首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The current-voltage relationship of carrier-mediated, passive and active ion transport systems with one charge-carrying pathway can exactly be described by a simple reaction kinetic model. This model consists of two carrier states (one inside, one outside) and two pairs (forwards and backwards) of rate constants: a voltage-dependent one, describing the transport of charge and a voltage-insensitive one, summarizing all the other (voltage-independent) reactions. For the electrogenic Cl pump inAcetabularia these four rate constants have been determined from electrical measurements of the current-voltage relationship of the pump (Gradmann, Hansen & Slayman, 1981;in: Electrogenic Ion Pumps, Academic Press, New York). The unidirectional Cl efflux through the pump can also be calculated by the availiable reaction kinetic parameters.36Cl efflux experiments on singleAcetabularia cells with simultaneous electrical stimulation (action potentials) and recording, demonstrate the unidirectional Cl efflux to depend on the membrane potential. After subtraction of an efflux portion which bypasses the pump, agreement is found between the measured flux-voltage relationship and the theoretical one as obtained from the reaction kinetic model and its parameters from the electrical data.  相似文献   

2.
Summary The rate of Cl influx in intactChara was inhibited whenever the ATP concentration was reduced by application of metabolic inhibitors. In perfused cells, however, a net influx of Cl against its electrochemical gradient could be observed in the absence of ATP. Addition of ATP to the perfusion medium slightly stimulated Cl influx in one experiment but had no effect in another. Addition of ADP, NADH or metabolic inhibitors did not alter the influx rate. Consideration of the potential energy gradients across theChara plasmalemma in the perfused state leads to the conclusion that Cl influx occurs by cotransport with H+ or OH.  相似文献   

3.
The widely expressed chloride channel ClC-2 is stimulated by the serum and glucocorticoid inducible kinase SGK1. The SGK1-dependent regulation of several carriers involves the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3). The present experiments explored whether SGK1-dependent regulation of ClC-2 similarly involves PIKfyve. The conductance of Xenopus oocytes is increased more than eightfold by ClC-2 expression. In ClC-2-expressing oocytes, but not in water-injected oocytes, the current was further enhanced by coexpression of either, PIKfyve or constitutively active S422DSGK1. Coexpression of the inactive SGK1 mutant K127NSGK1 did not significantly alter the current in ClC-2-expressing oocytes and abrogated the stimulation of the current by PIKfyve-coexpression. The stimulating effect of PIKfyve was abolished by replacement of the serine with alanine in the SGK1 consensus sequence (S318APIKfyve). Coexpression of S318APIKfyve significantly blunted the stimulating effect of S422DSGK1 on ClC-2-activity. In conclusion, PIKfyve is a potent stimulator of ClC-2-activity and contributes to SGK1-dependent regulation of ClC-2.  相似文献   

4.
There is tight interplay between Ca2+ and Cl flux that can influence brain tumour proliferation, migration and invasion. Glioma is the predominant malignant primary brain tumour, accounting for ˜80% of all cases. Voltage-gated Cl channel family (ClC) proteins and Cl intracellular channel (CLIC) proteins are drastically overexpressed in glioma, and are associated with enhanced cell proliferation, migration and invasion. Ca2+ also plays fundamental roles in the phenomenon. Ca2+-activated Cl channels (CaCC) such as TMEM16A and bestrophin-1 are involved in glioma formation and assist Ca2+ movement from intracellular stores to the plasma membrane. Additionally, the transient receptor protein (TRP) channel TRPC1 can induce activation of ClC-3 by increasing intracellular Ca2+concentrations and activating Ca2+/calmodulin-dependent protein kinase II (CaMKII). Therefore, Ca2+ and Clcurrents can concurrently mediate brain tumour cellular functions. Glioma also expresses volume regulated anion channels (VRACs), which are responsible for the swelling-induced Cl current, ICl,swell. This current enables glioma cells to perform regulatory volume decrease (RVD) as a survivability mechanism in response to hypoxic conditions within the tumour microenvironment. RVD can also be exploited by glioma for invasion and migration. Effective treatment for glioma is challenging, which can be in part due to prolonged chemotherapy leading to mutations in genes associated with multi-drug resistances (MRP1, Bcl-2, and ABC family). Thus, a potential therapeutic strategy for treatment of glioma can be through the inhibition of selected Cl channels.  相似文献   

