首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, sensitive, and low-cost immunosensor was designed for the detection of digoxin through core–shell gold coated magnetic nanoparticles (Fe3O4-Au-NPs) as an electrochemical label. Having had such a large potential for a variety of applications, Fe3O4-Au-NPs have attracted a considerable attention and are actively investigated recently. Digoxin is a cardiac glycoside which, at high level, can indicate an increased risk of toxicity. This new competitive electrochemical immunosensor was developed based on antigen–antibody reaction employing antigen (Ag) labeled Fe3O4-Au-NPs and PVA modified screen-printed carbon electrode surface in order to detect the serum digoxin. The structures of Fe3O4-Au-NPs were studied by transmission electron microscopy, X-ray diffraction and Fourier transformed infrared spectroscopy. Cyclic voltammetry and differential pulse voltammetry (DPV) were employed to determine the physicochemical and electrochemical properties of immunosensor. DPV was employed for quantitative detection of digoxin in biological samples. The developed immunosensor was capable to detect digoxin in the range from 0.5 to 5 ng mL?1, with a detection limit as low as 0.05 ng mL?1. The proposed method represented acceptable reproducibility, stability, and reliability for the rapid detection of digoxin in serum samples.  相似文献   

2.
Titanium dioxide nanoparticles (TiO2-NPs) interaction with human serum albumin (HSA) and DNA was studied by UV–visible spectroscopy, spectrofluorescence, circular dichroism (CD), and transmission electron microscopy (TEM) to analyze the binding parameters and protein corona formation. TEM revealed protein corona formation on TiO2-NPs surface due to adsorption of HSA. Intrinsic fluorescence quenching data suggested significant binding of TiO2-NPs (avg. size 14.0 nm) with HSA. The Stern–Volmer constant (Ksv) was determined to be 7.6 × 102 M?1 (r2 = 0.98), whereas the binding constant (Ka) and number of binding sites (n) were assessed to be 5.82 × 102 M?1 and 0.97, respectively. Synchronous fluorescence revealed an apparent decrease in fluorescence intensity with a red shift of 2 nm at Δλ = 15 nm and Δλ = 60 nm. UV–visible analysis also provided the binding constant values for TiO2-NPs–HSA and TiO2-NPs-DNA complexes as 2.8 × 102 M?1 and 5.4 × 103 M?1. The CD data demonstrated loss in α-helicity of HSA and transformation into β-sheet, suggesting structural alterations by TiO2-NPs. The docking analysis of TiO2-NPs with HSA revealed its preferential binding with aromatic and non-aromatic amino acids in subdomain IIA and IB hydrophobic cavity of HSA. Also, the TiO2-NPs docking revealed the selective binding with A-T bases in minor groove of DNA.  相似文献   

3.
Streptococcus mitis from the oral cavity causes endocarditis and other systemic infections. Rising resistance against traditional antibiotics amongst oral bacteria further aggravates the problem. Therefore, antimicrobial and antibiofilm activities of zinc oxide and titanium dioxide nanoparticles (NPs) synthesized and characterized during this study against S. mitis ATCC 6249 and Ora-20 were evaluated in search of alternative antimicrobial agents. ZnO and TiO2-NPs exhibited an average size of 35 and 13 nm, respectively. The IC50 values of ZnO and TiO2-NPs against S. mitis ATCC 6249 were 37 and 77 µg ml?1, respectively, while the IC50 values against S. mitis Ora-20 isolate were 31 and 53 µg ml?1, respectively. Live and dead staining, biofilm formation on the surface of polystyrene plates, and extracellular polysaccharide production show the same pattern. Exposure to these nanoparticles also shows an increase (26–83 %) in super oxide dismutase (SOD) activity. Three genes, namely bapA1, sodA, and gtfB like genes from these bacteria were identified and sequenced for quantitative real-time PCR analysis. An increase in sodA gene (1.4- to 2.4-folds) levels and a decrease in gtfB gene (0.5- to 0.9-folds) levels in both bacteria following exposure to ZnO and TiO2-NPs were observed. Results presented in this study verify that ZnO-NPs and TiO2-NPs can control the growth and biofilm formation activities of these strains at very low concentration and hence can be used as alternative antimicrobial agents for oral hygiene.  相似文献   

