首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Post-fire changes in desert vegetation patterns are known, but the mechanisms are poorly understood. Theory suggests that pulse dynamics of resource availability confer advantages to invasive annual species, and that pulse timing can influence survival and competition among species. Precipitation patterns in the American Southwest are predicted to shift toward a drier climate, potentially altering post-fire resource availability and consequent vegetation dynamics. We quantified post-fire inorganic N dynamics and determined how annual plants respond to soil inorganic nitrogen variability following experimental fires in a Mojave Desert shrub community. Soil inorganic N, soil net N mineralization, and production of annual plants were measured beneath shrubs and in interspaces during 6 months following fire. Soil inorganic N pools in burned plots were up to 1 g m−2 greater than unburned plots for several weeks and increased under shrubs (0.5–1.0 g m−2) more than interspaces (0.1–0.2 g m−2). Soil NO3 −N (nitrate−N) increased more and persisted longer than soil NH4 +−N (ammonium−N). Laboratory incubations simulating low soil moisture conditions, and consistent with field moisture during the study, suggest that soil net ammonification and net nitrification were low and mostly unaffected by shrub canopy or burning. After late season rains, and where soil inorganic N pools were elevated after fire, productivity of the predominant invasive Schismus spp. increased and native annuals declined. Results suggest that increased N availability following wildfire can favor invasive annuals over natives. Whether the short-term success of invasive species following fire will direct long-term species composition changes remains to be seen, yet predicted changes in precipitation variability will likely interact with N cycling to affect invasive annual plant dominance following wildfire.  相似文献   

2.
Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ∼116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ± 21 g m−2 (mean ± 1SE) and vascular ANPP had recovered to 138 ± 32 g m−2 y−1, which was not different than that of a nearby unburned stand (160 ± 48 g m−2 y−1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ± 180 (dry) and 4008 ± 233 g m−2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ± 68 g m−2 y−1 in the mature site, but in the dry chronosequence it peaked at 410 ± 43 g m−2 y−1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls over these factors will help predict how changes in climate and fire regime will affect the carbon balance of Interior Alaska. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Fire is an important control on the carbon (C) balance of the boreal forest region. Here, we present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and C exchange in black spruce (Picea mariana) ecosystems of interior Alaska. First, we used laboratory incubations to explore soil temperature, moisture, and vegetation effects on CO2 and DOC production rates in burned and unburned soils from three study regions in interior Alaska. Second, at one of the study regions used in the incubation experiments, we conducted intensive field measurements of net ecosystem exchange (NEE) and ecosystem respiration (ER) across an unreplicated factorial design of burning (2 year post-fire versus unburned sites) and drainage class (upland forest versus peatland sites). Our laboratory study showed that burning reduced the sensitivity of decomposition to increased temperature, most likely by inducing moisture or substrate quality limitations on decomposition rates. Burning also reduced the decomposability of Sphagnum-derived organic matter, increased the hydrophobicity of feather moss-derived organic matter, and increased the ratio of dissolved organic carbon (DOC) to total dissolved nitrogen (TDN) in both the upland and peatland sites. At the ecosystem scale, our field measurements indicate that the surface organic soil was generally wetter in burned than in unburned sites, whereas soil temperature was not different between the burned and unburned sites. Analysis of variance results showed that ER varied with soil drainage class but not by burn status, averaging 0.9 ± 0.1 and 1.4 ± 0.1 g C m−2 d−1 in the upland and peatland sites, respectively. However, a more complex general linear model showed that ER was controlled by an interaction between soil temperature, moisture, and burn status, and in general was less variable over time in the burned than in the unburned sites. Together, findings from these studies across different spatial scales suggest that although fire can create some soil climate conditions more conducive to rapid decomposition, rates of C release from soils may be constrained following fire by changes in moisture and/or substrate quality that impede rates of decomposition. Author contributions: JAO: performed research, analyzed data, contributed new methods, wrote the paper; MRT: designed laboratory study, performed research, analyzed data; JWH: designed field study, performed research; KLM: performed research; LEP: performed research, contributed new method; GS: performed research; JCN: performed research.  相似文献   

