首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wild pear (Pyrus pyraster, syn.P. communis var.pyraster) is thought to be one of the species that gave rise to all other members of the genusPyrus, although intraspecific hybridizations with cultivated varieties could cause the disappearance of original species characteristics. S-RNase alleles from 7 different wild pear individuals, collected from various regions of Poland, were cloned on the basis of the PCR method and nucleotide sequence analyses. The hypervariable (HV) region is responsible for allele-specific S-RNase activity in the self-incompatibility mechanism. The high level of polymorphism of its sequences may constitute a source of valuable phylogenetic information. From all individuals, 14 sequences were obtained successfully, and 9 of them were novel alleles. Phylogenetic analysis of these alleles was based on the amino acid sequence interpretation of coding regions and intron nucleotide sequences. The research conducted on a limited pool of availableP. pyraster alleles gives only an initial insight into possible S-RNase allele polymorphisms in wild populations. At this stage, the results do not confirm a strong influence of cultivated pear species on the wild pear.  相似文献   

2.
The genetic diversity and relationships among 47 pear cultivars and genotypes (Pyrus spp.), including 4 Japanese pears (Pyrus pyrifolia), 40 European pears (Pyrus communis), 1 Chinese pear (Pyrus bretschneideri) as well as 2 wild relatives (Pyrus salicifolia and Pyrus mazandaranica) were studied using 28 microsatellite primer pairs. A total of 174 alleles were produced at the 28 SSR loci with their sizes ranging from 81 to 290?bp. The number of observed alleles for each locus ranged from 3 (TsuENH014 and TsuENH046) to 12 (NB103a), with an average of 6.21 alleles per locus. In some SSR loci, more than two alleles were amplified in some cultivars and genotypes, suggesting that duplication has occurred in those accessions. This information suggests that at least two genomic regions exist for these loci in the pear genome. The observed heterozygosity (H o) values of amplified loci ranged from 0.17 (TsuENH006) to 0.97 (NB103a). Shannon's information index (I) value was observed to be highest (2.14) in the NB103a locus, while the TsuENH006 locus had the lowest value with an average of 1.37 among SSR loci. The Dice genetic similarity coefficient ranged from 0.29 (??Nijisseiki?? and P. mazandaranica) to 0.91 (??Chojuro?? and ??Nijisseiki??) among samples. UPGMA cluster analysis showed two major groups corresponding to the Japanese and European pears.  相似文献   

3.
Pyrus pyrifolia is considered one of the most important cultivated Pyrus species. Hundreds of landraces and bred cultivars have been developed through the natural and artificial hybridizations necessary due to self-incompatibility. In this study, the genetic diversity of 478 Pyrus accessions, including Chinese landraces, bred cultivars, and wild samples, as well as introduced pear cultivars from Japan and Korea, was investigated with a set of 17 simple sequence repeat (SSR) markers distributed across all 17 linkage groups of the pear genome. A total of 121 alleles were detected, including 4 rare alleles with a frequency lower than 5%. Diversity statistics indicated a high level of genetic variation as quantified by the average values of the observed heterozygosity, the expected heterozygosity, and Wright’s fixation index, at 0.76, 0.78, and 0.02, respectively. Population structure and discriminant analysis of principal component analysis implied extensive genetic communication between sand pears in China and revealed four contiguous geographical clusters with overlapping geographical regions. The diversity of the four clusters and approximate Bayesian computation (ABC) indicated that sand pear spread from west to east along the Pearl River and Yangtze River valleys. High diversity and polyphyletic genetic components of cultivars in southwestern China further support southwestern China as the probable center of divergence for Pyrus species. A core collection of 80 out of 470 cultivars was selected, accounting for about 17% of accessions, and capturing 91% of all alleles, including all rare alleles. Our research provides a comprehensive understanding of sand pear germplasm in East Asia and constructs a preliminary core collection, which will be useful for association genetics studies, germplasm conservation, and breeding programs.  相似文献   

4.
The genetic diversity of 108 individuals of wild pear species (Pyrus communis subsp. caucasica, P. balansae, P. salicifolia, P. syriaca, P. demetrii, P. bulgarica, P. ketzkhovelii, P. sachokiana) and 35 samples of local and introduced cultivated pears from the country of Georgia were compared to 73 individuals of wild P. communis subsp. caucasica and P. communis subsp. pyraster in the collection of USDA-ARS National Plant Germplasm System (NPGS). Pyrus communis subsp. caucasica from both Georgia and the NPGS, P. communis subsp. pyraster from the NPGS, and P. salicifolia from Georgia were differentiated, based on analysis of eleven microsatellite markers. In addition, accessions of P. communis subsp. caucasica from Georgia were genetically distinct from accessions of the same subspecies in the NPGS collection that originated from other European and Middle Eastern Asian countries. Local pear cultivars in Georgia were genetically similar to P. communis subsp. caucasica and P. balansae growing wild in Georgia suggesting that they may have originated from native pear trees that could serve as unique genetic resources for pear breeding programmes.  相似文献   