4.
The potential impact of titanium dioxide nanoparticles (TiO2 NPs) on nitrogen removal from wastewater in activated sludge was investigated using a sequencing batch reactor. The addition of 2–50 mg L?1 of TiO2 NPs did not adversely affect nitrogen removal. However, when the activated sludge was exposed to 100–200 mg L?1 of TiO2 NPs, the effluent total nitrogen removal efficiencies were 36.5 % and 20.3 %, respectively, which are markedly lower than the values observed in the control test (80 %). Further studies showed that the decrease in biological nitrogen removal induced by higher concentrations of TiO2 NPs was due to an inhibitory effect on the de-nitrification process. Denaturing gradient gel electrophoresis profiles showed that 200 mg L?1 of TiO2 NPs significantly reduced microbial diversity in the activated sludge. The effect of light on the antibacterial activity of TiO2 NPs was also investigated, and the results showed that the levels of TiO2-dependent inhibition of biological nitrogen removal were similar under both dark and light conditions. Additional studies revealed that different TiO2 concentrations had a significant effect on dehydrogenase activity, and this effect was most likely the result of decreased microbial activity.  相似文献   

5.
Biofouling in aquatic environments have a wide range of detrimental effects on man-made structures and cause economic loss. Current antifouling compounds including Diuron, dichlorofluanid, and Irgarol are toxic and can accumulate in marine environments. Thus, effective and environmentally friendly antifoulants are needed. Six structurally similar compounds were isolated from the brown alga, Sargassum horneri, based on bioactivity-guided isolation by reversed-phased liquid flash chromatography and high-performance liquid chromatography. Six chemical constituents possessing antifouling activities were identified as chromanols consisting of polyprenyl chain by nuclear magnetic resonance and mass spectroscopy. Antifouling activities of these six compounds were determined against representative fouling organisms including a hard fouling organism the mussel Mytilus edulis, a soft fouling macroalga Ulva pertusa, the biofouling diatom Navicula annexa, and the biofouling bacteria Pseudomonas aeruginosa KNP-3 and Alteromonas sp. KNS-8. The compounds could inhibit larvae settlement of mussel M. edulis with an EC50 of 0.11–3.34 μg mL?1, spore settlement of U. pertusa zoospores (EC50 of 0.01–0.43 μg mL?1), and the diatom N. annexa (EC50 of 0.008–0.19 μg mL?1). The two biofouling bacteria were sensitive to the tested compounds (minimum inhibitory concentration of 1.68–36.8 and 1.02–30.4 μg mL?1, respectively). From toxicity tests on juvenile Sebastes schlegelii fish, brine shrimp Artemia salina, and microalga Tetraselmis suecica, S3 had the lowest LC50 values of 60.2, 108, and 6.7 μg mL?1 and exhibited no observed effect concentration at 24.5, 41.6, and 3.1 μg mL?1 for these three tested marine organisms, respectively.  相似文献   

6.
Valant J  Drobne D 《Protoplasma》2012,249(3):835-842
Isolated digestive gland epithelium from a model invertebrate organism was used in an ex vivo system to assess the potential of nanoparticulate TiO2 to disrupt cell membranes. Primary particle size, surface area, concentration of particles in a suspension, and duration of exposure to TiO2 particles were all found to have effects, which are observed at concentrations of nano-TiO2 as low as 1 μg mL?1. The test system employed here can be used as a fast screening tool to assess biological potential of nanoparticles with similar chemical composition but different size, concentration, or duration of exposure. We discuss the potential of ex vivo tests to avoid some of the limitations of conventional in vitro tests.  相似文献   