4.
This paper presents an integrated analysis of organic carbon (C) pools in soils and vegetation, within-ecosystem fluxes and net ecosystem exchange (NEE) in three 40-year old Norway spruce stands along a north-south climatic gradient in Sweden, measured 2001–2004. A process-orientated ecosystem model (CoupModel), previously parameterised on a regional dataset, was used for the analysis. Pools of soil organic carbon (SOC) and tree growth rates were highest at the southernmost site (1.6 and 2.0-fold, respectively). Tree litter production (litterfall and root litter) was also highest in the south, with about half coming from fine roots (<1 mm) at all sites. However, when the litter input from the forest floor vegetation was included, the difference in total litter input rate between the sites almost disappeared (190–233 g C m−2 year−1). We propose that a higher N deposition and N availability in the south result in a slower turnover of soil organic matter than in the north. This effect seems to overshadow the effect of temperature. At the southern site, 19% of the total litter input to the O horizon was leached to the mineral soil as dissolved organic carbon, while at the two northern sites the corresponding figure was approx. 9%. The CoupModel accurately described general C cycling behaviour in these ecosystems, reproducing the differences between north and south. The simulated changes in SOC pools during the measurement period were small, ranging from −8 g C m−2 year−1 in the north to +9 g C m−2 year−1 in the south. In contrast, NEE and tree growth measurements at the northernmost site suggest that the soil lost about 90 g C m−2 year−1. An erratum to this article can be found at  相似文献   

5.
The ecosystem carbon budget was estimated in a Japanese Zoysia japonica grassland. The green biomass started to grow in May and peaked from mid-July to September. Seasonal variations in soil CO2 flux and root respiration were mediated by changes in soil temperature. Annual soil CO2 flux was 1,121.4 and 1,213.6 g C m−2 and root respiration was 471.0 and 544.3 g C m−2 in 2007 and 2008, respectively. The root respiration contribution to soil CO2 flux ranged from 33% to 71%. During the growing season, net primary production (NPP) was 747.5 and 770.1 g C m−2 in 2007 and 2008, respectively. The biomass removed by livestock grazing (GL) was 122.1 and 102.7 g C m−2, and the livestock returned 28.2 and 25.6 g C m−2 as fecal input (FI) in 2007 and 2008, respectively. The decomposition of FI (DL, the dry weight loss due to decomposition) was very low, 1.5 and 1.4 g C m−2, in 2007 and 2008. Based on the values of annual NPP, soil CO2 flux, root respiration, GL, FI, and DL, the estimated carbon budget of the grassland was 1.7 and 22.3 g C m−2 in 2007 and 2008, respectively. Thus, the carbon budget of this Z. japonica grassland ecosystem remained in equilibrium with the atmosphere under current grazing conditions over the 2 years of the study.  相似文献   

6.
Ponderosa pine (Pinus ponderosa) forests of the southwestern United States are a mosaic of stands where undisturbed forests are carbon sinks, and stands recovering from wildfires may be sources of carbon to the atmosphere for decades after the fire. However, the relative magnitude of these sinks and sources has never been directly measured in this region, limiting our understanding of the role of fire in regional and US carbon budgets. We used the eddy covariance technique to measure the CO2 exchange of two forest sites, one burned by fire in 1996, and an unburned forest. The fire was a high‐intensity stand‐replacing burn that killed all trees. Ten years after the fire, the burned site was still a source of CO2 to the atmosphere [109±6 (SEM) g C m?2 yr?1], whereas the unburned site was a sink (?164±23 g C m?2 yr?1). The fire reduced total carbon storage and shifted ecosystem carbon allocation from the forest floor and living biomass to necromass. Annual ecosystem respiration was lower at the burned site (480±5 g C m?2 yr?1) than at the unburned site (710±54 g C m?2 yr?1), but the difference in gross primary production was even larger (372±13 g C m?2 yr?1 at the burned site and 858±37 g C m?2 yr?1at the unburned site). Water availability controlled carbon flux in the warm season at both sites, and the burned site was a source of carbon in all months, even during the summer, when wet and warm conditions favored respiration more than photosynthesis. Our study shows that carbon losses following stand‐replacing fires in ponderosa pine forests can persist for decades due to slow recovery of the gross primary production. Because fire exclusion is becoming increasingly difficult in dry western forests, a large US forest carbon sink could shift to a decadal‐scale carbon source.  相似文献   