5.
In order to understand the genetic diversity of wild Ussurian pears in China, chloroplast DNA (cpDNA) of 186 wild accessions from 12 populations in Inner Mongolia, Heilongjiang and Jilin Provinces and 51 Chinese and European pear cultivars including Pyrus ussuriensis, Pyrus pyrifolia, Pyrus bretschneideri, Pyrus sinkiangensis and Pyrus communis were investigated. Each accession was classified into one of three types (types A, B and C) based on two large deletions in the hypervariable regions between the accD–psaI and rps16–trnQ genes. Thirty haplotypes were identified by 32 mutations including 17 gaps (in/dels) and 15 base changes. Haplotype network analysis revealed that wild Chinese Ussurian pears could be grouped into subgroup I of type A. A haplotype, Hcp3, in subgroup I detected in Heilongjiang and Jilin Provinces was considered to be a divergent centre in Chinese Ussurian pears. However, the genetic diversity of wild accessions revealed by the two hypervariable regions was quite low. In particular, 98 % of wild Ussurian accessions in Inner Mongolia shared an identical haplotype Hcp1 and are, therefore, monomorphic. In comparison, Chinese pear cultivars were more divergent. These results suggest that the cpDNAs from wild Ussurian pears in Inner Mongolia have specifically differentiated compared to those from pears of other areas. The number of wild Ussurian pears has been decreasing because of desertification and land development, therefore conservation is needed.  相似文献   

6.
By use of Bayesian statistical inference and allelic data for 18 microsatellite loci, we analyzed the genetic structure of Chinese, Korean, and Japanese pear cultivars and of native populations of Pyrus ussuriensis. Although Japanese pear cultivars had a simple genetic structure, Chinese and Korean pear cultivars were admixures of Japanese pear and native P. ussuriensis from the Asian continent. Genetic differentiation between groups of native populations and those of cultivars was high, but cultivars were not well differentiated from each other. Chinese and Korean cultivars, which have traditionally been classified as either P. ussuriensis, P. bretschneideri, or P. pyrifolia, were much closer to Japanese cultivars, which have traditionally been classified as P. pyrifolia, than to native P. ussuriensis. We propose a new classification of cultivars by using the Group concept in accordance with the International Nomenclature for Cultivated Plants, namely, the Pyrus Ussurian pear group, the Pyrus Chinese white pear group, the Pyrus Chinese sand pear group, and the Pyrus Japanese pear group.  相似文献   

7.
In the gametophytic self-incompatibility system, growth of self-pollen tubes in the style is inhibited in a haplotype-specific manner by S-RNase. The mechanism by which S-RNase confers its specificity is unknown. However, a hypervariable region (RHV in Rosaceae and HVa-HVb in Solanaceae) that differs among the many cloned S-RNase alleles has been proposed to be involved in conferring the S-haplotype specificity of the S-RNase. Region swapping experiments between S-RNases and crystallography of the enzyme support this assumption. However, the deduced amino acid sequences of Sn-RNase and Si-RNase alleles from the European pear (Pyrus communis) were recently found to have an identical RHV. In the present study it is shown that Sn-RNase does not prevent fertilization by Si-pollen haplotype, thus presenting a case in which RHV is not required for the determination of specific pollen rejection by S-RNase, and implying that other regions in the enzyme may be sufficient for this specificity.  相似文献   

8.
This study reports the development and characterization of 19 microsatellite primer pairs developed from genomic DNA of European pear (Pyrus communis) and their transferability to other Pyrus and Malus material. The primers were designed from two different genomic libraries enriched for di‐ and trinucleotide repeats. When tested in six P. communis cultivars and 15 other Pyrus species, 13 primers revealed single‐locus polymorphism and six showed more complex patterns that suggest multiple loci. Two to 18 alleles were detected per locus and two primer pairs were sufficient to discriminate all accessions. Transferability of nine primer pairs to Malus was demonstrated through amplification of discrete products in two accessions.  相似文献   

9.
PCR-based method for identifying the S-genotypes of Japanese pear cultivars   总被引:28,自引:0,他引:28  
 Japanese pear (Pyrus pyrifolia Nakai), a member of the Rosaceae, shows gametophytic self-incompatibility that is controlled by the S-locus. The S-genotype of Japanese pear cultivars is an important factor for crossing and breeding. We report a rapid reliable method to identify these S-genotypes. It consists of PCR amplification of the S-RNase gene from genomic DNA and subsequent digestion of the PCR fragments with S-allele-specific restriction endonucleases. Using this method, we determined the unknown S-genotypes of nine Japanese pear cultivars and selected self-compatible varieties from the offspring of the self-compatible cultivar, ‘Osa-Nijisseiki’. Received: 8 June 1998 / Accepted: 19 October 1998  相似文献   

