首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microtubule-associated protein tau is implicated in the pathogenesis of many neurodegenerative diseases, including fronto-temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), in which both RNA splicing and amino acid substitution mutations in tau cause dominantly inherited early onset dementia. RNA-splicing FTDP-17 mutations alter the wild-type approximately 50:50 3-repeat (3R) to 4-repeat (4R) tau isoform ratio, usually resulting in an excess of 4R tau. To examine further how splicing mutations might cause dysfunction by misregulation of microtubule dynamics, we used video microscopy to determine the in vitro behavior of individual microtubules stabilized by varying amounts of human 4R and 3R tau. At low tau:tubulin ratios (1:55 and 1:45), all 3R isoforms reduced microtubule growth rates relative to the no-tau control, whereas all 4R isoforms increased them; however, at a high tau:tubulin ratio (1:20), both 4R and 3R tau increased the growth rates. Further analysis revealed two distinct subpopulations of growing microtubules in the absence of tau. Increasing concentrations of both 4R and 3R tau resulted in an increase in the size of the faster growing subpopulation of microtubules; however, 4R tau caused a redistribution to the faster growing subpopulation at lower tau:tubulin ratios than 3R tau. This modulation of discrete growth rate subpopulations by tau suggests that tau causes a conformational shift in the microtubule resulting in altered dynamics. Quantitative and qualitative differences observed between 4R and 3R tau are consistent with a "microtubule misregulation" model in which abnormal tau isoform expression results in the inability to properly regulate microtubule dynamics, leading to neuronal death and dementia.  相似文献   

2.
The neural microtubule-associated protein Tau binds directly to microtubules and regulates their dynamic behavior. In addition to being required for normal development, maintenance, and function of the nervous system, Tau is associated with several neurodegenerative diseases, including Alzheimer disease. One group of neurodegenerative dementias known as FTDP-17 (fronto-temporal dementia with Parkinsonism linked to chromosome 17) is directly linked genetically to mutations in the tau gene, demonstrating that Tau misfunction can cause neuronal cell death and dementia. These mutations result either in amino acid substitutions in Tau or in altered Tau mRNA splicing that skews the expression ratio of wild-type 3-repeat and 4-repeat Tau isoforms. Because wild-type Tau regulates microtubule dynamics, one possible mechanism underlying Tau-mediated neurodegeneration is aberrant regulation of microtubule behavior. In this study, we microinjected normal and mutated Tau protein into cultured cells expressing fluorescent tubulin and measured the effects on the dynamic instability of individual microtubules. We found that the FTDP-17 amino acid substitutions G272V (in both 3-repeat and 4-repeat Tau contexts), DeltaK280, and P301L all exhibited markedly reduced abilities to regulate dynamic instability relative to wild-type Tau. In contrast, the FTDP-17 R406W mutation (which maps in a regulatory region outside the microtubule binding domain of Tau) did not significantly alter the ability of 3-repeat or 4-repeat Tau to regulate microtubule dynamics. Overall, these data are consistent with a loss-of-function model in which both amino acid substitutions and altered mRNA splicing in Tau lead to neurodegeneration by diminishing the ability of Tau to properly regulate microtubule dynamics.  相似文献   

3.
We report functional differences between tau isoforms with 3 or 4 C-terminal repeats and a difference in susceptibility to oxidative conditions, with respect to the regulation of microtubule dynamics in vitro and tau-microtubule binding in cultured cells. In the presence of dithiothreitol in vitro, a 3-repeat tau isoform promotes microtubule nucleation, reduces the tubulin critical concentration for microtubule assembly, and suppresses dynamic instability. Under non-reducing conditions, threshold concentrations of 3-repeat tau and tubulin exist below which this isoform still promotes microtubule nucleation and assembly but fails to reduce the tubulin critical concentration or suppress dynamic instability; above these threshold concentrations, amorphous aggregates of 3-repeat tau and tubulin can be produced at the expense of microtubule formation. A 4-repeat tau isoform is less sensitive to the oxidative potential of the environment, behaving under oxidative conditions similarly to the 3-repeat isoform under reducing conditions. Under conditions of oxidative stress, in Chinese hamster ovary cells stably expressing either 3- or 4-repeat tau, 3-repeat tau disassociates from microtubules more readily than the 4-repeat isoform, and tau-containing high molecular weight aggregates are preferentially observed in lysates from the Chinese hamster ovary cells expressing 3-repeat tau, indicating greater susceptibility of 3-repeat tau to oxidative conditions, compared with 4-repeat tau in vivo.  相似文献   