7.
Permafrost soils are a significant global store of carbon (C) with the potential to become a large C source to the atmosphere. Climate change is causing permafrost to thaw, which can affect primary production and decomposition, therefore affecting ecosystem C balance. To understand future responses of permafrost soils to climate change, we inventoried current soil C stocks, investigated ∆14C, C:N, δ13C, and δ15N depth profiles, modeled soil C accumulation rates, and calculated decadal net ecosystem production (NEP) in subarctic tundra soils undergoing minimal, moderate, and extensive permafrost thaw near Eight Mile Lake (EML) in Healy, Alaska. We modeled decadal and millennial soil C inputs, decomposition constants, and C accumulation rates by plotting cumulative C inventories against C ages based on radiocarbon dating of surface and deep soils, respectively. Soil C stocks at EML were substantial, over 50 kg C m−2 in the top meter, and did not differ much among sites. Carbon to nitrogen ratio, δ13C, and δ15N depth profiles indicated most of the decomposition occurred within the organic soil horizon and practically ceased in deeper, frozen horizons. The average C accumulation rate for EML surface soils was 25.8 g C m−2 y−1 and the rate for the deep soil accumulation was 2.3 g C m−2 y−1, indicating these systems have been C sinks throughout the Holocene. Decadal net ecosystem production averaged 14.4 g C m−2 y−1. However, the shape of decadal C accumulation curves, combined with recent annual NEP measurements, indicates soil C accumulation has halted and the ecosystem may be becoming a C source. Thus, the net impact of climate warming on tundra ecosystem C balance includes not only becoming a C source but also the loss of C uptake capacity these systems have provided over the past ten thousand years.  相似文献   

8.
Using long-term (22 years) measurements from a young and an old-growth subtropical forest in southern China, we found that both forests accumulated carbon from 1982 to 2004, with the mean carbon accumulation rate at 227 ± 59 g C m−2 year−1 for young forest and 115 ± 89 g C m−2 year−1 for the old-growth forest. Allocation of the accumulated carbon was quite different between these two forests: the young forest accumulated a significant amount of carbon in plant live biomass, whereas the old-growth forest accumulated a significant amount of carbon in the soil. From 1982 to 2004, net primary productivity (NPP) increased for the young forest, and did not change significantly for the old-growth forest. The increase in NPP of the young forest resulted from recruitment of some dominant tree species characteristic of the subtropical mature forest in the region and an increase in tree density; decline of NPP of the old-growth forest was caused by increased mortality of the dominant trees.  相似文献   

9.
Fuel management techniques are commonly used in shrublands to reduce wildfire risk. However, more information about the ecological effects of these treatments is needed by managers and ecologists. In an effort to address this need, we performed a replicated (4 replicates per treatment) 48-ha experiment in northern California chaparral dominated by Adenostoma fasciculatum to determine the effects of two fuel reduction types (prescribed fire and mastication) and three different seasons of treatment (fall, winter, and spring) on shrub cover, height, and seedling density. Exclosures (2.5 m2 each) were also used to assess herbivory effects. By the third post-treatment year, prescribed fire treatments had higher shrub cover (71 ± 2%) than mastication (43 ± 4%). There was no treatment effect on shrub height, species richness, or composition. Seedling density was initially higher in prescribed fire treatments (31 ± 4 seedlings m−2) than mastication (3 ± 0 seedlings m−2); however, prescribed fire treatments experienced substantial mortality, especially spring burning, resulting in lower densities 3 years after treatments (18 ± 0 seedlings m−2 after fall and winter fire compared to 2 ± 0 seedlings m−2 after spring fire). A. fasciculatum remained the dominant shrub species after the treatments, and Ceanothus cuneatus recruitment was higher in fall burning. Deer herbivory only affected shrub height, especially in masticated units, resulting in heights of 55 ± 2 cm in unexclosed areas compared to 66 ± 4 cm inside exclosures by the third post-treatment year. Overall, our findings suggest that fuel treatments play an important role in shrubland community dynamics, at least in the short-term, with implications for re-treatment frequency, community structure, and wildlife habitat.  相似文献   

