首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A strain of Mycobacterium, that is able to degrade fluorene, phenanthrene, fluoranthene and pyrene was grown on various mixtures of these substrates. The polycyclic aromatic hydrocarbons (PAH) were provided either as crystals or solubilized by a surfactant. Mixed PAH were degraded simultaneously, but not in parallel, indicating that the degradation pathways were not incompatible. Certain interactions of the substrates were observed. For example, the degradation of solubilized pyrene was delayed in the presence of fluorene and enhanced in the presence of phenanthrene. Fluorene was degraded cometabolically with the other PAH serving as growth substrates, but not as the only source of carbon. The utilization of phenanthrene occurred at the fastest rate and was not affected by the presence of fluorene, pyrene or fluoranthene.  相似文献   

2.
A versatile bacterial strain able to convert polycyclic aromatic hydrocarbons (PAHs) was isolated, and a conversion by the isolate of both individual substances and PAH mixtures was investigated. The strain belonged to the Sphingomonas genus as determined on the basis of 16S rRNA analysis and was designated as VKM B-2434. The strain used naphthalene, acenaphthene, phenanthrene, anthracene and fluoranthene as a sole source of carbon and energy, and cometabolically oxidized fluorene, pyrene, benz[a]anthracene, chrysene and benzo[a]pyrene. Acenaphthene and fluoranthene were degraded by the strain via naphthalene-1,8-dicarboxylic acid and 3-hydroxyphthalic acid. Conversion of most other PAHs was confined to the cleavage of only one aromatic ring. The major oxidation products of naphthalene, phenanthrene, anthracene, chrysene, and benzo[a]pyrene were identified as salicylic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, o-hydroxyphenanthroic acid and o-hydroxypyrenoic acid, respectively. Fluorene and pyrene were oxidized mainly to hydroxyfluorenone and dihydroxydihydropyrene, respectively. Oxidation of phenanthrene and anthracene to the corresponding hydroxynaphthoic acids occurred quantitatively. The strain converted phenanthrene, anthracene, fluoranthene and carbazole of coal-tar-pitch extract.  相似文献   

3.
Summary Bacterial mixed cultures able to degrade the polycyclic aromatic hydrocarbons (PAH) phenanthrene, fluorene and fluoranthene, were obtained from soil using conventional enrichment techniques. From these mixed cultures three pure strains were isolated:Pseudomonas paucimobilis degrading phenanthrene;P. vesicularis degrading fluorene andAlcaligenes denitrificans degrading fluoranthene. The maximum rates of PAH degradation ranged from 1.0 mg phenanthrene/ml per day to 0.3 mg fluoranthene/ml per day at doubling times of 12 h to 35 h for growth on PAH as sole carbon source. The protein yield during PAH degradation was about 0.25 mg/mg C for all strains. Maximum PAH oxidation rates and optimum specific bacterial growth were obtained near pH 7.0 and 30°C. After growth entered the stationary phase, no dead end-products of PAH degradation could be detected in the culture fluid.  相似文献   

4.
Mycobacterium sp. strain AP1 grew with pyrene as a sole source of carbon and energy. The identification of metabolites accumulating during growth suggests that this strain initiates its attack on pyrene by either monooxygenation or dioxygenation at its C-4, C-5 positions to give trans- or cis-4,5-dihydroxy-4,5-dihydropyrene, respectively. Dehydrogenation of the latter, ortho cleavage of the resulting diol to form phenanthrene 4,5-dicarboxylic acid, and subsequent decarboxylation to phenanthrene 4-carboxylic acid lead to degradation of the phenanthrene 4-carboxylic acid via phthalate. A novel metabolite identified as 6,6'-dihydroxy-2,2'-biphenyl dicarboxylic acid demonstrates a new branch in the pathway that involves the cleavage of both central rings of pyrene. In addition to pyrene, strain AP1 utilized hexadecane, phenanthrene, and fluoranthene for growth. Pyrene-grown cells oxidized the methylenic groups of fluorene and acenaphthene and catalyzed the dihydroxylation and ortho cleavage of one of the rings of naphthalene and phenanthrene to give 2-carboxycinnamic and diphenic acids, respectively. The catabolic versatility of strain AP1 and its use of ortho cleavage mechanisms during the degradation of polycyclic aromatic hydrocarbons (PAHs) give new insight into the role that pyrene-degrading bacterial strains may play in the environmental fate of PAH mixtures.  相似文献   

