlarges, flattens apically, and becomes rounded. Sepals are initiated sequentially from the rounded corner of the primordium ring sepal initiation, and the floral primordium continues to enlarge and produces a ring primordium. Later, this ring primordium separates three common primordia surrounding a central cavity. The adaxial common primordium is the first separation. This primordium produces the posterior petal and the fertile stamen. The remaining two common primordia separate and produce respectively a petal and a petaloid, the inner androecial member. As the flower enlarges, the cavity of the floral cup becomes a rounded–triangular apex; these apices are the sites of outer androecial primordium initiation. The abaxial outer androecial member slightly forms before the two adaxial members develop. But this primordium ceases growth soon after initiation, while the two posterior primordia continue growth to produce the lateral petaloid staminodes. During this stage, gynoecial initiates in the floral cup and continues to grow until extending beyond the labellum.  相似文献   

14.
A comparative developmental study of flowers was carried out using epi-illumination light microscopy on four genera of Lamiaceae (Nepeta, Rosmarinus, Salvia, andZiziphora), representing all three subtribes of Mentheae. All species examined share unidirectional (adaxial to abaxial) sepal initiation, except Rosmarinus, which has the reverse unidirectional sequence, starting abaxially. Initiated but suppressed bracteoles were detected only in Rosmarinus. In Rosmarinus, Salvia, and Ziziphora, initiation of petals and stamens proceeds unidirectionally from the abaxial side. Floral initiation of Nepeta has bidirectional inception of petals and unidirectional stamen initiation from the adaxial side. Temporal overlap in organ initiation between petal and stamen whorls occurs in all taxa, though this feature is more prominent in Rosmarinus. Significant structural and developmental features that distinguish the four genera include: (1) polysymmetric calyx tube, highly tomentose corolla and deeply four-partitioned ovary in Nepeta; (2) monosymmetric two-lipped calyx and shallowly four-partitioned ovary in Ziziphora; and (3) suppression of adaxial stamens in Salvia and Rosmarinus. Adaxial stamens are absent from Rosmarinus, but reduced stamens remain as staminodia in Salvia. In a phylogenetic context, the late monosymmetry of Nepeta and very early monosymmetry of Rosmarinus could both be regarded as derived conditions compared with the early monosymmetry ofSalvia and Ziziphora.  相似文献   

15.
The initiation and development of the floral organs of Brassica napus L. (cv. Westar) were examined using the scanning electron microscope. After transition of the vegetative apex into an inflorescence apex, flower primordia were initiated in a helical phyllotactic pattern. The sequence of initiation of the floral organs in a flower bud was that of sepals, stamens, petals and gynoecium. Of the four sepal primordia, the abaxial was initiated first, followed by the two lateral and finally the adaxial primordium. The four long stamens were initiated simultaneously in positions alternating with the sepals. The two short stamens were initiated basipetal to and outside the long stamens, and opposite the lateral sepals. The petals arose on either side of the two short stamens and the gynoecium was produced from the remainder of the apex. During development, the sepal primordia curved sharply at the tips and tightly enclosed the other organs. Stamen primordia developed tetralobed anthers at an early stage while filament elongation occurred just prior to anthesis. A unique pattern of bulbous cells was present on the abaxial surface of the anther. Growth of petal primordia lagged relative to the other floral organs but expansion was rapid prior to anthesis. The gynoecium primordium was characterized by an invagination early in development. At maturity, there was differentiation of a papillate stigma, an elongated style and a long ovary marked externally by sutures and divided internally by a septum. Distinct patterns of cuticular thickenings were observed on the abaxial and adaxial surfaces of the petals and stamens and on the surface of the style. The patterns were less obvious on the sepals and ovary. Stomata were present on both surfaces of the mature sepals, on the style and restricted areas on the abaxial surface of the anthers and nectaries but were absent from the petals, the adaxial surface of the stamens and the ovary. No hairs were present on any of the floral organs.  相似文献   

16.
Floral initiation and development were examined using scanning electron microscopy in Exostyles venusta, Harleyodendron unifoliolatum, Lecointea hatschbachii, and Zollernia ilicifolia. Common features include (1) unidirectional sepal initiation, (2) simultaneous petal initiation, (3) unidirectional initiation of each stamen whorl (except in the antesepalous whorl in Lecointea and Exostyles), (4) overlap in time of initiation of the two stamen whorls, and (5) initiation of the carpel concurrently with petals. Significant developmental features include (1) the first sepal median abaxial in all except Lecointea where it is non-median abaxial; (2) intraspecific variation in petal aestivation in Exostyles, Harleyodendron, and Lecointea; (3) initiation of antepetalous stamens before the antesepalous ones in Zollernia, Exostyles, and Lecointea; and (4) ovule initiation before the carpel margins are fused in Exostyles. The stamen sequence has not been found in any other legumes. The following late developmental events distinguish the four genera from each other: copious hairs hold the anthers together as a domelike structure at anthesis in Harleyodendron; zygomorphy in Zollernia results from differing petal reflexion; late hypanthium in Exostyles, Lecointea, and Holocalyx (no hypanthium in Harleyodendron or Zollernia); and reflexed sepal lobes in Exostyles, Harleyodendron, and Zollernia but not in Holocalyx and Lecointea. The genera studied here are ontogenetically more similar to taxa of Sophoreae than to other Swartzieae that have been investigated. None of the taxa studied here has a ring meristem, the structure that characterizes the remaining swartzioid taxa studied elsewhere.  相似文献   