10.
Annually burned tallgrass prairie is purported to be a nitrogen-limited system, especially when compared to unburned prairie. To test the hypothesis that legumes, potential nitrogen-fixers, would increase in relative abundance in annually burned sites, we assessed their density and biomass for two seasons on upland and lowland soils in annually burned and unburned watersheds. Total legume density was significantly higher in burned (8.0 ± 1.0 [SE] stems/m2) than in unburned watersheds (3.0 ± 0.3 stems/m2). Species with higher (P < 0.05) densities in burned than in unburned prairie included Amorpha canescens, Dalea candida, Dalea purpurea, Lespedeza violacea, Psoralea tenuiflora, and Schrankia nuttallii. Desmodium illinoense was the only legume that responded negatively to annual fire. Total legume biomass did not differ between burned (11.3 ± 1.3 g/m2) and unburned prairie (10.5 ± 0.9 g/m2). Biomass productions of Dalea candida and Psoralea tenuiflora were higher (P < 0.05) in burned than in unburned sites, but biomasses of other legumes were similar between burn treatments. Average individual stem masses of Amorpha canescens and Baptisia bracteata were significantly greater in unburned than in burned prairie. Legumes were affected differentially by topographic location. Total legume density was higher (P < 0.05) on lowland soils (6.6 ± 1.0 stems/m2) than on upland soils (4.3 ± 0.5 stems/m2). However, total legume biomass was not different between lowland soils (12.0 ± 1.2 g/m2) and upland soils (9.9 ± 1.0 g/m2). Densities and biomasses of Amorpha canescens, Desmodium illinoense, and Lespedeza capitata were higher on lowland sites than on upland sites, whereas densities and biomasses of Baptisia bracteata and Dalea purpurea were higher on upland than on lowland soils. Most legume species are either fire tolerant or exhibit a positive response to fire and their persistence in annually burned prairie suggests that they may play an important role in the nitrogen budget of this ecosystem.  相似文献   

11.
Mesic–dry tundras are widespread in the Arctic but detailed assessments of net primary production (NPP) and ecosystem carbon (C) stocks are lacking. We addressed this lack of knowledge by determining the seasonal dynamics of aboveground vascular NPP, annual NPP, and whole-ecosystem C stocks in five mesic–dry tundras in Northern Sweden with contrasting microtopography, altitude, and dominant species. Those measurements were paralleled by the stock assessments of nitrogen (N), the limiting nutrient. The vascular production was determined by harvest or in situ growing units, whereas the nonvascular production was obtained from average species growth rates, previously assessed at the sites. Results showed that aboveground vascular NPP (15–270 g m−2), annual NPP (214–282 g m−2 or 102–137 g C m−2) and vegetation biomass (330–2450 g m−2) varied greatly among communities. Vegetation dominated by Empetrum hermaphroditum is more productive than Cassiope tetragona vegetation. Although the large majority of the apical NPP occurred in early-mid season (85%), production of stems and evergreen leaves proceeded until about 2 weeks before senescence. Most of the vascular vegetation was belowground (80%), whereas most of the vegetation production occurred aboveground (85%). Ecosystem C and N stocks were 2100–8200 g C m−2 and 80–330 g N m−2, respectively, stored mainly in the soil turf and in the fine organic soil. Such stocks are comparable to the C and N stocks of moister tundra types, such as tussock tundra. Author Contributions  Matteo Campioli, Anders Michelsen, Roeland Samson, Raoul Lemeur—conceived and designed study, Matteo Campioli, Anders Michelsen, Andreas Demey, Annemie Vermeulen—performed research, Matteo Campioli—analyzed data, and Matteo Campioli—wrote the paper.  相似文献   

12.
A fire occurred (0.59 ha) in an alpine fellfield (2600 m a.s.l.) on Mount Shirouma, central Japan, on 9 May 2009 before the start of the growing season. Herbaceous plants and dwarf pine Pinus pumila dominated the site. Plots were established in burned and unburned herb vegetation and P. pumila scrub just after the fire to monitor vegetation recovery. This study reports the short-term monitoring results 3 months after the fire. Burned herb vegetation mostly recovered by late August 2009. However, burned P. pumila did not recover, and other alpine plants were scarce in burned P. pumila scrub. The observed number of species in herb vegetation was 15–20 m−2 whereas it was only 1–6 m−2 in P. pumila scrub. The total cover of plants was 111–129% for burned herb vegetation but was only 8–31% for burned P. pumila scrub. Although the species composition in P. pumila scrub distinctly differed between burned and unburned plots, in herb vegetation it was similar between them. Therefore, P. pumila scrub was greatly damaged by the fire, whereas herb vegetation was not damaged. Rapid recovery of herbaceous plants was because winter buds in the soil were not damaged by the fire, but winter buds on shoots of P. pumila were burned. Therefore, the difference in winter bud location (above or belowground) may have resulted in the difference in damage between herbaceous plants and P. pumila.  相似文献   