5.
Zhong Y  Luan T  Lin L  Liu H  Tam NF 《Bioresource technology》2011,102(3):2965-2972
The effects of the mixed culture of Mycobacterium sp. strain A1-PYR and Sphingomonas sp. strain PheB4 on the degradation characteristics of single polycyclic aromatic hydrocarbon were investigated. In the mixed bacterial culture, phenanthrene, fluoranthene and pyrene were degraded by 100% at Day 3, 71.2% and 50% at Day 7, respectively. Compared to their respective pure cultures, the degradation of phenanthrene and fluoranthene decreased, but that of pyrene increased significantly. Based on GC-MS analysis, eight and six new metabolites were produced from the biodegradation of phenanthrene and fluoranthene, respectively, while only two new metabolites were formed from pyrene. To our knowledge, this is the first report that the mixed bacterial culture could increase the diversity of metabolites from PAH, but the diverse metabolite pattern was not necessarily beneficial to the degradation of the recalcitrant PAH. The enhancement on pyrene degradation was possibly attributed to the rapid growth of strain PheB4.  相似文献   

6.
Microbiological analysis of soils from a polycyclic aromatic hydrocarbon (PAH)-contaminated site resulted in the enrichment of five microbial communities capable of utilizing pyrene as a sole carbon and energy source. Communities 4 and 5 rapidly degraded a number of different PAH compounds. Three pure cultures were isolated from community 5 using a spray plate method with pyrene as the sole carbon source. The cultures were identified as strains of Burkholderia ( Pseudomonas ) cepacia on the basis of biochemical and growth tests. The pure cultures (VUN 10 001, VUN 10 002 and VUN 10 003) were capable of degrading fluorene, phenanthrene and pyrene (100 mg l−1) to undetectable levels within 7–10 d in standard serum bottle cultures. Pyrene degradation was observed at concentrations up to 1000 mg l−1. The three isolates were also able to degrade other PAHs including fluoranthene, benz[ a ]anthracene and dibenz[ a , h ]anthracene as sole carbon and energy sources. Stimulation of dibenz[ a , h ]anthracene and benzo[ a ]pyrene degradation was achieved by the addition of small quantities of phenanthrene to cultures containing these compounds. Substrate utilization tests revealed that these micro-organisms could also grow on n -alkanes, chlorinated- and nitro-aromatic compounds.  相似文献   

7.
A soil bacterium capable of utilizing fluoranthene as the sole source of carbon and energy for growth was purified from a seven-member bacterial community previously isolated from a creosote waste site for its ability to degrade polycyclic aromatic hydrocarbons. By standard bacteriological methods, this bacterium was characterized taxonomically as a strain of Pseudomonas paucimobilis and was designated strain EPA505. Utilization of fluoranthene by strain EPA 505 was demonstrated by increase in bacterial biomass, decrease in aqueous fluoranthene concentration, and transient formation of transformation products in liquid cultures where fluoranthene was supplied as the sole carbon source. Resting cells grown in complex medium showed activity toward anthraquinone, benzo[b]fluorene, biphenyl, chrysene, and pyrene as demonstrated by the disappearance of parent compounds or changes in their UV absorption spectra. Fluoranthene-grown resting cells were active against these compound as well as 2,3-dimethylnaphthalene, anthracene, fluoranthene, fluorene, naphthalene, and phenanthrene. These studies demonstrate that organic compounds not previously reported to serve as growth substrates can be utilized by axenic cultures of microorganisms. Such organisms may possess novel degradative systems that are active toward other compounds whose biological degradation has been limited because of inherent structural considerations or because of low aqueous solubility.  相似文献   