17.
In this study, we evaluated the floral ontogeny of Swartzia dipetala, which has peculiar floral features compared with other legumes, such as an entire calyx in the floral bud, a corolla with one or two petals, a dimorphic and polyandrous androecium and a bicarpellate gynoecium. We provide new information on the function of pollen in both stamen morphs and whether both carpels of a flower are able to form fruit. Floral buds, flowers and fruits were processed for observation under light, scanning and transmission electron microscopy and for quantitative analyses. The entire calyx results from the initiation, elongation and fusion of three sepal primordia. A unique petal primordium (or rarely two) is produced on the adaxial side of a ring meristem, which is formed after the initiation of the calyx. The polyandrous and dimorphic androecium also originates from the activity of the ring meristem. It produces three larger stamen primordia on the abaxial side and numerous smaller stamen primordia on the adaxial side. These two types of stamens bear morphologically similar ripening pollen grains. However, prior to the dehiscence of thecae and presentation of pollen in the anther, only the pollen grains of the larger stamens contain amyloplasts. Two carpel primordia are initiated as distinct protuberances, alternating with the larger stamens, in a slightly inner position in the floral meristem, constituting the bicarpellate gynoecium. Both carpels are able to form fruit, although only one fruit is generally produced in a flower. The increase in gynoecium merism probably results in an increase in the surface deposition of pollen grains and consequently in the chance of pollination. This is the first study to thoroughly investigate organogenesis and the ability of the carpel to form fruit in a bicarpellate flower from a member of Fabaceae, in addition to the pollen ultrastructure in the heteromorphic stamens associated with the ‘division of labour’ sensu Darwin. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 303–320.  相似文献   

18.
泽苔草的花器官发生   总被引:9,自引:2,他引:7  
本文用扫描电镜观察了泽苔草的花器官发生过程,观察结果表明:花萼以螺旋状方式向心发生,花瓣以接近轮状方式近同时发生,不存在花瓣雄蕊复合原基。雄蕊和心皮均以轮状向心方式发生,6枚雄蕊分两轮分别在对萼和对瓣的位置先后发生,至发育的后期排成一轮,但仍分别处于对萼和对瓣的位置;随后发生的第一轮3个心皮原基与3枚萼片相对,第二、三轮心皮原基分别为1~3个,与前一轮心皮相间排列向心发生。本文首次揭示了泽苔草花被的外轮3个萼片螺旋状发生方式,这种螺旋状方式很可能是泽泻科植物的花部结构在进化过程中适应环境而保留下来的一种较原始的叶性特征。  相似文献   

19.
赵祥  苏雪  吴海燕  张辉  孙坤 《植物研究》2020,40(6):813-819
利用扫描电镜(SEM)观察了突脉金丝桃(Hypericum przewalskii)(金丝桃科)的花部器官发生发育过程。结果表明,突脉金丝桃2枚苞片原基首先发生,花原基在苞片原基的包裹中完成发育。在苞片原基发生后,5枚萼片原基沿2/5圆周依次发生。萼片原基发生近完成时,5枚雄蕊—花瓣共同原基在萼片原基之间的角隅处近同时发生,此后,雄蕊—花瓣共同原基下部向外伸展形成花瓣原基,上部向上凸起形成与花瓣原基相对的雄蕊原基,之后雄蕊原基由内向外依次分化发育产生次生雄蕊原基,随着次生雄蕊原基的发育和数目的增多,形成了5束雄蕊。次生雄蕊原基发生的同时,5枚心皮原基近同时发生。突脉金丝桃雄蕊束的发生方式表明,金丝桃属的雄蕊束可能起源于5基数的单轮雄蕊。金丝桃科与藤黄科植物花瓣及雄蕊原基发生方式的显著不同,支持了APG Ⅲ系统将金丝桃亚科从藤黄科中独立为金丝桃科的观点。  相似文献   

20.
The structure and ontogeny of the calyx and corolla of Downingia bacigalupii Weiler (Campanulaceae; Lobelioideae) were investigated for the purpose of comparing perianth development with previous observations on the floral bract, as well as elucidating the mechanism of development of the zygomorphic, sympetalous corolla. Sepals are uni-traced with a palmate, reticulate venation. They have basal and apical hydathodes, as well as storage tracheids. Sepals show a reduction in size, venation and hydathode number when compared to the bract. The pentamerous, zygomorphic corolla is bilabiate, consisting of a three-lobed adaxial lip and a two-lobed abaxial lip connected by a short tubular region. The constituent petal lobes are also uni-traced and have a reticulate venation, resembling that of the sepal and bract, but lack storage tracheids and hydathodes. Sepals arise in an adaxial to abaxial succession and are initiated in the outer corpus layer of the floral apex. Expansion of the floral apex follows and is accompanied by the establishment of a second tunica layer. Sepals undergo apical, marginal, and intercalary growth accompanied by acropetal differentiation of procambium. The petals arise simultaneously and are initiated in the second tunica layer and the outer corpus cells. After initiation, the petals exhibit a period of apical and marginal growth followed by intercalary growth. Apical growth in petals is less protracted than in sepals, but plate meristem activity is more extensive. The free petal lobes become temporarily fused by an interlocking of marginal epidermal layers, but they separate at anthesis. Zonal growth beneath the originally free lobes forms the tube and lip regions of the sympetalous corolla. Zygomorphy is evident from the time of initiation of petals and is accentuated by later differential growth. Comparative observations of corolla ontogeny in autogamous species of Doumingia indicate that the reduced corollas in these taxa are derived by a simple process of neoteny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号