7.
A heterobimetallic single molecular precursor, [Fe2Ti4(μ-O)6(TFA)8(THF)6] (1) [TFA = trifluoroacetate, THF = tetrahydrofuran], was synthesized by the simple reaction of [Fe3O(OAc)6(H2O)3]NO3·4H2O [OAc = acetato] with tetrakis(2-ethoxyethanalato)titanium(IV) in the presence of trifluoroacetic acid in THF. The synthesized precursor was analyzed by melting point, CHN analysis, FTIR, single crystal X-ray diffraction and thermogravimetric analysis. Complex (1) crystallizes in the orthorhombic space group Pca21 with cell dimensions a = 19.2114(14), b = 20.4804(15) and c = 17.2504(12) Å, and the complex undergoes thermal decomposition at 490 °C to give a residual mass corresponding to an Fe2TiO5-TiO2 composite mixture. The synthesized precursor was utilized for deposition of Fe2TiO5-TiO2 composite thin films by aerosol-assisted chemical vapor deposition (AACVD) on glass substrates at 500 °C using argon as the carrier gas. Scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray powder diffraction (XRD) analyses of the thin films suggest the formation of good quality crystalline thin films of an Fe2TiO5-TiO2 composite with an average grain size of 0.105-0.120 μm.  相似文献   

8.
Given the increasing discoveries related to the eco-toxicity of titanium dioxide (TiO2) nanoparticles (NPs) in different ecosystems and with respect to public health, it is important to understand their potential effects in drinking water treatment (DWT). The effects of TiO2 NPs on ammonia reduction, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in biological activated carbon (BAC) filters for drinking water were investigated in static and dynamic states. In the static state, both the nitrification potential and AOB were significantly inhibited by 100 μg L?1 TiO2 NPs after 12 h (p < 0.05), and the threshold decreased to 10 μg L?1 with prolonged exposure (36 h, p < 0.05). However, AOA were not considerably affected in any of the tested conditions (p > 0.05). In the dynamic state, different amounts of TiO2 NP pulses were injected into three pilot-scale BAC filters. The decay of TiO2 NPs in the BAC filters was very slow. Both titanium quantification and scanning electron microscope analysis confirmed the retention of TiO2 NPs in the BAC filters after 134 days of operation. Furthermore, the TiO2 NP pulses considerably reduced the performance of ammonia reduction. This study identified the retention of TiO2 NPs in BAC filters and the negative effect on the ammonia reduction, suggesting a potential threat to DWT by TiO2 NPs.  相似文献   

9.
A series of hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(B)L n ] (n = 1–4; B = PPh3, AsPh3 or Py) have been synthesized by reacting dibasic quadridentate Schiff base ligands H2L n (n = 1–4) with starting complexes [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py). The synthesized complexes were characterized using elemental and various spectral studies including UV–Vis, FT-IR, NMR (1H, 13C and 31P) and mass spectroscopy. An octahedral geometry was tentatively proposed for all the complexes based on the spectral data obtained. The experiments on antioxidant activity showed that the ruthenium(II) S-methylisothiosemicarbazone Schiff base complexes exhibited good scavenging activity against various free radicals (DPPH, OH and NO). The in vitro cytotoxicity of these complexes has been evaluated by MTT assay. The results demonstrate that the complexes have good anticancer activities against selected cancer cell line, human breast cancer cell line (MCF-7) and human skin carcinoma cell line (A431). The DNA cleavage studies showed that the complexes have better cleavage of pBR 322 DNA.  相似文献   

10.
The present study aims to investigate the levels of polyphenols and antioxidant activity in one of the most important commercial species of seaweeds in Kamchatka, an edible brown seaweed Saccharina bongardiana. Six extracts of S. bongardiana, acetone, methanol, ethanol, and the respective 70 % aqueous solutions, were assessed for total phenol content in order to determine the most efficient extracting solvent. The total phenol content was measured by the Folin–Ciocalteu method and expressed as phloroglucinol equivalents (PGE). The antioxidant tests used were 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, linoleic acid-β carotene oxidation inhibiting assay, and Fe2+ ion chelating method. Higher phenolic contents were obtained using aqueous organic solvents, as compared to the respective absolute solvents; 70 % acetone was found to be the most efficient solvent (1.039 mg PGE 100 mg?1 dry algal powder). High significant correlations were noted between total phenol content and the tested antioxidant activities; so the aqueous organic extracts exhibited the highest antioxidant activities versus DPPH radicals (EC50 values of 0.6–1.1 mg dry weight (DW) mL?1), linoleic acid-β carotene oxidation (74–78 % at 0.8 mg DW mL?1), as well as ferrous ions (EC50 values of 5.0–7.9 mg DW mL?1). Some methodological recommendations regarding the assays used and the expression of results are proposed.  相似文献   