13.
To explore within-gap spatial patterns of soil surface CO2 flux, we measured instantaneous soil surface CO2 flux, soil surface temperature, and soil moisture in north–south transects across canopy gaps and in adjacent contiguous forest from April to November 2010 in a second-growth northern hardwood forest in Wisconsin, USA. Throughout the growing season, soil surface CO2 flux was higher in the northern 1/3 and northern edge of gaps compared to the central and southern portions. These patterns were driven primarily by within-gap variation in soil temperature, which was itself driven by within-gap patterns of insolation. Most locations in the northern 1/3 and northern edge of gaps had significantly higher modeled total growing season C flux (mean 725 g C m−2) compared to the contiguous forest (mean 706 g C m−2), whereas C flux in the central and southern portions of gaps (mean 555 g C m−2) was significantly lower than both the contiguous forest and the northern portions of gaps.  相似文献   

14.
Fire influences carbon dynamics from local to global scales, but many uncertainties remain regarding the remote detection and simulation of heterogeneous fire effects. This study integrates Landsat-based remote sensing and Biome-BGC process modeling to simulate the effects of high-, moderate-, and low-severity fire on pyrogenic emissions, tree mortality, and net ecosystem production. The simulation area (244,600 ha) encompasses four fires that burned approximately 50,000 ha in 2002–2003 across the Metolius Watershed, Oregon, USA, as well as in situ measurements of postfire carbon pools and fluxes that we use for model evaluation. Simulated total pyrogenic emissions were 0.732 Tg C (2.4% of equivalent statewide anthropogenic carbon emissions over the same 2-year period). The simulated total carbon transfer due to tree mortality was fourfold higher than pyrogenic carbon emissions, but dead wood decomposition will occur over decades. Immediately postfire, burned areas were a simulated carbon source (net C exchange: −0.076 Tg C y−1; mean ± SD: −142 ± 121 g C m−2 y−1). As expected, high-severity, stand-replacement fire had disproportionate carbon impacts. The per-unit area effects of moderate-severity fire were substantial, however, and the extent of low-severity fire merits its inclusion in landscape-scale analyses. These results demonstrate the potential to reduce uncertainties in landscape to regional carbon budgets by leveraging Landsat-based fire products that account for both stand-replacement and partial disturbance.  相似文献   

15.
Forest fire dramatically affects the carbon storage and underlying mechanisms that control the carbon balance of recovering ecosystems. In western North America where fire extent has increased in recent years, we measured carbon pools and fluxes in moderately and severely burned forest stands 2 years after a fire to determine the controls on net ecosystem productivity (NEP) and make comparisons with unburned stands in the same region. Total ecosystem carbon in soil and live and dead pools in the burned stands was on average 66% that of unburned stands (11.0 and 16.5 kg C m−2, respectively, P<0.01). Soil carbon accounted for 56% and 43% of the carbon pools in burned and unburned stands. NEP was significantly lower in severely burned compared with unburned stands (P<0.01) with an increasing trend from −125±44 g C m−2 yr−1 (±1 SD) in severely burned stands (stand replacing fire), to −38±96 and +50±47 g C m−2 yr−1 in moderately burned and unburned stands, respectively. Fire of moderate severity killed 82% of trees <20 cm in diameter (diameter at 1.3 m height, DBH); however, this size class only contributed 22% of prefire estimates of bole wood production. Larger trees (> 20 cm DBH) suffered only 34% mortality under moderate severity fire and contributed to 91% of postfire bole wood production. Growth rates of trees that survived the fire were comparable with their prefire rates. Net primary production NPP (g C m−2 yr−1, ±1 SD) of severely burned stands was 47% of unburned stands (167±76, 346±148, respectively, P<0.05), with forb and grass aboveground NPP accounting for 74% and 4% of total aboveground NPP, respectively. Based on continuous seasonal measurements of soil respiration in a severely burned stand, in areas kept free of ground vegetation, soil heterotrophic respiration accounted for 56% of total soil CO2 efflux, comparable with the values of 54% and 49% previously reported for two of the unburned forest stands. Estimates of total ecosystem heterotrophic respiration (Rh) were not significantly different between stand types 2 years after fire. The ratio NPP/Rh averaged 0.55, 0.85 and 1.21 in the severely burned, moderately burned and unburned stands, respectively. Annual soil CO2 efflux was linearly related to aboveground net primary productivity (ANPP) with an increase in soil CO2 efflux of 1.48 g C yr−1 for every 1 g increase in ANPP (P<0.01, r2= 0.76). There was no significant difference in this relationship between the recently burned and unburned stands. Contrary to expectations that the magnitude of NEP 2 years postfire would be principally driven by the sudden increase in detrital pools and increased rates of Rh, the data suggest NPP was more important in determining postfire NEP.  相似文献   