5.
Summary The possible regulation of Cl influx inChara by the cytoplasmic Cl concentration and cytoplasmic pH was investigated using both intact and intracellularly perfused cells. In perfused cells Cl influx was sensitive to changes in the internal Cl concentration but only when the concentration was less than 1mm.In intact cells the metabolic inhibitors, CCCP, DCMU, and oligomycin which inhibit Cl influx also reduced the cytoplasmic pH. A correlation between ATP concentration and cytoplasmic pH was shown to apply when the ATP concentration was lowered using these inhibitors. The possible relationships between ATP status, cytoplasmic pH, and Cl influx are discussed.  相似文献   

6.
Summary Cl channels from basolaterally-enriched rabbit outer renal medullary membranes are activated either by increases in intracellular Cl activity or by intracellular protein kinase A (PKA). Phosphorylation by PKA, however, is not obligatory for channel activity since channels can be activated by intracellular Cl in the absence of PKA. The PKA requirement for activation of Cl channels in certain secretory epithelia is, in contrast, obligatory. In the present studies, we examined the effects of PKA and intracellular Cl concentrations on the properties of Cl channels obtained either from basolaterally-enriched vesicles derived from highly purified suspensions of mouse medullary thick ascending limb (mTALH) segments, or from apical membrane vesicles obtained from two secretory epithelia, bovine trachea and rabbit small intestine. Our results indicate that the Cl channels from mTALH suspensions were virtually identical to those previously described from rabbit outer renal medulla. In particular, an increase in intracellular (trans) Cl concentration from 2 to 50 mm increased both channel activity (P o) and channel conductance (g Cl, pS). Likewise, trans PKA increased mTALH Cl channel activity by increasing the activity of individual channels when the trans solutions were 2 mm Cl. Under the latter circumstance, PKA did not activate quiescent channels, nor did it affect g Cl. Moreover, when mTALH Cl channels were inactivated by reducing cis Cl concentrations to 50 mm, cis PKA addition did not affect P o. These results are consistent with the view that these Cl channels originated from basolateral membranes of the mTALH.Cl channels from apical vesicles from trachea and small intestine were completely insensitive to alterations in trans Cl concentrations and demonstrated markedly different responses to PKA. In the absence of PKA, tracheal Cl channels inactivated spontaneously after a mean time of 8 min; addition of PKA to trans solutions reactivated these channels. The intestinal Cl channels did not inactivate with time. Trans PKA addition activated new channels with no effect on basal channel activity. Thus the regulation of Cl channel activity by both intracellular Cl and by PKA differ in basolateral mTALH Cl channels compared to apical Cl channels from either the tracheal or small intestine.We acknowledge the able technical assistance of Steven D. Chasteen. Clementine M. Whitman provided her customary excellent secretarial assistance. This work was supported by Veterans Administration Merit Review Grants to T.E. Andreoli and to W.B. Reeves. C.J. Winters is a Veterans Administration Associate Investigator.  相似文献   

7.
Summary At low concentration (1mm) of Cl in the outer solution, the influx of chloride through the isolated skin (J 13 Cl ) of the South American frogLeptodactylus ocellatus (L.) seems to be carried by two mechanisms: (i) a passive one that exhibits the characteristics of an exchange diffusion process, and (ii) an active penetration. Studies of the influx and efflux of chloride (J 13 Cl andJ 31 Cl ) indicate, that the presence of a high (107mm) concentration of Cl in the outer solution activates the translocation of this ion through the cells. Studies of the unidirectional flux of Cl across the outer barrier (J 12 Cl ) indicate that Na+ out stimulates the penetration of Cl at this level. Cl out, in turn, stimulates, theJ 12 Na , but this effect is only detected at low concentrations of Na+ out.  相似文献   