4.
Interest in the microtubule-associated protein tau stems from its critical roles in neural development and maintenance, as well as its role in Alzheimer's, FTDP-17 and related neurodegenerative diseases. Under normal circumstances, tau performs its functions by binding to microtubules and powerfully regulating their stability and growing and shortening dynamics. On the other hand, genetic analyses have established a clear cause-and-effect relationship between tau dysfunction/mis-regulation and neuronal cell death and dementia in FTDP-17, but the molecular basis of tau's destructive action(s) remains poorly understood. One attractive model suggests that the intracellular accumulation of abnormal tau aggregates causes cell death, i.e., a gain-of-toxic function model. Here, we describe the evidence and arguments for an alternative loss-of-function model in which tau-mediated neuronal cell death is caused by the inability of affected cells to properly regulate their microtubule dynamic due to mis-regulation by tau. In support of this model, our recent data demonstrate that missense FTDP-17 mutations that alter amino acid residues near tau's microtubule binding region strikingly modify the ability of tau to modulate microtubule dynamics. Additional recent data from our labs support the notion that the same dysfunction occurs in the FTDP-17 regulatory mutations that alter tau RNA splicing patterns. Our model posits that the dynamics of microtubules in neuronal cells must be tightly regulated to enable them to carry out their diverse functions, and that microtubules that are either over-stabilized or under-stabilized, that is, outside an acceptable window of dynamic activity, lead to neurodegeneration. An especially attractive aspect of this model is that it readily accommodates both the structural and regulatory classes of FTDP-17 mutations.  相似文献   

5.
Tau, MAP2, and MAP4 are members of a microtubule-associated protein (MAP) family that are each expressed as "3-repeat" and "4-repeat" isoforms. These isoforms arise from tightly controlled tissue-specific and/or developmentally regulated alternative splicing of a 31-amino acid long "inter-repeat:repeat module," raising the possibility that different MAP isoforms may possess some distinct functional capabilities. Consistent with this hypothesis, regulatory mutations in the human tau gene that disrupt the normal balance between 3-repeat and 4-repeat tau isoform expression lead to a collection of neurodegenerative diseases known as FTDP-17 (fronto-temporal dementias and Parkinsonism linked to chromosome 17), which are characterized by the formation of pathological tau filaments and neuronal cell death. Unfortunately, very little is known regarding structural and functional differences between the isoforms. In our previous analyses, we focused on 4-repeat tau structure and function. Here, we investigate 3-repeat tau, generating a series of truncations, amino acid substitutions, and internal deletions and examining the functional consequences. 3-Repeat tau possesses a "core microtubule binding domain" composed of its first two repeats and the intervening inter-repeat. This observation is in marked contrast to the widely held notion that tau possesses multiple independent tubulin-binding sites aligned in sequence along the length of the protein. In addition, we observed that the carboxyl-terminal sequences downstream of the repeat region make a strong but indirect contribution to microtubule binding activity in 3-repeat tau, which is in contrast to the negligible effect of these same sequences in 4-repeat tau. Taken together with previous work, these data suggest that 3-repeat and 4-repeat tau assume complex and distinct structures that are regulated differentially, which in turn suggests that they may possess isoform-specific functional capabilities. The relevance of isoform-specific structure and function to normal tau action and the onset of neurodegenerative disease are discussed.  相似文献   