16.
This study evaluated the effects of forest fertilization on the forest carbon (C) dynamics in a 36-year-old larch (Larix leptolepis) plantation in Korea. Above- and below-ground C storage, litterfall, root decomposition and soil CO2 efflux rates after fertilization were measured for 2 years. Fertilizers were applied to the forest floor at rates of 112 kg N ha−1 year−1, 75 kg P ha−1 year−1 and 37 kg K ha−1 year−1 for 2 years (May 2002, 2003). There was no significant difference in the above-ground C storage between fertilized (41.20 Mg C ha−1) and unfertilized (42.25 Mg C ha−1) plots, and the C increment was similar between the fertilized (1.65 Mg C ha−1 year−1) and unfertilized (1.52 Mg C ha−1 year−1) plots. There was no significant difference in the soil C storage between the fertilized and unfertilized plots at each soil depth (0–15, 15–30 and 30–50 cm). The organic C inputs due to litterfall ranged from 1.57 Mg C ha−1 year−1 for fertilized to 1.68 Mg C ha−1 year−1 for unfertilized plots. There was no significant difference in the needle litter decomposition rates between the fertilized and unfertilized plots, while the decomposition of roots with 1–2 mm diameters increased significantly with the fertilization relative to the unfertilized plots. The mean annual soil CO2 efflux rates for the 2 years were similar between the fertilized (0.38 g CO2 m−2 h−1) and unfertilized (0.40 g CO2 m−2 h−1) plots, which corresponded with the similar fluctuation in the organic carbon (litterfall, needle and root decomposition) and soil environmental parameters (soil temperature and soil water content). These results indicate that little effect on the C dynamics of the larch plantation could be attributed to the 2-year short-term fertilization trials and/or the soil fertility in the mature coniferous plantation used in this study.  相似文献   

17.
The fire regime of ponderosa pine forests in the southwestern United States has shifted over the past century from historically frequent, low-intensity surface fires to infrequent, stand-replacing crown fires. We quantified plant and soil carbon (C) responses to this new fire regime and assessed interactions between changes in fire regime and changes in precipitation regime predicted by some climate models (specifically, an earlier monsoon rain season). We hypothesized that soil C pools and carbon dioxide (CO2) efflux rates would decrease initially following stand-replacing fires (due to low plant C inputs and the loss of the soil surficial organic (O) horizon), but then increase with time-after-fire (as plant C inputs increase). Water availability often limits soil biological activity in these forests, but we predicted that low soil C availability following fire would constrain soil CO2 efflux responses to precipitation. In a series of sites with histories of stand-replacing fires that burned between 2 and 34?years prior to sampling, burned patches had lower soil C pools and fluxes than adjacent unburned patches, but there was no evidence of a trend with time-after-fire. Burned forests had 7,500?g C m?2 less live plant biomass C (P?<?0.001), 1,600?g C m?2 less soil total C (P?<?0.001) and 90?g C m?2 less soil labile C (P?<?0.001) than unburned forests. Lower soil labile C in burned patches was due to both a loss of O horizon mass with fire and lower labile C concentrations (g labile C kg?1 soil total C) in the mineral soil. During the annual drought that precedes summer monsoon rains, both burned and unburned patches had soil CO2 efflux rates ranging from 0.9 to 1.1?g CO2-C m?2 day?1. During the monsoon season, soil CO2 efflux in unburned patches increased to approximately 4.8?g CO2-C m?2 day?1 and rates in paired burned patches (3.4?g CO2-C m?2 day?1) were lower (P?<?0.001). We also used field irrigation to experimentally create an earlier and longer monsoon season, and soil CO2 efflux rates at both burned and unburned plots increased initially in response to watering, but decreased to below control (plots without irrigation) rates within weeks. Watering did not significantly change cumulative growing season soil CO2 efflux, supporting our prediction that C availability constrains soil CO2 efflux responses to precipitation. This research advances our understanding of interactions among climate, fire, and C in southwestern forests, suggesting that climate-induced shifts toward more stand-replacing fires will decrease soil C for decades, such that a single fire can constrain future soil biological responses to precipitation regime changes.  相似文献   

