首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An early developmental phase of pp60c-src expression in the neural ectoderm   总被引:10,自引:0,他引:10  
The expression of the normal cellular src protein (pp60c-src) was investigated in the early chick embryo during gastrulation and neurulation by immunoperoxidase staining using antisera, raised against bacterially expressed pp60v-src, that recognizes pp60c-src specifically in normal cells. During gastrulation pp60c-src immunoreactivity appeared primarily in the neural ectoderm and was much less prominent in the mesoderm, endoderm, and nonneural ectoderm. During neurulation pp60c-src immunoreactivity began to disappear from the wall of the closing neural tube so that by the completion of neural tube closure no specific pp60c-src immunoreactivity appeared in any of the neuroepithelial cells composing the neural tube. These studies reveal a developmental phase of pp60c-src expression even earlier than reported previously, when neuroepithelial cells of later embryos undergo terminal neuronal differentiation. These findings raise the possibility that pp60c-src may mediate two different differentiation signals in the neuronal lineage.  相似文献   

2.
Chicken embryo tissues were examined for the expression of pp60c-src, the normal cellular homolog of the transforming protein of Rous sarcoma virus. Three assays, including a solid-phase radioimmunoassay, a competitive radioimmunoprecipitation assay, and an immune complex protein kinase assay, were employed. Elevated levels of pp60c-src were detected in lysates from several neural tissues, including brain, retina, and spinal ganglia. Other tissues contained 8- to 10-fold-lower levels of pp60c-src, levels comparable to those found in chicken embryo fibroblasts. Expression of pp60c-src in brain tissues was also shown to vary with the developmental stage of the embryo.  相似文献   

3.
pp60c-src is developmentally regulated in the neural retina   总被引:60,自引:0,他引:60  
L K Sorge  B T Levy  P F Maness 《Cell》1984,36(2):249-257
We have localized normal cellular pp60c-src in the developing chick neural retina by immunocytochemical staining using antisera raised against bacterially expressed pp60v-src, the src gene product of Rous sarcoma virus. pp60c-src was expressed in developing retinal neurons at the onset of differentiation. Expression of pp60c-src persisted in mature neuronal cells that were postmitotic, fully differentiated, and functional. pp60c-src immunoreactivity was localized within processes and cell bodies of ganglion neurons, processes of rods and cones, and in some but not all neurons of the inner nuclear layer. Protein kinase assays and Western transfer analyses identified the immunoreactive protein as pp60c-src, and confirmed that its expression occurs at the time the first neuronal cells in the retina differentiate. We conclude from these studies that pp60c-src is the product of a developmentally regulated gene that is more important in neuronal differentiation or function than cell proliferation.  相似文献   

4.
Chick embryo neural retinal cells transdifferentiate extensively into lens cells when cultured in Eagle's MEM containing horse and fetal calf sera (FHMEM). Such cultures express elevated levels of pp60c-src-associated tyrosine kinase activity relative to parallel cultures prevented from transdifferentiating by the addition of supplementary glucose (FHGMEM) or replacement of MEM by medium 199 (F199). Northern blotting and in vitro translation studies suggest that c-src mRNA levels are only slightly higher in late transdifferentiating (FHMEM) cultures as compared to parallel blocked (FHGMEM or F199) cultures. By immunocytochemical staining, we show that pp60c-src protein is largely localized in cell groups undergoing conversion into lens (i.e. expressing delta crystallin) in late FHMEM cultures. Initial studies of pp60c-src in chick lens tissues during development indicate that higher kinase activity is found in the epithelial cells relative to mature lens fibres. Thus pp60c-src may be expressed both during the differentiation of lens cells in vivo and during the transdifferentiation of neural retina cells into lens in vitro.  相似文献   

5.
We have evaluated the level of pp60c-src protein kinase activity in a variety of human tumor tissues and human tumor cell lines, and have estimated the abundance of the c-src protein in several of these tissues and cell lines. All cell lines derived from tumors of neuroectodermal origin that express a neural phenotype were found to possess c-src molecules with high levels of tyrosine-specific protein kinase activity. In contrast, cell lines derived from tumors of neuroectodermal origin that do not express neural characteristics, such as glioblastomas and melanomas, were found to have pp60c-src molecules with low levels of protein kinase activity. A similar pattern was observed when we analyzed the activity of c-src molecules extracted directly from corresponding tumor tissues. Analysis of human tumor cell lines derived from tissues other than those of neuroectodermal origin revealed that pp60c-src protein kinase activity was low in most cases. Exceptions to this observation were all rhabdomyosarcoma, osteogenic sarcoma, Ewing's sarcoma, and colon carcinoma lines tested. Comparison of pp60c-src kinase activity in normal skeletal muscle and rhabdomyosarcoma tissue and in normal breast tissue and breast adenocarcinoma tissue revealed that pp60c-src kinase activity was specifically elevated in the tumor tissues in both cases. However, the amount of pp60c-src protein in both normal and tumor tissues was found to be similar. These observations suggest that increases in the specific activity of the pp60c-src phosphotransferase in some rhabdomyosarcomas and breast carcinomas may be a characteristic acquired during the malignant transformation of the cells that is retained in cell lines established from these tumors.  相似文献   