8.
A soil bacterium capable of utilizing fluoranthene as the sole source of carbon and energy for growth was purified from a seven-member bacterial community previously isolated from a creosote waste site for its ability to degrade polycyclic aromatic hydrocarbons. By standard bacteriological methods, this bacterium was characterized taxonomically as a strain of Pseudomonas paucimobilis and was designated strain EPA505. Utilization of fluoranthene by strain EPA 505 was demonstrated by increase in bacterial biomass, decrease in aqueous fluoranthene concentration, and transient formation of transformation products in liquid cultures where fluoranthene was supplied as the sole carbon source. Resting cells grown in complex medium showed activity toward anthraquinone, benzo[b]fluorene, biphenyl, chrysene, and pyrene as demonstrated by the disappearance of parent compounds or changes in their UV absorption spectra. Fluoranthene-grown resting cells were active against these compound as well as 2,3-dimethylnaphthalene, anthracene, fluoranthene, fluorene, naphthalene, and phenanthrene. These studies demonstrate that organic compounds not previously reported to serve as growth substrates can be utilized by axenic cultures of microorganisms. Such organisms may possess novel degradative systems that are active toward other compounds whose biological degradation has been limited because of inherent structural considerations or because of low aqueous solubility.  相似文献   

9.
Methanotrophic bacteria were enriched from marine sediments and screened for their ability to biotransform polycyclic aromatic hydrocarbons (PAHs). Characterization of the methanotrophic enrichment showed that it was dominated by a Type I methanotroph, although significant amounts of 18:1 fatty acids were detected, suggesting the presence of Type II methanotrophs in marine systems. The methanotrophic enrichment degraded phenanthrene, anthracene, and fluorene to below detectable levels in 15 days. Partial transformation of fluoranthene occurred over 15 days, but pyrene was not transformed. Radiolabeled phenanthrene was oxidized to carbon dioxide with significant production of polar intermediates. The oxidation was inhibited by acetylene, an inhibitor of methane monooxygenase. The addition of the methanotrophic enrichment to a marine culture grown on PAHs as the sole carbon sources increased the transformation rate of phenanthrene, anthracene, and fluorene. The highest removal rates were obtained with a mixture containing 90% methanotroph enrichment and 10% PAH-degrading enrichment (by biomass). Fluoranthene and pyrene degradation rates by the PAH-degrading enrichment were not significantly increased by the addition of the methanotrophic enrichment. A possible mechanism for the increased transformation rate was the rapid oxidation of PAHs by methane monooxygenase, forming an intermediate that is more bioavailable for utilization by the PAH-degraders.  相似文献   

10.
Mycobacterium sp. strain AP1 grew with pyrene as a sole source of carbon and energy. The identification of metabolites accumulating during growth suggests that this strain initiates its attack on pyrene by either monooxygenation or dioxygenation at its C-4, C-5 positions to give trans- or cis-4,5-dihydroxy-4,5-dihydropyrene, respectively. Dehydrogenation of the latter, ortho cleavage of the resulting diol to form phenanthrene 4,5-dicarboxylic acid, and subsequent decarboxylation to phenanthrene 4-carboxylic acid lead to degradation of the phenanthrene 4-carboxylic acid via phthalate. A novel metabolite identified as 6,6′-dihydroxy-2,2′-biphenyl dicarboxylic acid demonstrates a new branch in the pathway that involves the cleavage of both central rings of pyrene. In addition to pyrene, strain AP1 utilized hexadecane, phenanthrene, and fluoranthene for growth. Pyrene-grown cells oxidized the methylenic groups of fluorene and acenaphthene and catalyzed the dihydroxylation and ortho cleavage of one of the rings of naphthalene and phenanthrene to give 2-carboxycinnamic and diphenic acids, respectively. The catabolic versatility of strain AP1 and its use of ortho cleavage mechanisms during the degradation of polycyclic aromatic hydrocarbons (PAHs) give new insight into the role that pyrene-degrading bacterial strains may play in the environmental fate of PAH mixtures.  相似文献   