18.
Fire can influence reproductive phenology of plants, enhancing the reproductive rate of many species. Disturbances such as fire can promote the proliferation of exotic species in native plant communities. In this study we analyze the effect of fire on reproductive phenology in three native species (a shrub: Berberis buxifolia and two small trees: Maytenus boaria and Schinus patagonicus) and in an exotic shrub (Rosa rubiginosa). Flowering and fruiting phenology was monitored in neighbouring burned and unburned forests. The shrubs flowered and fruited in both sites, but the small trees did so only in the unburned site. There is no overlapping in the flowering and fruiting phenophases between the natives and the exotic species. Therefore, they do not compete in resource offering to pollinators and seed dispersers. Consequently, R. rubiginosa has a ‘competition-free’ space enhanced by fire, from the reproductive phenology perspective.  相似文献   

19.
The rate of change in atmospheric CO2 is significantly affected by the terrestrial carbon sink, but the size and spatial distribution of this sink, and the extent to which it can be enhanced to mitigate climate change are highly uncertain. We combined carbon stock (CS) and eddy covariance (EC) flux measurements that were collected over a period of 15 years (2001–2016) in a 55 year old 30 km2 pine forest growing at the semiarid timberline (with no irrigating or fertilization). The objective was to constrain estimates of the carbon (C) storage potential in forest plantations in such semiarid lands, which cover ~18% of the global land area. The forest accumulated 145–160 g C m?2 year?1 over the study period based on the EC and CS approaches, with a mean value of 152.5 ± 30.1 g C m?2 year?1 indicating 20% uncertainty in carbon uptake estimates. Current total stocks are estimated at 7,943 ± 323 g C/m2 and 372 g N/m2. Carbon accumulated mostly in the soil (~71% and 29% for soil and standing biomass carbon, respectively) with long soil carbon turnover time (59 years). Regardless of unexpected disturbances beyond those already observed at the study site, the results support a considerable carbon sink potential in semiarid soils and forest plantations, and imply that afforestation of even 10% of semiarid land area under conditions similar to that of the study site, could sequester ~0.4 Pg C/year over several decades.  相似文献   

20.
Eddy covariance measurements of the surface energy balance and carbon dioxide exchange above high-elevation (3,480 m above sea level) alpine tundra located near Niwot Ridge, Colorado, were compared to simultaneous measurements made over an adjacent subalpine forest over two summers and one winter, from June 9, 2007 to July 3, 2008. The surface energy balance closure at the alpine site averaged 71 and 91%, winter and summer, respectively, due to the high wind speeds, short turbulent flux footprint, and relatively flat ridge-top location of the measurement site. Throughout the year, the alpine site was cooler with higher relative humidity, and had a higher horizontal wind speed, especially in winter, compared to the forest site. Wind direction was persistently downslope at the alpine site (summer and winter, day and night), whereas upslope winds were common at the forest site during summer daytime periods. The latent and sensible heat fluxes were consistently larger in magnitude at the forest site, with the largest differences during summer. The horizontal advective flux of CO2 at the alpine site averaged 6% of the net ecosystem exchange (NEE) during summer nights (5% during summer daytime), and was small in relation to the high wind speeds, relatively flat site, and weak sources of CO2 upwind of the site. The magnitudes and diurnal behavior of the alpine NEE calculated using three methods; eddy-covariance, friction velocity filter, and with advection and storage calculations, gave similar results. The period of net CO2 uptake (negative NEE) was 100 days at the alpine site with a net uptake of 16 g C m−2, compared to 208 days at the forest site with a net uptake of 108 g C m−2, with initiation of net uptake coinciding with air temperatures reaching +10°C. Winter respiration loss at the alpine site was 164 g C m−2 over 271 days, compared to 52 g C m−2 over 175 days at the forest site, with the initiation of net loss coinciding with air temperatures reaching −10°C at each site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号