6.
7.
The c-src protein isolated from neuronal cells (pp60c-src+) displays a higher level of protein kinase activity than does pp60c-src from nonneural tissues. There are two structural alterations present in the amino-terminal half of pp60c-src+ expressed in neurons which could contribute to the enhanced activity of this form of pp60c-src: (i) a hexapeptide insert located at amino acid 114 of avian pp60c-src+ and (ii) a novel site(s) of serine phosphorylation. We characterized pp60c-src+ expressed in a nonneuronal cell type to identify factors that regulate the activity of the c-src+ protein and the importance of the neuronal environment on this regulation. The c-src+ protein overexpressed in chicken embryo fibroblasts (CEFs) displayed higher kinase activity than did pp60c-src. The major sites of phosphorylation of the c-src+ protein were Ser-17 and Tyr-527. The unique site(s) of serine phosphorylation originally identified in pp60c-src+ expressed in neurons was not detected in the c-src+ protein overexpressed in CEFs. Therefore, the hexapeptide insert is sufficient to cause an elevation in the tyrosine protein kinase activity of pp60c-src+. Our data also indicate that CEFs infected with the Rous sarcoma virus (RSV)c-src+ display phenotypic changes that distinguish them from cultures producing pp60c-src and that pp60c-src+-expressing cells are better able to grow in an anchorage-independent manner. The level of total cellular tyrosine phosphorylation in RSVc-src+-infected cultures was moderately higher than the level observed in cultures infected with RSVc-src. This level was not as pronounced as that observed in cells infected with RSVv-src or oncogenic variants of RSVc-src. Thus, pp60c-src+ could be considered a partially activated c-src variant protein much like other c-src proteins that contain mutations in the amino-terminal domain.  相似文献   

8.
Chicken embryo fibroblast cells overexpressing activated mutant forms of human pp60c-src, but not those overexpressing normal human pp60c-src, exhibited high levels of type I phosphatidylinositol (PI) kinase activity associated with pp60c-src. Levels of PI kinase activity were positively correlated with src tyrosine protein kinase activity and not with absolute levels of pp60c-src. Our results suggest that a linkage exists between certain forms of pp60c-src and the PI signal transduction pathway.  相似文献   

9.
pp60c-src in the developing cerebellum.   总被引:18,自引:18,他引:18       下载免费PDF全文
pp60c-src was localized in the cerebellum of developing chicken embryos by immunoperoxidase staining with antisera raised against bacterially expressed pp60v-src. Immunoreactivity (IR) appeared in the cerebellum of the chicken embryos at the time of neuronal differentiation. pp60c-src IR was detected in regions of the developing cerebellum where processes of developing neurons and glia are located. In the early embryo (stage 17), pp60c-src IR was localized in the marginal zone of the cerebellar plate. By stage 40, pp60c-src IR was localized in the process-rich molecular layer of the cerebellum and between the cells of the developing internal granular layer. Cell bodies of cerebellar neurons did not show pp60c-src IR at any stage of development. Mitotically active neuroepithelial cells of the metencephalon did not express pp60c-src before the onset of differentiation in the early embryo, nor did proliferating cells of the external granular layer express pp60c-src at later stages. Although it is not possible to ascertain whether pp60c-src is localized in developing neurons or glia at the light microscope level, the time of its appearance and pattern of distribution in the molecular layer is suggestive of a localization within the developing neuronal processes which compose the bulk of this layer. Biochemical analyses of pp60c-src in the developing cerebellum by the immune complex protein kinase activity and sensitivity of the kinase to inhibition by P1,P4-di(adenosine-5')tetraphosphate confirmed that the expression of pp60c-src coincided with the time of neuronal differentiation. We conclude from these results that in the central nervous systems, pp60c-src may be more important in an aspect of cell differentiation or a mature neuronal function than in the proliferation of neuronal or glial precursors.  相似文献   