8.
9.
Summary The potential dependence of unidirectional36Cl fluxes through toad skin revealed activation of a conductive pathway in the physiological region of transepithelial potentials. Activation of the conductance was dependent on the presence of Cl or Br in the external bathing solution, but was independent of whether the external bath was NaCl-Ringer's, NaCl-Ringer's with amiloride, KCl-Ringer's or choline Cl-Ringer's To partition the routes of the conductive Cl ion flow, we measured in the isolated epithelium with double-barrelled microelectrodes apical membrane potentialV a , and intracellular Cl activity,a Cl c , of the principal cells indentified by differential interference contrast microscopy. Under short-circuit conditionsI sc=27.0±2.0 A/cm2, with NaCl-Ringer's bathing both surfaces,V a was –67.9±3.8mV (mean ±se,n=24, six preparations) anda Cl c was 18.0±0.9mM in skins from animals adapted to distilled water. BothV a anda Cl a were found to be positively correlated withI sc (r=0.66 andr=0.70, respectively). In eight epithelia from animals adapted to dry milieu/tap waterV a anda Cl c were measured with KCl Ringer's on the outside during activation and deactivation of the transepithelial Cl conductance (G Cl) by voltage clamping the transepithelial potential (V) at 40 mV (mucosa positive) and –100 mV. AtV=40 mV; i.e. whenG Cl was deactivated,V a was –70.1±5.0 mV (n=15, eight preparations) anda Cl c was 40.0±3.8mm. The fractional apical membrane resistance (fR a) was 0.69±0.03. Clamping toV=–100 mV led to an instantaneous change ofV a to 31.3±5.6 mV (cell interior positive with respect to the mucosal bath), whereas neithera Cl c norfR a changed significantly within a 2 to 5-min period during whichG Cl increased by 1.19±0.10 mS/cm2. WhenV was stepped back to 40 mV,V a instantaneously shifted to –67.8±3.9 mV whilea Cl c andfR a remained constant during deactivation ofG Cl. Similar results were obtained in epithelia impaled from the serosal side. In 12 skins from animals adapted to either tap water or distilled water the density of mitochondria-rich (D MRC) cells was estimated and correlated with the Cl current (I Cl though the fully activated (V=–100mV) Cl conductance). A highly significant correlation was revealed (r=–0.96) with a slope of –2.6 nA/m.r. (mitochondria-rich cell and an I-axis intercept not significantly different from zero. In summary, the voltage-dependent Cl currents were not reflected infR a anda Cl a of the principal cells but showed a correlation with the m.r. cell density. We conclude that the pricipal cells do not contribute significantly to the voltage-dependent Cl conductance.  相似文献   

10.
Summary Active HCO 3 t- secretion in the anterior rectal salt gland of the mosquito larva,Aedes dorsalis, is mediated by a 11 Cl/HCO 3 exchanger. The cellular mechanisms of HCO 3 and Cl transport are examined using ion- and voltage-sensitive microelectrodes in conjunction with a microperfused preparation which allowed rapid saline changes. Addition of DIDS or acetazolamide to, or removal of CO2 and HCO 3 from, the serosal bath caused large (20 to 50 mV) hyperpolarizations of apical membrane potential (V a) and had little effect on basolateral potential (V bl). Changes in luminal Cl concentration alteredV a in a repid, linear manner with a slope of 42.2 mV/decaloga Cl l –. Intracellular Cl activity was 23.5mm and was approximately 10mm lower than that predicted for a passive distribution across the apical membrane. Changes in serosal Cl concentration had no effect onV bl, indicating an electrically silent basolateral Cl exit step. Intracellular pH in anterior rectal cells was 7.67 and the calculated was 14.4mm. These results show that under control conditions HCO3 enters the anterior rectal cell by an active mechanism against an electrochemical gradient of 77.1 mV and exits the cell at the apical membrane down a favorable electrochemical gradient of 27.6 mV. A tentative cellular model is proposed in which Cl enters the apical membrane of the anterior rectal cells by passive, electrodiffusive movement through a Cl-selective channel, and HCO 3 exits the cell by an active or passive electrogenic transport mechanism. The electrically silent nature of basolateral Cl exit and HCO3 entry, and the effects of serosal addition of the Cl/HCO3 exchange inhibitor, DIDS, on and transepithelial potential (V ic) suggest strongly that the basolateral membrane is the site of a direct coupling between Cl and HCO 3 movements.  相似文献   

11.
Ischemic heart disease is the leading cause of serious morbidity and mortality in Western society. One of the therapeutic approaches is based on the use of thrombolitic drugs that promote clot lysis. Even if the mechanisms leading to clot lysis are not completely understood, it is widely accepted that they depend on the complex biochemical reactions that occur among fibrin fibers and fibrinolitic agents, and by their ready diffusion into the fibers. Here we investigate the effects of specific anions on the architecture of protofibrils within fibrin fibers in fibrin gels prepared in a para-physiological solution. The results obtained through small-angle X-ray scattering (SAXS) demonstrate that the characteristic axial and longitudinal repeat distances among protofibrils are strongly affected by the action of Cl and F anions.  相似文献   