11.
AIMS: Our goal was to characterize a newly isolated strain of Mycobacterium austroafricanum, obtained from manufactured gas plant (MGP) site soil and designated GTI-23, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs). METHODS AND RESULTS: GTI-23 is capable of growth on phenanthrene, fluoranthene, or pyrene as a sole source of carbon and energy; it also extensively mineralizes the latter two in liquid culture and is capable of extensive degradation of fluorene and benzo[a]pyrene, although this does not lead in either of these cases to mineralization. Supplementation of benzo[a]pyrene-containing cultures with phenanthrene had no significant effect on benzo[a]pyrene degradation; however, this process was substantially inhibited by the addition of pyrene. Extensive and rapid mineralization of pyrene by GTI-23 was also observed in pyrene-amended soil. CONCLUSIONS: Strain GTI-23 shows considerable ability to mineralize a range of polycyclic aromatic hydrocarbons, both in liquid and soil environments. In this regard, GTI-23 differs markedly from the type strain of Myco. austroafricanum (ATCC 33464); the latter isolate displayed no (or very limited) mineralization of any tested PAH (phenanthrene, fluoranthene or pyrene). When grown in liquid culture, GTI-23 was also found to be capable of growing on and mineralizing two aliphatic hydrocarbons (dodecane and hexadecane). SIGNIFICANCE AND IMPACT OF THE STUDY: These findings indicate that this isolate of Myco. austroafricanum may be useful for bioremediation of soils contaminated with complex mixtures of aromatic and aliphatic hydrocarbons.  相似文献   

12.
Solubilisation of six polycyclic aromatic hydrocarbons (PAHs) (acenaphthene, anthracene, fluoranthene, fluorene, phenanthrene and pyrene) by three synthetic cyclodextrins (CDs) (2-hydroxypropyl-β-CD, hydroxypropyl-γ-CD and ramdomly methylated-β-CD) was investigated in order to select the CD which presents the greatest increase in solubility and better complexation parameters for its use in contaminated scenarios. The presence of the three cyclodextrins greatly enhanced the apparent water solubility of all the PAHs through the formation of inclusion complexes of 1∶1 stoichiometry. Anthracene, fluoranthene, fluorene and phenanthrene clearly presented a higher solubility when β-CD derivatives were used, and especially the complexes with the ramdomly methylated-β-CD were favoured. On the contrary, pyrene presented its best solubility results when using 2-hydroxypropyl-γ-CD, but for acenaphthene the use of any of the three CDs gave the same results. Complementary to experimental phase-solubility studies, a more in-depth estimation of the inclusion process for the different complexes was carried out using molecular modelling in order to find a correlation between the degree of solubilisation and the fit of PAH molecules within the cavity of the different CDs and to know the predominant driving forces of the complexation.  相似文献   