10.
Genetic similarity and relatedness within the set of pear genotypes including autochthonous Circassian cultivars from North Caucasus, European cultivars, accessions of Pyrus caucasica Fed., and modern Russian cultivars were estimated on the basis of analysis of SSR loci. The level of polymorphism for the studied loci varied from 11 to 15 alleles per locus in the set of 29 samples of pears. A higher level of allelic polymorphism of SSR loci was revealed for a set of P. caucasica samples in comparison with modern cultivated cultivars: from 9 to 12 alleles for P. caucasica and from 6 to 8 alleles for modern cultivars. Specific alleles for the mentioned groups of pears were identified. UPGMA clustering revealed two distinct groups: one includes P. caucasica accessions and autochthonous Caucasian cultivars and the other group includes all cultivated European and Russian pear cultivar. The results support the hypothesis of an isolated gene pool formation of autochthonous pear cultivars of the North Caucasus and their probable origin from the wild P. caucasica.  相似文献   

11.
12.
The cultivated petunia (Petunia hybrida) has been a popular system in which to study genetic, physiological and biochemical aspects of gametophytic self-incompatibility. As with other members of the Solanaceae a number of S-RNase genes have been isolated for functional S -alleles. We have identified S-RNase sequences for two additional functional S -alleles, Svand S3. These alleles are more similar to alleles from other families of the Solanaceae (Nicotiana and Solanum) than to any petunia alleles reported previously. The total number of S -alleles in P. hybrida is at least ten in spite of its cultivated origin. However, most cultivars of P. hybrida are in fact self-compatible and this appears to arise from the prominence of a single previously described allele So. The implications of this observation for the origin of self-compatibility in P. hybrida are discussed. The S -locus of P. hybrida has recently been mapped using an indirect method involving T-DNA insertions. Seven T-DNA insertions that were previously shown to be closely linked to theS -locus were physically mapped on the long arm of chromosome III using fluorescent in-situ hybridization. The most tightly linked T-DNA insertions are in a sub-centromeric position. This is consistent with the centric fragments of P. inflata obtained by irradiation mutagenesis that carry additional S -loci and confer a pollen-part mutant phenotype. An S -linked restriction fragment length polymorphism (RFLP) marker, CP100 was used to confirm this chromosomal assignment and has provided evidence for S -locus synteny in the Solanaceae.  相似文献   

13.
《Gene》1998,211(1):159-167
Genomic sequences of the self-incompatibility genes, the S-RNase genes, from two rosaceous species, Japanese pear and apple, were characterized. Genomic Southern blot and sequencing of a 4.5-kb genomic clone showed that the S4-RNase gene of Japanese pear is surrounded by repetitive sequences as in the case of the S-RNase genes of solanaceous species. The flanking regions of the S2- and Sf-RNase genes of apple were also cloned and sequenced. The 5′ flanking regions of the three alleles bore no similarity with those of the solanaceous S-RNase genes, although the position and sequence of the putative TATA box were conserved. The putative promoter regions of the Japanese pear S4- and apple Sf-RNase genes shared a stretch of about 200 bp with 80% sequence identity. However, this sequence was not present in the S2-RNase gene of apple, and thus it may reflect a close relationship between the S4- and Sf-RNase genes rather than a cis-element important in regulating gene expression. Despite the uniform pattern of expression of the rosaceous S-RNase genes, sequence motifs conserved in the 5′ flanking regions of the three alleles were not found, implying that the cis-element controlling pistil specific gene expression also locates at the intragenic region or upstream of the analyzed promoter region.  相似文献   

14.
15.
Evolutionary analysis of S-RNase genes from Rosaceae species   总被引:7,自引:0,他引:7  
Eight new cDNA sequences for S-RNases were cloned and analysed from almond (Prunus dulcis) cultivars of European origin, and compared to published sequences from other Rosaceae species. Insertions/deletions of 10-20 amino acid residues were detected in the RC4 and C5 domains of S-RNases from almond and sweet cherry. The S-RNases of the Prunus species and those of the genera Malus and Pyrus formed two distinct groups on phylogenetic analysis. Nucleotide substitutions were analysed in the S-RNase genes of these species. The S-genes of almond and sweet cherry have a lower Ka/Ks value than those of apple, pear and wild apple do. The fact that there is no fixed difference between the S-RNase genes of almond and sweet cherry, or between apple and pear, suggests that nucleotide substitutions only introduce transient polymorphism into the two groups, and rarely became fixed and contribute to divergence. Through the comparative study of 17 S-RNase genes from the genus Prunus and 18 from the genera Malus and Pyrus, some fixed nucleotide differences between the two groups were identified. These differences do not appear to be the result of selection for adaptive mutations, since the number of replacement substitutions is not significantly greater than the number of synonymous substitutions. S-RNase genes of almond and sweet cherry, and of apple and pear, showed little heterogeneity in nucleotide substitution rates. However, heterogeneity was observed between the two groups of S-alleles, with the Prunus alleles exhibiting a lower rate of non-synonymous substitutions than alleles from Malus and Pyrus. The evolutionary relationships between these species are discussed.  相似文献   