11.
Polysaccharides, galactans, obtained from edible red seaweed Hypnea musciformis were characterized by molecular weight and infrared spectroscopy analysis and were evaluated for antioxidant activity in vitro and for their effects on cell viability. The main components were galactose and sulfate presenting low protein contamination. These sulfated galactans (F1.0) showed a polydisperse profile, and signs in infrared analysis were attributed to a sulfate ester S?=?O bond, the presence of a 3,6-anhydrogalactose C–O bond, nonsulfated β-d-galactose, and a C–O–SO4 bond in galactose C4. The NMR analysis showed signals at about 95 and 92 attributed to anomeric carbon of 4-linked 3,6-anhydro-α-d-galactopyranose residue of κ-carrageenans and 4-linked 3,6-anhydro-α-d-galactopyranose2-sulfate of ι-carrageenans. Sulfated galactan F1.0 showed strong antioxidant activity under lipid peroxidation assay where F1.0 at 8 mg mL?1 promoted 57.92% peroxidation inhibition and displayed the scavenging activity on hydroxyl radicals in a dose-dependent manner leading to 32.5% scavenging of these radicals when 5 mg mL?1 of sulfated galactan F1.0 was used. The sulfated galactan fraction also exhibited strong inhibition on the H2O2-induced hemolysis model. Sulfated galactan F1.0 displayed low cytotoxic action in 3 T3 cells and moderate antitumoral action in HeLa cells. These results suggest that sulfated galactan F1.0 from H. musciformis has antioxidant potential, which is a great effect for a compound used as food and in the food industry.  相似文献   

12.
Organic and water extracts of Isochrysis galbana T-ISO (=Tisochrysis lutea), Tetraselmis sp. and Scenedesmus sp. were evaluated for their antioxidant activity, acetylcholinesterase (AChE) inhibition, cytotoxicity against tumour cell lines, and fatty acids and total phenolic content (TPC). I. galbana T-ISO had the highest TPC (3.18 mg GAE g?1) and radical scavenging activity, with an IC50 value of 1.9 mg mL?1 on the acetone extract. The extracts exhibited a higher ability to chelate Fe2+ than Cu2+, and the maximum Fe2+ chelating capacity was observed in the hexane extract of Scenedesmus sp. (IC50=0.73 mg mL?1) and Scenedesmus sp. (IC50?=?0.73 mg mL?1). The highest ability to inhibit AChE was observed in the water and ether extracts of Scenedesmus sp., with IC50 values of 0.11 and 0.15 mg mL?1, respectively, and in the water extract of I. galbana (IC50?=?0.16 mg mL?1). The acetone extract of I. galbana T-ISO significantly reduced the viability of human hepatic carcinoma HepG2 cells (IC50?=?81.3 μg mL?1) as compared to the non-tumour murine stromal S17 cell line, and displayed a selectivity index of 3.1 at the highest concentration tested (125 μg mL?1). All species presented a highly unsaturated fatty acids profile. Results suggest that these microalgae, particularly I. galbana T-ISO, could be a source of biomolecules for the pharmaceutical industry and the production of functional food ingredients and can be considered as an advantageous alternative to several currently produced microalgae.  相似文献   

13.
A spirostane with an attached trisaccharide, (25R)-5α-spirostane-2α,3β,5α-triol 3-O-(O-α-l-rhamnopyranosyl-(1 → 2)-O-(β-d-galactopyranosyl-(1 → 3))-β-d-glucopyranoside), was isolated and identified from the aerial parts of Agapanthus africanus by activity-guided fractionation. Fungicidal properties of the crude extract, semi-purified fractions as well as the purified active saponin from A. africanus were screened in vitro against Fusarium oxysporum. At a concentration of 1 mg mL?1, the crude extract and semi-purified ethyl acetate and dichloromethane fractions showed significant antifungal activity. The purified saponin inhibited the in vitro mycelial growth of F. oxysporum completely (100 %) at a concentration of 125 µg mL?1. Furthermore, to verify previously observed induced resistance by crude extracts of A. africanus towards leaf rust, intercellular PR-protein activity was determined in wheat seedlings following foliar application of the purified saponin at 100 µg mL?1. In vitro peroxidase enzyme activity increased significantly (60 %) in wheat seedlings 48 h after treatment with the purified saponin, demonstrating its role as an elicitor to activate a defence reaction in wheat.  相似文献   