6.
In vitro evidence has suggested a change in the ability of tau bearing mutations associated with fronto-temporal dementia to promote microtubule assembly. We have used a cellular assay to quantitate the effect of both isoform differences and mutations on the physiological function of tau. Whilst all variants of tau bind to microtubules, microtubule extension is reduced in cells transfected with 3-relative to 4-repeat tau. Mutations reduce microtubule extension with the P301L mutation having a greater effect than the V337M mutation. The R406W mutation had a small effect on microtubule extension but, surprisingly, tau with this mutation was less phosphorylated in intact cells than the other variants.  相似文献   

7.
Tau protein is present in six different splice forms in the human brain and interacts with microtubules via either 3 or 4 microtubule binding repeats. An increased ratio of 3 repeat to 4 repeat isoforms is associated with neurodegeneration in inherited forms of frontotemporal dementia. Tau over-expression diminishes axonal transport in several systems, but differential effects of 3 repeat and 4 repeat isoforms have not been studied. We examined the effects of tau on mitochondrial transport and found that both 3 repeat and 4 repeat tau change normal mitochondrial distribution within the cell body and reduce mitochondrial localization to axons; 4 repeat tau has a greater effect than 3 repeat tau. Further, we observed that the 3 repeat and 4 repeat tau cause different alterations in retrograde and anterograde transport dynamics with 3 repeat tau having a slightly stronger effect on axon transport dynamics. Our results indicate that tau-induced changes in axonal transport may be an underlying theme in neurodegenerative diseases associated with isoform specific changes in tau's interaction with microtubules.  相似文献   

8.
Tau, a family of microtubule-associated proteins (MAPs), stabilizes microtubules (MTs) and regulates their dynamics. Tau isoforms regulate MT dynamic instability differently: 3-repeat tau is less effective than 4-repeat tau at suppressing the disassembly of MTs. Here, we report another tau-isoform-dependent phenomenon, revealed by fluorescence recovery after photobleaching measurements on a BODIPY-conjugated taxol bound to MTs. Saturating levels of recombinant full-length 3-repeat and 4-repeat tau both cause taxol mobility to be remarkably sensitive to taxol concentration. However, 3-repeat tau induces 2.5-fold faster recovery (∼450 s) at low taxol concentrations (∼100 nM) than 4-repeat tau (∼1000 s), indicating that 3-repeat tau decreases the probability of taxol rebinding to its site in the MT lumen. Finding no tau-induced change in the MT-binding affinity of taxol, we conclude that 3-repeat tau either competes for the taxol binding site with an affinity of ∼1 μM or alters the MT structure so as to facilitate the passage of taxol through pores in the MT wall.  相似文献   

9.
Tau is a microtubule-associated protein that fulfills several functions critical for neuronal formation and health. Tau discharges its functions by producing multiple isoforms via regulated alternative splicing. These isoforms modulate tau function in normal brain by altering the domains of the protein, thereby influencing its localization, conformation, and post-translational modifications and hence its availability and affinity for microtubules and other ligands. Disturbances in tau expression result in disruption of the neuronal cytoskeleton and formation of tau structures (neurofibrillary tangles) found in brains of dementia sufferers. More specifically, aberrations in tau splicing regulation directly cause several neurodegenerative diseases, which lead to dementia. In this review, I present our cumulative knowledge of tau splicing regulation in connection with neurodegeneration and also briefly go over the still-extensive list of questions that are connected to tau (dys)function.  相似文献   

10.
11.
Tau filaments are the pathological hallmark of >20 neurodegenerative diseases including Alzheimer's disease. Six tau isoforms exist that can be grouped into 4-repeat (4R) tau and 3-repeat (3R) tau based on the presence or absence of the second of four microtubule binding repeats. Recent evidence suggests that tau filaments can transfer between cells and spread through the brain. Here we demonstrate in vitro that seeded filament growth, a prerequisite for tau spreading, is crucially dependent on the isoform composition of individual seeds. Seeds of 3R tau and 3R/4R tau recruit both types of isoforms. Seeds of 4R tau recruit 4R tau, but not 3R tau, establishing an asymmetric barrier. Conformational templating of 4R tau onto 3R tau seeds eliminates this barrier, giving rise to a new type of tau filament. These findings provide fundamental mechanistic insights into the seeding, propagation, and diversification of tau filaments.  相似文献   