12.
Basolateral membranes of Aplysia foregut epithelia contain an ATP-dependent Cl transporter (Cl pump). Increased activity of the Cl pump, coupled to apical and basolateral membrane depolarization, changed the Cl transport energetics across the apical membrane but did not change the vectorially-opposite Cl transport energetics across the basolateral membrane.  相似文献   

13.
14.
Summary The changes in the cytoplasmic Cl concentration, [Cl] c , are monitored at the time of withdrawal (starvation) and subsequent replacement of Cl in the outside medium. The measurement technique exploits the involvement of Cl inChara excitation. The transient clamp current due to Cl,I Cl, is separated from other excitation transients through Hodgkin-Huxley (HH) equations, which have been adjusted toChara. TheI Cl amplitude depends on HH parameters, [Cl] c and the maximum membrane conductance to Cl, . The results are discussed in terms of these quantities.I Cl and were found to fall after 6–10 hr of Cl starvation, thus supporting the hypothesis that [Cl c decreases in Cl-free medium. The best HH fit to starved data was obtained with [Cl c =3.5mm. The time-course forI Cl decline is considerably slower than the time-course of the rise of the starvation-stimulated influx. As cells starved for periods longer than 24 hr are re-exposed to Cl, it is revealed that while [Cl] c remains low during long starvation, increases to values greater than those of the normal cells. Such differences among cells starved for various lengths of time have not been detected previously.  相似文献   

15.
This minireview summarizes the current state of knowledge concerning the role of Cl in the oxygen-evolving complex (OEC) of photosystem II (PSII). The model that proposes that Cl is a Mn ligand is discussed in light of more recent work. Studies of Cl specificity, stoichiometry, kinetics, and retention by extrinsic polypeptides are discussed, as are the results that fail to detect Cl ligation to Mn and results that show a lack of a requirement for Cl in PSII-catalyzed H2O oxidation. Mutagenesis experiments in cyanobacteria and higher plants that produce evidence for a correlation between Cl retention and stable interactions among intrinsic and extrinsic polypeptides are summarized, and spectroscopic data on the interaction between PSII and Cl are discussed. Lastly, the question of the site of Cl action in PSII is discussed in connection with the current crystal structures of the enzyme.  相似文献   

16.
Our previously published whole-cell patch-clamp studies on the cells of the intralobular (granular) ducts of the mandibular glands of male mice revealed the presence of an amiloride-sensitive Na+ conductance in the plasma membrane. In this study we demonstrate the presence also of a Cl conductance and we show that the sizes of both conductances vary with the Cl concentration of the fluid bathing the cytosolic surface of the plasma membrane. As the cytosolic Cl concentration rises from 5 to 150 mmol/liter, the size of the inward Na+ current declines, the decline being half-maximal when the Cl concentration is approximately 50 mmol/liter. In contrast, as cytosolic Cl concentration increases, the inward Cl current remains at a constant low level until the Cl concentration exceeds 80 mmol/liter, when it begins to increase. Studies in which Cl in the pipette solution was replaced by other anions indicate that the Na+ current is suppressed by intracellular Br-, Cl and NO 3 - but not by intracellular I-, glutamate or gluconate. Our studies also show that the Cl conductance allows passage of Cl and Br- equally well, I-less well, and NO 3 - , glutamate and gluconate poorly, if at all. The findings with NO 3 - are of particular interest because they show that suppression of the Na+ current by a high intracellular concentration of a particular anion does not depend on actual passage of that anion through the Cl conductance. In mouse granular duct cells there is, thus, a reciprocal regulation of Na+ and Cl conductances by the cytosolic Cl concentration. Since the cytosolic Cl concentration is closely correlated with cell volume in many epithelia, this reciprocal regulation of Na+ and Cl conductances may provide a mechanism by which ductal Na+ and Cl transport rates are adjusted so as to maintain a stable cell volume.This project was supported by the National Health and Medical Research Council of Australia. We thank Professor P. Barry (University of New South Wales) for assistance with the junction potential measurements.  相似文献   