14.
15.
For the Fe–O2(S = 0) linkages of oxyhemes, valence bond (VB) structures are re-presented for the McClure [FeII(S = 1) + O2(S = 1)], Pauling–Coryell [FeII(S = 0) + O2*(S = 0)], and Weiss [FeIII(S = ½) + O2 ?(S = ½)] models of bonding. The VB structures for the McClure and Weiss models are of the increased-valence type, with more electrons participating in bonding than occur in their component Lewis structures. The Fe–O bond number and O–O bond order for the McClure structure are correlated with measured Fe–O and O–O bond lengths for oxymyoglobin. Back-bonding from O 2 ? to FeIII of the Weiss structure gives a restricted form of the McClure structure. The McClure and Weiss increased-valence structures are used to provide VB formulations of mechanisms for the oxyhemoglobin + NO reaction. The products of these two formulations are Hb+ and NO3 ? (where Hb is hemoglobin) and Hb+ and OONO?, respectively. Because Hb+ and NO3 ? are the observed products, they provide an experimental procedure for distinguishing the McClure and Weiss models. It is also shown that the same type of agreement between McClure-type theory and experiment occurs for oxycoboglobin + NO, cytochrome P450 monooxygenases, and related hydrogen atom transfer reactions. In the appendices, the results of density functional theory and multireference molecular orbital calculations for oxyhemes are related to one formulation of the increased-valence wavefunction for the McClure model, and theory is presented for the calculation of approximate weights for the Lewis structures that are components of the McClure increased-valence structure.  相似文献   

16.
Evaluation of antioxidant capacities of green microalgae   总被引:2,自引:0,他引:2  
Three strains of green microalgae, Chlorococcum sp.C53, Chlorella sp. E53, and Chlorella sp.ED53 were studied for their antioxidant activities. Crude extracts of these microalgae in hot water and in ethanol were examined for their total phenolic contents and for their antioxidant capacities. In order to determine their phenolic contents, the Folin–Ciocalteu method was used. As for the determination of their antioxidant capacities, four different assays were used: (1) total antioxidant capacity determination; (2) DPPH radical scavenging assay; (3) ferrous ion chelating ability assay; and (4) inhibition of lipid peroxidation (using thiobarbituric acid reactive substance). For all the strains we have studied, their ethanolic extract showed more antioxidant activities than their hot water extract. Categorically, the ethanolic extract of Chlorella sp.E53 exhibited both the highest total phenolic content of 35.5?±?0.14 mg gallic acid equivalent (GAE) g?1 dry weight and the highest DPPH radical scavenging of 68.18?±?0.38 % at 1.4 mg mL?1 (IC50 0.81 mg mL?1), whereas Chlorella sp.ED53 showed both the highest ferrous ion chelation activity of 42.78?±?1.48 % at 1 mg mL?1 (IC50 1.23 mg mL?1) and the highest inhibition of lipid peroxidation of 87.96?±?0.59 % at 4 mg mL?1. This high level of inhibition is comparable to 94.42?±?1.39 % of butylated hydroxytoluene, a commercial synthetic antioxidant, at the same concentration.  相似文献   

17.
In the study, a new assay of vascular endothelial growth factor (VEGF) has been developed by the use of gold nanoparticles (GNPs)–anti-VEGF conjugates. The immunoreaction between GNPs–anti-VEGF conjugates and VEGF took place in pH?7.5 PBS buffer solution after the addition of VEGF. The formation of GNPs modified VEGF immunocomplex resulted in the enhanced resonance light scattering (RLS) intensity at 388.0 nm. Under the optimal conditions, the magnitude of enhanced RLS intensity (ΔI RLS) was proportional to the VEGF concentration in the range from 100 to 1,500 pg?mL?1, with a detection limit of 60 pg?mL?1. The surface plasma resonance absorption spectrum, the characteristics of RLS, the VEGF immunocomplex, and the optimum conditions of the immunoreaction have all been investigated. The VEGF concentrations of 20 serum specimens detected by the developed assay showed consistent results in comparison with those obtained by commercially available enzyme-linked immunosorbent assay kit.  相似文献   