12.
Tau proteins belong to the family of microtubule-associated proteins. They are mainly expressed in neurons where they play an important role in the assembly of tubulin monomers into microtubules to constitute the neuronal microtubules network. Tau proteins are translated from a single gene located on chromosome 17. Their expression is developmentally regulated by an alternative splicing mechanism and six different isoforms exist in the human adult brain. Tau proteins are the major constituents of fibrillar lesions described in Alzheimer's disease and numerous neurodegenerative disorders referred to as 'tauopathies'. Molecular analysis has revealed that an abnormal phosphorylation might be one of the important events in the process leading to their aggregation. Moreover, a specific set of pathological tau proteins exhibiting a typical biochemical pattern, and a different regional and laminar distribution could characterize each of these disorders. Finally, the recent discovery of tau gene mutations in fronto-temporal dementia with parkinsonism linked to chromosome 17 has reinforced the direct role attributed to tau proteins in the pathogenesis of neurodegenerative disorders, and underlined the fact that distinct sets of tau isoforms expressed in different neuronal populations could lead to different pathologies. Conversely, recent data in myotonic dystrophy has demonstrated that indirect effect (CTG repeat expansion) leading to variations in tau alternative splicing also produce neurofibrillary degeneration.  相似文献   

13.
We have characterized the effects of vinblastine on the dynamic instability behavior of individual microtubules in living BS-C-1 cells microinjected with rhodamine-labeled tubulin and have found that at low concentrations (3-64 nM), vinblastine potently suppresses dynamic instability without causing net microtubule depolymerization. Vinblastine suppressed the rates of microtubule growth and shortening, and decreased the frequency of transitions from growth or pause to shortening, also called catastrophe. In vinblastine-treated cells, both the average duration of a pause (a state of attenuated dynamics where neither growth nor shortening could be detected) and the percentage of total time spent in pause were significantly increased. Vinblastine potently decreased dynamicity, a measure of the overall dynamic activity of microtubules, reducing this parameter by 75% at 32 nM. The present work, consistent with earlier in vitro studies, demonstrates that vinblastine kinetically caps the ends of microtubules in living cells and supports the hypothesis that the potent chemotherapeutic action of vinblastine as an antitumor drug is suppression of mitotic spindle microtubule dynamics. Further, the results indicate that molecules that bind to microtubule ends can regulate microtubule dynamic behavior in living cells and suggest that endogenous regulators of microtubule dynamics that work by similar mechanisms may exist in living cells.  相似文献   

14.
The microtubule-associated protein tau is a family of six isoforms that becomes abnormally hyperphosphorylated and accumulates in neurons undergoing neurodegeneration in the brains of patients with Alzheimer disease (AD). We investigated the isoform-specific interaction of normal tau with AD hyperphosphorylated tau (AD P-tau). We found that the binding of AD P-tau to normal human recombinant tau was tau4L > tau4S > tau4 and tau3L > tau3S > tau3, and that its binding to tau4L was greater than to tau3L. AD P-tau also inhibited the assembly of microtubules promoted by each tau isoform and caused disassembly when added to preassembled microtubules. This inhibition and depolymerization of microtubules by the AD P-tau corresponded directly to the degree of its interaction with the different tau isoforms. In vitro hyperphosphorylation of recombinant tau (P-tau) conferred AD P-tau-like characteristics. Like AD P-tau, P-tau interacted with and sequestered normal tau and inhibited microtubule assembly. These studies suggest that the AD P-tau interacts preferentially with the tau isoforms that have the amino-terminal inserts and four microtubule binding domain repeats and that hyperphosphorylation of tau appears to be sufficient to acquire AD P-tau characteristics. Thus, lack of amino-terminal inserts and extra microtubule binding domain repeat in fetal human brain might be protective from Alzheimer's neurofibrillary degeneration.  相似文献   