16.
We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear (‘Old Home’בLouise Bon Jersey’) and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.  相似文献   

17.
S-RNase is a style-specific ribonuclease which is associated with gametophytic self-incompatibility. An expression vector of a fusion protein of Pyrus pyrifolia(Japanese pear) S3-RNase with glutathione-S-transferase (GST) was constructed and transformed into E. coli. Using this system, the fusion protein, GST-S3-RNase, was expressed as an active form and can be used for screening pollen S-gene product(s).  相似文献   

18.
The two main objectives of this research were to identify new S-RNase alleles in Iranian almond cultivars and to characterize naturally occurring mutations in these alleles that may cause self-compatibility. We investigated S genotypes of 22 Iranian almond cultivars using stylar RNase electrophoresis, PCR and DNA sequencing. We report six previously unidentified P. dulcis S-RNase alleles (S 45 , S 46 , S 47 , S 48 , S 49 and S 50 ). Four of 12 tested S-RNases were found to be non-functional in vitro: S 49 , S 50 , S 24 /S na and S 25 /S 47 . Detected point mutations in the C3 coding region of S 49 - and S 50 -RNase, leading to the replacement of a highly conserved cysteine and histidine residues, are with the highest probability the reason of these S-RNases inactivity. Results also suggested that ten Iranian almond cultivars display unique S genotype. All presented data confirm Iranian cultivars as valuable almond sources which are of interest to almond breeding and conservation programs.  相似文献   

19.
Apple exhibits self-incompatibility controlled by the multiallelic S-locus. Twenty-three old apple cultivars were S-genotyped using three different approaches (allele-specific polymerase chain reaction (PCR) + cleaved amplified polymorphic sequences (CAPS), consensus PCR + sequencing and consensus PCR + CAPS) to compare the robustness and reliability of these techniques and characterise genotypes from the Carpathian basin that might be useful in resistance breeding. Best results were obtained using the ASPF3 and ASPR3S consensus primer pair that detected 96% of all alleles carried by the 23 cultivars tested. Flow cytometry analysis was also needed to control the completeness of the genotypes as was seen in case of a tetraploid cultivar with only three assigned S-alleles. The genetic disparity between the old Carpathian basin and modern apple cultivars was indicated by differences in allele frequency data (S 9, S 24 and S 26) as well as single nucleotide polymorphisms in S 1, S 2, S 7 S 24 and S 26 and indels in S 20 and S 26 alleles. An alignment of partial genomic sequences indicated trans-specific and trans-generic evolution of S-ribonuclease alleles in the Maloideae subfamily (S 26 and S 28) and a possibly recent introgression event (S 1) between Malus × domestica and Malus sylvestris. These data suggest that the genome of old cultivars from the Carpathian basin was enriched by several Malus taxa and are free from the consequences of modern breeding. These cultivars may contribute to the widening of the genetic basis of cultivated apple and prevent genetic erosion in future commercial cultivars.  相似文献   

20.
In this study, S-allele diversity of eight wild and two commercial species of the Cerasus subgenus in Iran was investigated using two primer pairs. A high level of S-allele polymorphism was detected among and within the species evaluated. Furthermore, most of wild species showed 2–4 alleles based on S-allele primers and may be considered as tetraploid. Sweet cherry cultivars, Siah-Mashhad, Siah-Shabestar, Takdaneh-Mashhad, Siah-Daneshkadeh and Protiva showed S3S12, S3S12, S3S12, S3S5 and S3S4 combinations, respectively, allele S3 showing the highest frequency. Three Iranian sweet cherry cultivars had the same allelic combination (S3S12) that the same ancestor in genealogy of these cultivars may explain the loss of diversity observed at the S-locus. Wild cherry (mazzard) accessions showed wide range of alleles such as S1, S2, S7, S14 and S20 and unknown alleles, while sour cherries showed S6, S9, S13 and S27 alleles. In conclusion, the conservation of these highly diverse native species of Iranian wild Cerasus germplasm is recommended for future breeding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号