10.
We have examined the effect of DNA tumor virus transformation of primary hamster embryo cells on the tyrosyl kinase activity of pp60c-src. Our present study demonstrates that some clones of hamster embryo cells transformed by simian virus 40, adenovirus type 2, adenovirus type 12, or bovine papillomavirus 1 can possess elevated pp60c-src kinase activity when compared with normal hamster embryo cells. However, other clones of hamster embryo cells transformed by these same viruses were found to have normal levels of pp60c-src kinase activity. In those clones of transformed cells where pp60c-src kinase activity was elevated, the increased levels of kinase activity were the result of an apparent increase in the specific activity of the pp60c-src phosphotransferase rather than an increase in the amount of the src gene product. Additionally, pp60c-src was not found to be physically associated with tumor antigens known to be encoded by these viruses. These results indicate that elevated levels of pp60c-src kinase activity can be found in hamster embryo cells transformed by several different DNA tumor viruses and suggest that the molecular mechanism by which pp60c-src kinase activity is elevated may differ from that previously observed in polyomavirus-transformed cells. These results also imply that elevation of pp60c-src kinase activity is not required for the transformation of hamster cells by these viruses.  相似文献   

11.
To examine how amino acid sequences outside of the catalytic domain of pp60c-src influence the functional activity of this protein, we have introduced deletion mutations within the amino-terminal half of pp60c-src. These mutations caused distinct changes in the biochemical properties of the c-src gene products and in the properties of cells infected with retroviruses carrying these mutant c-src genes. Cells expressing the c-srcNX protein, which contains a deletion of amino acids 15 to 89, displayed a refractile, spindle-shaped morphology, formed intermediate-sized, tightly packed colonies in soft agar, and contained elevated levels of cellular phosphotyrosine-containing proteins. Thus, deletion of amino acids 15 to 89 can activate the kinase activity and transforming potential of the c-src gene product. Deletion of amino acids 112 to 225, however, did not increase the kinase activity or transforming ability of pp60c-src; indeed, deletion of these sequences in c-srcHP suppressed phenotypic alterations induced by pp60c-src. Cells expressing the c-srcNP or c-srcBS gene products (containing deletions of amino acids 15 to 225 and 55 to 169, respectively) displayed a fusiform, refractile morphology and formed diffuse colonies in soft agar; the mutant proteins displayed an increased in vitro protein-tyrosine kinase activity. However, only a few cellular proteins contained elevated levels of phosphotyrosine in vivo. Thus, deletions downstream of amino acid 89 severely restricted the ability of c-src to phosphorylate cellular substrates in vivo without affecting the intrinsic tyrosine kinase activity of the c-src gene product. These results suggest the existence of at least two modulatory regions within the amino-terminal half of pp60c-src that are important for the regulation of tyrosine kinase activity and for the interaction of pp60c-src with cellular substrates.  相似文献   

12.
A tyrosine-specific protein kinase immunologically related to pp60c-src, the cellular homolog of the Rous sarcoma virus-transforming protein, was expressed at elevated levels in the electric organ of the electric eel Electrophorus electricus. The electric organ kinase phosphorylated antibodies reactive with pp60c-src at tyrosine residues in immune complex protein kinase assays and was associated with electric organ membranes enriched in acetylcholine receptors. The protein recognized by anti-pp60c-src antibodies was phosphorylated in endogenous membrane phosphorylation reactions and was shown to have a relative molecular mass of 57 kDa by two-dimensional gel electrophoresis. In immune complex protein kinase assays the 57-kDa protein was phosphorylated at threonine by a distinct threonine kinase from the electric organ. The tyrosine kinase was purified 844-fold from electric organ membranes by chromatography on omega-aminohexyl agarose, phosphocellulose, and casein-Sepharose. Threonine kinase activity in immunoprecipitates was not observed in the tyrosine kinase fractions after the first step. Incubation of the casein Sepharose fraction with [gamma-32P]ATP-Mn2+ in solution resulted in phosphorylation of only the 57-kDa protein. Phosphorylation occurred solely at tyrosine, suggesting that the kinase is capable of autophosphorylation. The structural and functional properties of the 57-kDa electric organ kinase indicate that the 57-kDa electric organ protein is a member of the src subfamily of tyrosine kinases and is closely related to pp60c-src.  相似文献   