15.
How tau mutations lead to neurodegeneration is unknown but may be related to altered microtubule binding properties of mutant tau protein. The tendency for the mutations to cluster around the microtubule-binding domain of tau or to alter the ratios of those splice isoforms that affect binding supports the view that the tau/microtubule interaction is critical and finely regulated. In cells transfected with both mutant and wild-type tau isoforms fused to either yellow fluorescent protein or cyan fluorescent protein we can observe tau fusion proteins that differ by a single amino acid or by the inclusion or exclusion of exon 10. With coexpression of mutant and wild-type tau, the mutant isoform appears diffuse throughout the cytoplasm; however, when mutant tau is expressed alone, it appears mostly bound to the microtubules. Dual imaging of the three- and four-repeat tau isoforms indicated that the expression of four-repeat tau displaced three-repeat tau from the microtubules. These results suggest that altered kinetic competition among the isoforms for microtubule binding could be a disease precipitant.  相似文献   

16.
The aim of the present study was to investigate the relation between neurogenesis, cell cycle reactivation and neuronal death during tau pathology in a novel tau transgenic mouse line THY-Tau22 with two frontotemporal dementia with parkinsonism linked to chromosome-17 mutations in a human tau isoform. This mouse displays all Alzheimer disease features of neurodegeneration and a broad timely resolution of tau pathology with hyperphosphorylation of tau at younger age (up to 6 months) and abnormal tau phosphorylation and tau aggregation in aged mice (by 10 months). Here, we present a follow-up of cell cycle markers with aging in control and transgenic mice from different ages. We show that there is an increased neurogenesis during tau hyperphosphorylation and cell cycle events during abnormal tau phosphorylation and tau aggregation preceding neuronal death and neurodegeneration. However, besides phosphorylation, other mechanisms including tau mutations and changes in tau expression and/or splicing may be also involved in these mechanisms of cell cycle reactivation. Altogether, these data suggest that cell cycle events in THY-Tau22 are resulting from neurogenesis in young animals and cell death in older ones. It suggests that neuronal cell death in such models is much more complex than believed.  相似文献   

17.
Neuronal cells display different subsets of dynamic microtubules. In axons and extending neurites, this intrinsic dynamics is modulated by the microtubule-associated protein tau. Moreover, posttranslational modifications of tubulin, namely acetylation, tyrosination or glutamylation are directly involved in determining the stability of neuronal microtubules. Studies were carried out to analyze the interaction patterns of tau with subsets of microtubules in N2A neuroblastoma cells, which can differentiate in the presence of dibutyryl cAMP. Double labeling studies showed a differential pattern of tau association with microtubules containing acetylated and tyrosinated tubulin. Furthermore, studies using depolymerizing drugs revealed a selectivity in the association of tau with microtubular polymers and microfilaments, within the organization of the neuronal cytoskeleton. In order to study the association of specific tau isoforms with microtubules containing modified tubulin variants, immunoprecipitation studies were carried out. The coimmunoprecipitation data indicated a selective binding of specific tau isoforms to either modified tubulin variant. To assess the hypothesis on the roles of tau isoforms in the stabilization of microtubules containing modified tubulins, the association of those variants with tau isoforms was analyzed in overlay experiments. A preferential binding of acetylated tubulin from undifferentiated N2A cell extracts, to at least one slow-migrating tau isoform was revealed. However, acetylated tubulin from N2A cells containing long neurites displayed a preferential association with two isoforms of tau. On the other hand, tyrosinated tubulin from N2A extracts bound to the entire set of neuronal tau isoforms. These studies, along with the tau association with microtubules with different stability, indicate that tau segregates into subsets of microtubules in the axonal processes. The studies also suggest that these interactions may respond to a functional versatility of these polymers in differentiating neurons.  相似文献   