18.
A novel series of 2-(5-methyl-1,3-diphenyl-1H-pyrazol-4-yl)-5-phenyl-1,3,4-oxadiazoles 7(am) were synthesized either by cyclization of N′-benzoyl-5-methyl-1,3-diphenyl-1H-pyrazole-4-carbohydrazide 4a using POCl3 at 120 °C or by oxidative cyclization of hydrazones derived from various arylaldehyde and (E)-N′-benzylidene-5-methyl-1,3-diphenyl-1H-pyrazole-4-carbohydrazide 5(ad) using chloramine-T as oxidant. Newly synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR and LC–MS) methods. The synthesized compounds were evaluated for their antimicrobial activity and were compared with standard drugs. The compounds demonstrated potent to weak antimicrobial activity. Among the synthesized compounds, compound 7m emerged as an effective antimicrobial agent, while compounds 7d, 7f, 7i and 7l showed good to moderate activity. The minimum inhibitory concentration of the compounds was in the range of 20–50 μg mL−1 against bacteria and 25–55 μg mL−1 against fungi. The title compounds represent a novel class of potent antimicrobial agents.  相似文献   

19.
Enhanced catalytic activities of different lignocellulases were obtained from Armillaria gemina under statistically optimized parameters using a jar fermenter. This strain showed maximum xylanase, endoglucanase, cellobiohydrolase, and β-glucosidase activities of 1,270, 146, 34, and 15 U mL?1, respectively. Purified A. gemina xylanase (AgXyl) has the highest catalytic efficiency (k cat/K m?=?1,440 mg?mL?1?s?1) ever reported for any fungal xylanase, highlighting the significance of the current study. We covalently immobilized the crude xylanase preparation onto functionalized silicon oxide nanoparticles, achieving 117 % immobilization efficiency. Further immobilization caused a shift in the optimal pH and temperature, along with a fourfold improvement in the half-life of crude AgXyl. Immobilized AgXyl gave 37.8 % higher production of xylooligosaccharides compared to free enzyme. After 17 cycles, the immobilized enzyme retained 92 % of the original activity, demonstrating its potential for the synthesis of xylooligosaccharides in industrial applications.  相似文献   

20.
Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simple environmental changes might be able to increase algae productivity while minimizing undesired organisms like competitive algae or predatory algae grazers. Microalgae are susceptible to pH changes. In many production systems, pH is kept below 8 by CO2 addition. Here, we uncouple the effects of pH and CO2 input, by using chemical pH buffers and investigate how pH influences Nannochloropsis salina growth and lipid accumulation as well as invading organisms. We used a wide range of pH levels (5, 6, 7, 8, 9, and 10). N. salina showed highest growth rates at pH 8 and 9 (0.19?±?0.008 and 0.19?±?0.011, respectively; mean ± SD). Maximum cell densities in these treatments were reached around 21 days into the experiment (95.6?×?106?±?9?×?106 cells mL?1 for pH 8 and 92.8?×?106?±?24?×?106 cells mL?1 for pH 9). Lipid accumulation of unbuffered controls were 21.8?±?5.8 % fatty acid methyl esters content by mass, and we were unable to trigger additional significant lipid accumulation by manipulating pH levels at the beginning of stationary phase. Ciliates (grazing predators) occurred in significant higher densities at pH 6 (56.9?±?39.6?×?104 organisms mL?1) than higher pH treatments (0.1–6.8?×?104 organisms mL?1). Furthermore, the addition of buffers themselves seemed to negatively impact diatoms (algal competitors). They were more abundant in an unbuffered control (12.7?±?5.1?×?104 organisms mL?1) than any of the pH treatments (3.6–4.7?×?104 organisms mL?1). In general, pH values of 8 to 9 might be most conducive to increasing algae production and minimizing invading organisms. CO2 addition seems more valuable to algae as an inorganic carbon source and not as an essential mechanism to reduce pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号