17.
Summary Experiments were performed usingin vitro perfused medullary thick ascending limbs of Henle (MTAL) and in suspensions of MTAL tubules isolated from mouse kidney to evaluate the effects of arginine vasopressin (AVP) on the K+ dependence of the apical, furosemide-sensitive Na+:Cl cotransporter and on transport-related oxygen consumption (QO2). In isolated perfused MTAL segments, the rate of cell swelling induced by removing K+ from, and adding onemm ouabain to, the basolateral solution [ouabain(zero-K+)] provided an index to apical cotransporter activity and was used to evaluated the ionic requirements of the apical cotransporter in the presence and absence of AVP. In the absence of AVP cotransporter activity required Na+ and Cl, but not K+, while in the presence of AVP the apical cotransporter required all three ions.86Rb+ uptake into MTAL tubules in suspension was significant only after exposure of tubules to AVP. Moreover,22Na+ uptake was unaffected by extracellular K+ in the absence of AVP while after AVP exposure22Na+ uptake was strictly K+-dependent. The AVP-induced coupling of K+ to the Na+:Cl cotransporter resulted in a doubling in the rate of NaCl absorption without a parallel increase in the rate of cellular22Na+ uptake or transport-related oxygen consumption. These results indicate that arginine vasopressin alters the mode of a loop diuretic-sensitive transporter from Na+:Cl cotransport to Na+:K+:2Cl cotransport in the mouse MTAL with the latter providing a distinct metabolic advantage for sodium transport. A model for AVP action on NaCl absorption by the MTAL is presented and the physiological significance of the coupling of K+ to the apical Na+:Cl cotransporter in the MTAL and of the enhanced metabolic efficiency are discussed.  相似文献   

18.
Summary Changes in extracellular pH (pH o ) in human red cell suspensions were monitored in a stopped-flow rapid reaction apparatus. A 20% suspension of washed human RBC in saline at pH 7 containing NaHCO3 and extracellular carbonic anhydrase was mixed with an equal volume of buffered saline solution at pH 6.7. Sodium salicylate, when present, was added to both the erythrocyte suspension and the buffer solution. The effects of salicylate in the therapeutic to toxic concentration range on HCO 3 /Cl exchange were studied at 37°C. HCO 3 /Cl exchange flux was estimated using the extracellular buffer capacity and the difference betweendpH o /dt using a control RBC suspension and that using a suspension of RBC whose anion exchange pathway was markedly inhibited. The results show that salicylate competitively decreases the rate of HCO 3 /Cl exchange, with inhibition increasing as salicylate concentration increases.K I is 2.4mm. At a salicylate concentration of 10mm, HCO 3 /Cl exchange under the conditions of our experiments was inhibited by more than 70%. These findings are consistent with the possibility that CO2 transfer in capillary bedsin vivo may be diminished in the presence of salicylate due to slowing of red cell HCO 3 /Cl exchange.  相似文献   

19.
Summary Gluconate substitution for serosal Cl reduces the transepithelial short-circuit current (I sc) and depolarizes shortcircuited frog skins. These effects could result either from inhibition of basolateral K+ conductance, or from two actions to inhibit both apical Na+ permeability (P Na ap ) and basolateral pump activity. We have addressed this question by studying whole-and split-thickness frog skins. Intracellular Na+ concentration (C Na c ) andP Na ap have been monitored by measuring the currentvoltage relationship for apical Na+ entry. This analysis was conducted by applying trains of voltage pulses, with pulse durations of 16 to 32 msec. Estimates ofP Na ap ) and CNa/c were not detectably dependent on pulse duration over the range 16 to 80 msec. Serosal Cl replacement uniformly depolarized short-circuited tissues. The depolarization was associated with inhibition ofI sc across each split skin, but only occasionally across the whole-thickness preparations. This difference may reflect the better ionic exchange between the bulk medium and the extracellular fluid in contact with the basolateral membranes, following removal of the underlying dermis in the split-skin preparations.P Na ap was either unchanged or increased, and CNa/c either unchanged or reduced after the anionic replacement. These data are incompatible with the concept that serosal Cl replacement inhibitsP Na ap and Na, K-pump activity. Gluconate substutition likely reduces cell volume, triggering inhibition of the basolateral K+ channels, consistent with the data and conclusions of S.A. Lewis, A.G. Butt, M.J. Bowler, J.P. Leader and A.D.C Macknight (J. Membrane Biol. 83:119–137, 1985) for toad bladder. The resulting depolarization reduces the electrical force favoring apical Na+ entry. The volume-conductance coupling serves to conserve volume by reducing K+ solute loss. Its molecular basis remains to be identified.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号