13.
The mixed bacterial culture MK1 was capable of degrading a wide spectrum of aromatic compounds both as free and as immobilized cells. By offering anthracene oil or a defined mixture of phenol, naphthalene, phenanthrene, anthracene and pyrene (in concentrations of 0.1–0.2 mm, respectively) as sources of carbon and energy, a specific degradation pattern correlating with the condensation degree was observed. Regarding the defined mixture of aromatic hydrocarbons, complete metabolism was reached for phenol (0.1 mm) after 1 day, for naphthalene (0.1 mm) after 2 days and for phenanthrene (0.1 mm) after 15 days of cultivation. The conversion of anthracene (0.1 mm) and pyrene (0.1 mm) resulted in minimal residual concentrations, analogous to fluoranthene and pyrene of the anthracene oil (0.1%). Maximal total degradation for the tricyclic compounds dibenzofurane, fluorene, dibenzothiophene, phenanthrene and anthracene of the anthracene oil (0.1%) occurred after 5 days. In general, a significant metabolisation of the tetracyclic aromatic hydrocarbons fluoranthene and pyrene was observed after the degradation of phenol, naphthalene and most of the tricyclic compounds. Doubling the start concentrations of the polycyclic aromatic hydrocarbons effected higher degradation rates. Cell growth occurred simultaneously with the conversion of phenol, naphthalene and the tricyclic compounds. The immobilized cells showed stable growth and, compared to freely suspended cells, the same degradation sequence as well as an equivalent degradation potential — even in a model soil system. Correspondence to: I. Wiesel  相似文献   

14.
Laboratory microcosm studies were conducted to estimate biodegradation rates for a mixture of five polycyclic aromatic hydrocarbon compounds (PAHs). Static microcosms were assembled using soil samples from two locations collected at a No. 2 fuel oil-contaminated site in the Atlantic Coastal Plain of Virginia. In microcosms from one location, five PAHs (acenaphthene, fluorene, phenanthrene, pyrene, and benzo(b)fluoranthene) biodegraded at net first-order rates of 1.08, 1.45, 1.13, 1.11, and 1.12 yr?1, respectively. No observable lag period was noted and degradation in live microcosms ceased with the depletion of oxygen and sulfate after 125 days. In microcosms from a second location, net first-order biodegradation rates after an approximately 2-month lag period were 2.41, 3.28, and 2.98 yr?1 for fluorene, phenanthrene, and pyrene, respectively. Acenaphthene and benzo(b)fluoranthene mass loss rates in the live microcosms were not statistically different from mass loss rates in control microcosms. Stoichiometric mass balance calculations indicate that the dominant PAH mass loss mechanism was aerobic biodegradation, while abiotic losses (attributed to micropore diffusion and oxidative coupling) ranged from 15 to 33% and biotic losses from sulfate-reduction accounted for 7 to 10% of PAH mass loss. Stoichiometric equations that include biomass yield are presented for PAH oxidation under aerobic and sulfate-reducing conditions.  相似文献   

15.
An ombrotrophic peat core was collected in 2005 from Etang de la Gruère, Jura Mountains, Switzerland. The concentrations of nine among the U.S. Environmental Protection Agency priority polycyclic aromatic hydrocarbons (PAHs) (i.e., acenaphthene, phenanthrene, fluorene, pyrene, fluoranthene, benzo[jbk]fluoranthene, benzo[a]pyrene, benzo[ghi]perylene, and indeno[1,2,3-cd]pyrene) were determined in both bulk peat and corresponding humic acids (HA) samples by gas chromatography equipped with a mass spectrometry detector (GC-MS). The maximum PAHs concentrations in peat (around 1,250 μg Σ PAHs kg?1 dry matter) were found at 28–30 cm of depth, which correspond to ca. 1920–1930, when coal inputs to Switzerland reached their maximum level. Amongst the nine PAHs analyzed in the peat samples, pyrene (Pyr) was the predominant species, accounting for ca. 20–100% of the total PAHs throughout the profile. In the HA fraction, that represents 24.7% (average value) of the bulk peat, only phenanthrene (Phe), and sporadically Pyr and fluoranthene (Fth), were detected. In particular, HA showed Phe concentrations that were ten–150 times higher than corresponding bulk peat samples, thus suggesting its preservation against biodegradation due to the incorporation into HA molecules.  相似文献   