13.
All specimens of Eumetazoa and Parazoa, ranging from mammals, birds, teleosts, sharks, lampreys, amphioxus, insects, down to sponges showed the pp60c-src associated kinase activity, indicating that c-src, which is the cellular homologue of the oncogene v-src of Rous sarcoma virus (RSV) is probably present in all multicellular animals. Protozoa and plants did not show pp60c-src kinase activity. The degree of c-src expression depends on the taxonomic rank of the Eumetazoa tested, and is organ-specific with nervous tissues displaying the highest kinase activities. In the central nervous system of mammals and birds we found a high c-src expression, and in that of the lampreys, amphioxus, and insects the lowest. Unexpectedly, total extracts of sponges showed an amount of pp60c-src kinase activity similar to that of brain cell extracts of mammals and birds. These findings suggest that pp60c-src is a phylogenetic old protein that might have evolved together with the multicellular organisation of Metazoa, and that might be of importance in proliferation and differentiation of nontransformed cells.  相似文献   

14.
We have examined the effect of polyoma virus infection of primary mouse embryo cells on the tyrosyl kinase activity associated with the cellular src gene product, pp60c-src. The results of our studies demonstrate that infection of mouse cells with wild-type polyoma virus or viral mutants capable of transforming rodent cells in culture and inducing tumors in animals results in the stimulation of pp60c-src tyrosyl kinase activity. The level of pp60c-src kinase stimulation in infected cells was found to be proportional to both the oncogenic potential of the virus strain used for infection and the characteristic phenotype of rodent cells transformed by the various strains of polyoma virus. Stimulation of pp60c-src kinase activity was not observed in mouse cells infected with transformation-defective strains of polyoma virus. In examining the kinetics of pp60c-src kinase stimulation in mouse cells at various times following wild-type polyoma virus infection, we found that the level of pp60c-src kinase activity correlated directly with the synthesis of polyoma virus-encoded tumor antigens. By comparing wild-type polyoma virus with other viral mutants in these experiments, we conclude that the stimulation of pp60c-src kinase activity in mouse cells following polyoma virus infection is associated with the synthesis of middle tumor antigen.  相似文献   

15.
We characterize two independent variant cellular clones which arose following in vitro passage of polyomavirus middle-T-antigen (MTAg)-transformed FR3T3 cells expressing RNA complementary to c-src mRNA. These clones were initially flat and underwent morphologic transformation at a high frequency to a phenotype indistinguishable from that of parental MTAg-transformed FR3T3 cells. Biochemical analysis of the flat clones prior to phenotypic conversion revealed that these cells synthesized little detectable pp60c-src and had correspondingly low levels of pp60c-src protein kinase activity and MTAg-associated protein kinase activity. The flat cell clones did not possess detectable focus-forming activity, were not capable of detectable anchorage-independent growth, and had saturation densities and doubling times below those normally observed for FR3T3 cells. Following conversion of the flat clones to a shape resembling that of typical MTAg-transformed cells, the abundance of pp60c-src, pp60c-src kinase activity, and MTAg-associated in vitro protein kinase activity were all restored to the levels found in the parental MTAg transformants. These cells had growth rates, focus-forming activities, anchorage-independent growth rates, and saturation densities similar to those of the parental MTAg-transformed rat cells. These data provide additional evidence that maintenance of a transformed phenotype by polyomavirus MTAg in established rat cell lines depends, at least in part, on a minimal threshold level of pp60c-src.  相似文献   

16.
In vivo effect of sodium orthovanadate on pp60c-src kinase.   总被引:7,自引:4,他引:3  
We have compared the tyrosine kinase activity of pp60c-src isolated from intact chicken embryo fibroblasts treated with micromolar sodium orthovanadate for 4 h and from untreated cells. We found an approximate 50% reduction in both autophosphorylation of pp60c-src and phosphorylation of casein when examined in the immune complex kinase assay. The reduction of in vitro enzymatic activity correlated with a vanadate-induced increase in in vivo phosphorylation of pp60c-src at the major site of tyrosine phosphorylation in the carboxyl-terminal half of the molecule and at serine in the amino-terminal half of the molecule. Our observations in vivo and those of Courtneidge in vitro (EMBO J. 4:1471-1477, 1985) suggest that vanadate may enhance a cellular regulatory mechanism that inhibits the activity of pp60c-src in normal cells. A likely candidate for this mechanism is phosphorylation at a tyrosine residue distinct from tyrosine 416, probably tyrosine 527 in the carboxyl-terminal sequence of amino acids unique to pp60c-src. The regulatory role, if any, of serine phosphorylation in pp60c-src remains unclear. The 36-kilodalton phosphoprotein, a substrate of pp60v-src, showed a significant phosphorylation at tyrosine after treatment of normal chicken embryo fibroblasts with vanadate. Assuming that pp60c-src is inhibited intracellularly by vanadate, either another tyrosine kinase is stimulated by vanadate (e.g., a growth factor receptor) or the 36-kilodalton phosphoprotein in normal cells is no longer rapidly dephosphorylated by a tyrosine phosphatase in the presence of vanadate.  相似文献   