18.
Regulation of tau isoform expression and dementia   总被引:8,自引:0,他引:8  
In the central nervous system (CNS), aberrant changes in tau mRNA splicing and consequently in protein isoform ratios cause abnormal aggregation of tau and neurodegeneration. Pathological tau causes neuronal loss in Alzheimer's disease (AD) and a diverse group of disorders called the frontotemporal dementias (FTD), which are two of the most common forms of dementia and afflict more than 10% of the elderly population. Autosomal dominant mutations in the tau gene cause frontotemporal dementia with parkinsonism-chromosome 17 type (FTDP-17). Just over half the mutations affect tau protein function and decrease its affinity for microtubules (MTs) or increase self-aggregation. The remaining mutations occur within exon 10 (E10) and intron 10 sequences and alter complex regulation of E10 splicing by multiple mechanisms. FTDP-17 splicing mutations disturb the normally balanced levels of distinct protein isoforms that result in altered biochemical and structural properties of tau. In addition to FTDP-17, altered tau isoform levels are also pathogenically associated with other FTD disorders such as progressive supranuclear palsy (PSP), corticobasal degeneration and Pick's disease; however, the mechanisms remain undefined and mutations in tau have not been detected. FTDP-17 highlights the association between splicing mutations and the pronounced variability in pathology as well as phenotype that is characteristic of inherited disorders.  相似文献   

19.
R Jakes  M Novak  M Davison    C M Wischik 《The EMBO journal》1991,10(10):2725-2729
The microtubule associated protein tau is incorporated into the pronase resistant core of the paired helical filament (PHF) in such a way that the repeat region is protected from proteases, but can be released as a major 12 kDa species from the PHF core by formic acid treatment and by boiling in SDS. This fragment retains the ability to aggregate in the presence of SDS. Detailed sequence analysis of the 12 kDa species shows that it consists of a mixture of peptides derived from the repeat region of 3- and 4-repeat tau isoforms comigrating as a single electrophoretic band. However, the 4-repeat isoforms released from the core lack either the first or the last repeat. The pronase-protected region of tau within the PHF core is therefore restricted to three repeats, regardless of isoform. The alignment of cleavage sites at homologous positions within tandem repeats after protease treatment indicates that the tau-core association is precisely constrained by the tandem repeat structure of the tau molecule.  相似文献   

20.
Tau protein, which binds to and stabilizes microtubules, is critical for neuronal survival and function. In the human brain, tau pre-mRNA splicing is regulated to maintain a delicate balance of exon 10-containing and exon 10-skipping isoforms. Splicing mutations affecting tau exon 10 alternative splicing lead to tauopathies, a group of neurodegenerative disorders including dementia. Molecular mechanisms regulating tau alternative splicing remain to be elucidated. In this study, we have developed an expression cloning strategy to identify splicing factors that stimulate tau exon 10 inclusion. Using this expression cloning approach, we have identified a previously unknown tau exon 10 splicing regulator, RBM4 (RNA binding motif protein 4). In cells transfected with a tau minigene, RBM4 overexpression leads to an increased inclusion of exon 10, whereas RBM4 down-regulation decreases exon 10 inclusion. The activity of RBM4 in stimulating tau exon 10 inclusion is abolished by mutations in its RNA-binding domain. A putative intronic splicing enhancer located in intron 10 of the tau gene is required for the splicing stimulatory activity of RBM4. Immunohistological analyses reveal that RBM4 is expressed in the human brain regions affected in tauopathy, including the hippocampus and frontal cortex. Our study demonstrates that RBM4 is involved in tau exon 10 alternative splicing. Our work also suggests that down-regulating tau exon 10 splicing activators, such as RBM4, may be of therapeutic potential in tauopathies involving excessive tau exon 10 inclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号