16.
The biodegradation of polycyclic aromatic hydrocarbons (PAH) often is limited by low water solubility and dissolution rate. Nonionic surfactants and sodium dodecyl sulfate increased the concentration of PAH in the water phase because of solubilization. The degradation of PAH was inhibited by sodium dodecyl sulfate because this surfactant was preferred as a growth substrate. Growth of mixed cultures with phenanthrene and fluoranthene solubilized by a nonionic surfactant prior to inoculation was exponential, indicating a high bioavailability of the solubilized hydrocarbons. Nonionic surfactants of the alkylethoxylate type and the alkylphenolethoxylate type with an average ethoxylate chain length of 9 to 12 monomers were toxic to a PAH-degrading Mycobacterium sp. and to several PAH-degrading mixed cultures. Toxicity of the surfactants decreased with increasing hydrophilicity, i.e., with increasing ethoxylate chain length. Nontoxic surfactants enhanced the degradation of fluorene, phenanthrene, anthracene, fluoranthene, and pyrene.  相似文献   

17.
A detailed analytical study using combined normal phase high pressure liquid chromatography (HPLC), gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) of Polynuclear Aromatic Hydrocarbons (PAHs) in fish from the Red Sea was undertaken. This investigation involves a preliminary assessment of the sixteen parent compounds issued by the U.S. Environmental Protection Agency(EPA). The study revealed measurable levels of Σ PAHs (the sum of three to five or six ring parent compounds) (49.2 ng g−1 dry weight) and total PAHs (all PAH detected) (422.1 ng g−1 dry weight) in edible muscle of fishes collected from the Red Sea. These concentrations are within the range of values reported for other comparable regions of the world. Mean concentrations for individual parent PAH in fish muscles were; naphthalene 19.5, biphenyl 4.6, acenaphthylene 1.0, acenaphthene 1.2, fluorene 5.5, phenanthrene 14.0, anthracene 0.8, fluoranthene 1.5, pyrene 1.8, benz(a)anthracene 0.4, chrysene 1.9, benzo(b)fluoranthene 0.5, benzo(k)fluoranthene 0.5, benzo(e)pyrene 0.9, benzo(a)pyrene 0.5, perylene 0.2, and indeno(1,2,3-cd)pyrene 0.1 ng g−1 dry weight respectively. The Red Sea fish extracts exhibit the low molecular weight aromatics as well as the discernible alkyl-substituted species of naphthalene, fluorene, phenanthrene and dibenzothiophene. Thus, it was suggested that the most probable source of PAHs is oil contamination originating from spillages and/or heavy ship traffic. It was concluded that the presence of PAHs in the fish muscles is not responsible for the reported fish kill phenomenon. However, the high concentrations of carcinogenic chrysene encountered in these fishes should be considered seriously as it is hazardous to human health. Based on fish consumption by Yemeni‘s population it was calculated that the daily intake of total carcinogens were 0.15 μg/person/day. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Mutagenic nitro derivatives were readily induced when 6 kinds of chemicals were exposed to 10 ppm of nitrogen dioxide (NO2). Single nitro derivatives were formed from pyrene, phenanthrene, fluorene or chrysene. Carbazole and fluoranthene each produced 2 derivatives substituted with nitro groups at different positions. The formation of nitro derivatives was enhanced by exposure of pyrene to NO2 containing nitric acid (HNO3, less than 100-fold enhancement) or sulphur dioxide (SO2, less than 15-fold enhancement). After 24 h of exposure the yields of the nitro derivative were 0.02% with 1 ppm of NO2 in air and 2.85% with NO2 (1 ppm) containing traces of HNO3. The nitro derivatives from all but phenanthrene and carbazole were chemically identified by means of gas chromatography (GC) and mass spectrometry (MS), and the mutagenicity of the 4 kinds of authentic nitro derivatives was tested by using Salmonella strains TA98 and TA1538 with or without the S9 fraction from rat liver treated with Aroclor 1254. The nitro derivative induced from pyrene was determined to be 1-nitropyrene; that of chrysene was 6-nitrochrysene; that of fluorene was 2-nitrofluorene; and those of fluoranthene were 3-nitrofluoranthene, and 8-nitrofluoranthene. Tested with strain TA98 in the absence of the S9 fraction, the first 4 of these derivatives yielded, respectively, 3050, 269, 433 and 13 400 revertants per nmole. Thus, each nitro derivative formed was potentially a direct-acting frameshift-type mutagen. Each compound exposed to NO2 showed a decreased mutagenic activity when tested in the presence of S9 mix. A possible explanation comes from experiments in which 1-nitropyrene was incubated with the S9 mix at 37 degree C for 10 min, and 1-aminopyrene was formed. The mutagenic activity of 1-aminopyrene was appreciable, but only about one-tenth of that of 1-nitropyrene in the Ames test.  相似文献   