17.
We have constructed a recombinant murine retrovirus which efficiently transduces avian pp60c-src into murine cells and which is easily rescued from infected cells in plasmid form. To characterize the virus, several randomly selected NIH 3T3 lines were isolated after infection with recombinant retroviral stocks. All lines overproduced avian pp60c-src and appeared morphologically normal. Immunoprecipitates made from these lines with antisera specific for pp60c-src were tested for their kinase activities in vitro. We find that both autokinase and enolase kinase activities increase proportionately with the level of pp60c-src in the immunoprecipitates. To further test the authenticity of the pp60c-src encoded by the retroviral vector, these analyses were repeated in the presence of polyomavirus middle T antigen. Avian pp60c-src was activated as a protein kinase, indicating that the virally encoded pp60c-src interacts normally with middle T antigen. Interestingly, by increasing the intracellular levels of pp60c-src 15-fold over normal endogenous levels, we were unable to obtain a proportionate increase in the amount of middle-T-antigen-pp60c-src complex. Finally, using the shuttle features designed into the vector, we have isolated the first fully processed cDNA encoding functional avian pp60c-src X pp60c-src synthesized in vitro with this cDNA had intrinsic protein kinase activity and no detectable phosphatidylinositol kinase activity.  相似文献   

18.
Abstract. All specimens of Eumetazoa and Parazoa, ranging from mammals, birds, teleosts, sharks, lampreys, amphioxus, insects, down to sponges showed the pp60 c-src associated kinase activity, indicating that c-src , which is the cellular homologue of the oncogene v-src of Rous sarcoma virus (RSV) is probably present in all multicellular animals. Protozoa and plants did not show pp60 c-src kinase activity.
The degree of c-src expression depends on the taxonomic rank of the Eumetazoa tested, and is organ-specific with nervous tissues displaying the highest kinase activities. In the central nervous system of mammals and birds we found a high c-src expression, and in that of the lampreys, amphioxus, and insects the lowest. Unexpectedly, total extracts of sponges showed an amount of pp60 c-src kinase activity similar to that of brain cell extracts of mammals and birds. These findings suggest that pp60 c-src is a phylogenetic old protein that might have evolved together with the multi-cellular organisation of Metazoa, and that might be of importance in proliferation and differentiation of nontransformed cells.  相似文献   

19.
Stimulation of protein kinase C in polyoma virus-transformed cells increased the phosphorylation of tyrosine residues of the viral middle T (mT) antigen in mT:pp60c-src complexes precipitated by anti-mT antibodies. This increase might have been due to a stimulation of the complex's pp60c-src tyrosine kinase activity or to an increased ability of the mT protein to be phosphorylated by pp60c-src. These observations suggest that cellular protein kinase C might control the ability of polyoma virus to transform its host cell.  相似文献   

20.
The transforming protein of polyomavirus, middle T (mT), forms a complex with two cellular enzymes: the protein tyrosine kinase pp60c-src and a phosphatidylinositol (PtdIns) 3-kinase. A mutant virus, Py1178T, encodes an mT protein which associates with and activates pp60c-src to the same extent as the wild type but fails to associate with PtdIns 3-kinase. To investigate relationships between activation of pp60c-src, association of PtdIns 3-kinase, and cellular levels of the second messenger inositol 1,4,5-trisphosphate (InsP3), we examined the effects of wild-type and mutant mT proteins on inositol metabolism in rat and mouse fibroblasts. Expression of either wild-type or 1178T mT caused a 300 to 500% increase in the InsP3 level. Cells transformed by Rous sarcoma virus also showed similar increases in InsP3 levels. Mutant mT proteins which failed to activate pp60c-src (NG59 and 1387T) had no effect on InsP3 levels. Pulse-chase experiments with [3H]inositol showed that the turnover of phosphoinositides was increased in cells transformed by either wild-type polyomavirus or Py1178T as compared with the normal parent cell line. The turnover of inositol phosphates was unchanged upon transformation. These data indicate that cells expressing either wild-type or mutant 1178T mT or pp60v-src exhibit elevated levels of InsP3 because of activation of phospholipase C. This activation appears to depend, directly or indirectly, upon activation of pp60src protein kinase activity. Activation of pp60c-src and elevation of InsP3 content are not sufficient for full transformation. Full transformation also requires the association of mT-pp60c-src complexes with PtdIns 3-kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号