19.
Despite the considerable knowledge of bacterial high-molecular-weight (HMW) polycyclic aromatic hydrocarbon (PAH) metabolism, the key enzyme(s) and its pleiotropic and epistatic behavior(s) responsible for low-molecular-weight (LMW) PAHs in HMW PAH-metabolic networks remain poorly understood. In this study, a phenotype-based strategy, coupled with a spray plate method, selected a Mycobacterium vanbaalenii PYR-1 mutant (6G11) that degrades HMW PAHs but not LMW PAHs. Sequence analysis determined that the mutant was defective in pdoA2, encoding an aromatic ring-hydroxylating oxygenase (RHO). A series of metabolic comparisons using high-performance liquid chromatography (HPLC) analysis revealed that the mutant had a lower rate of degradation of fluorene, anthracene, and pyrene. Unlike the wild type, the mutant did not produce a color change in culture media containing fluorene, phenanthrene, and fluoranthene. An Escherichia coli expression experiment confirmed the ability of the Pdo system to oxidize biphenyl, the LMW PAHs naphthalene, phenanthrene, anthracene, and fluorene, and the HMW PAHs pyrene, fluoranthene, and benzo[a]pyrene, with the highest enzymatic activity directed toward three-ring PAHs. Structure analysis and PAH substrate docking simulations of the Pdo substrate-binding pocket rationalized the experimentally observed metabolic versatility on a molecular scale. Using information obtained in this study and from previous work, we constructed an RHO-centric functional map, allowing pleiotropic and epistatic enzymatic explanation of PAH metabolism. Taking the findings together, the Pdo system is an RHO system with the pleiotropic responsibility of LMW PAH-centric hydroxylation, and its epistatic functional contribution is also crucial for the metabolic quality and quantity of the PAH-MN.  相似文献   

20.
Treatment of dredged sediments contaminated by polyaromatic hydrocarbons (PAHs) is a significant problem in the New York/New Jersey (NY/NJ) Harbor. 0.5 m3-scale slurry-phase bioreactors were used to determine whether bioaugmentation with a PAH-degradative bacterial consortium, or with the salt marsh grass S. alterniflora, could enhance the biodegradation of PAHs added to dredged estuarine sediments from the NY/NJ Harbor. The results were compared to biodegradation effected by the indigenous sediment microbial community. Sediments were diluted 1:1 in tap water and spiked to a final concentration of 20 mg/kg dry weight sediment of phenanthrene, anthracene, acenaphthene, fluorene, fluoranthene, and pyrene. The sediment slurry was then continuously sparged with air over 3 months. In all bioreactors a rapid reduction of greater than 95% of the initial phenanthrene, acenaphthene, and fluorene occurred within 14 days. Pyrene and fluoranthene reductions of 70 to 90% were achieved by day 77 of treatment. Anthracene was more recalcitrant and reductions ranged from 30 to 85%. Separate experiments showed that the sediment microbial communities mineralized 14C-pyrene and 14C-phenanthrene. PAH degradation, and the number of phenanthrene-degrading bacteria, were not enhanced by microbial or plant bioaugmentation. These data demonstrate that bioaugmentation is not required to effect efficient remediation of PAH-contaminated dredged sediments in slurry-phase bioreactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号