首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The activity and operational stability of horse liver alcohol dehydrogenase (HLADH) and α-chymotrypsin were investigated in three systems commonly used for biocatalysis in organic solvents:

1. enzyme adsorbed on a solid support (celite) and added to the organic solvent (isooctane)

2. enzyme powder directly added to the organic solvent (isooctane).

3. enzyme dissolved in a microemulsion (AOT/isooctane).

The activity and the operational stability in all systems were strongly dependent on the water content. The initial reaction rate was high in both the microemulsion and the celite system, but was much lower when adding the enzymes directly to the organic solvent. HLADH was observed to be more stable when added directly to the organic solvent or dissolved in the microemulsion than when adsorbed on celite, whereas for α-chymotrypsin stability was higher when adsorbed on celite or added directly to the organic solvent. For a hydrolytic reaction, a microemulsion was preferred due to the high water content. When adding the enzymes directly to the organic solvent both HLADH and chymotrypsin were adsorbed strongly to the glass walls of the reaction vessel. None of the systems were superior in all respects for the two enzymes studied.  相似文献   

2.
Studying alterations in biophysical and biochemical behavior of enzymes in the presence of organic solvents and the underlying cause(s) has important implications in biotechnology. We investigated the effects of aqueous solutions of polar organic solvents on ester hydrolytic activity, structure and stability of a lipase. Relative activity of the lipase monotonically decreased with increasing concentration of acetone, acetonitrile, and DMF but increased at lower concentrations (upto ~20% v/v) of dimethylsulfoxide, isopropanol, and methanol. None of the organic solvents caused any appreciable structural change as evident from circular dichorism and NMR studies, thus do not support any significant role of enzyme denaturation in activity change. Change in 2D [15N, 1H]‐HSQC chemical shifts suggested that all the organic solvents preferentially localize to a hydrophobic patch in the active‐site vicinity and no chemical shift perturbation was observed for residues present in protein's core. This suggests that activity alteration might be directly linked to change in active site environment only. All organic solvents decreased the apparent binding of substrate to the enzyme (increased Km); however significantly enhanced the kcat. Melting temperature (Tm) of lipase, measured by circular dichroism and differential scanning calorimetry, altered in all solvents, albeit to a variable extent. Interestingly, although the effect of all organic solvents on various properties on lipase is qualitatively similar, our study suggest that magnitudes of effects do not appear to follow bulk solvent properties like polarity and the solvent effects are apparently dictated by specific and local interactions of solvent molecule(s) with the protein.  相似文献   

3.
Arctic soils contain large amounts of organic matter due to very slow rates of detritus decomposition. The first step in decomposition results from the activity of extracellular enzymes produced by soil microbes. We hypothesized that potential enzyme activities are low relative to the large stocks of organic matter in Arctic tundra soils, and that enzyme activity is low at in situ temperatures. We measured the potential activity of six hydrolytic enzymes at 4 and 20 °C on four sampling dates in tussock, intertussock, shrub organic, and shrub mineral soils at Toolik Lake, Alaska. Potential activities of N‐acetyl glucosaminidase, β‐glucosidase, and peptidase tended to be greatest at the end of winter, suggesting that microbes produced enzymes while soils were frozen. In general, enzyme activities did not increase during the Arctic summer, suggesting that enzyme production is N‐limited during the period when temperatures would otherwise drive higher enzyme activity in situ. We also detected seasonal variations in the temperature sensitivity (Q10) of soil enzymes. In general, soil enzyme pools were more sensitive to temperature at the end of the winter than during the summer. We modeled potential in situβ‐glucosidase activities for tussock and shrub organic soils based on measured enzyme activities, temperature sensitivities, and daily soil temperature data. Modeled in situ enzyme activity in tussock soils increased briefly during the spring, then declined through the summer. In shrub soils, modeled enzyme activities increased through the spring thaw into early August, and then declined through the late summer and into winter. Overall, temperature is the strongest factor driving low in situ enzyme activities in the Arctic. However, enzyme activity was low during the summer, possibly due to N‐limitation of enzyme production, which would constrain enzyme activity during the brief period when temperatures would otherwise drive higher rates of decomposition.  相似文献   

4.
5.

Background  

Enzymes have been extensively used in organic solvents to catalyze a variety of transformations of biological and industrial significance. It has been generally accepted that in dry aprotic organic solvents, enzymes are kinetically trapped in their conformation due to the high-energy barrier needed for them to unfold, suggesting that in such media they should remain catalytically active for long periods. However, recent studies on a variety of enzymes demonstrate that their initial high activity is severely reduced after exposure to organic solvents for several hours. It was speculated that this could be due to structural perturbations, changes of the enzyme's pH memory, enzyme aggregation, or dehydration due to water removal by the solvents. Herein, we systematically study the possible causes for this undesirable activity loss in 1,4-dioxane.  相似文献   

6.
酪氨酸酶在有机介质中的酶活性   总被引:2,自引:0,他引:2  
研究了蘑菇酪氨酸酶在有机溶剂中催化邻苯二酚向邻苯醌的转化反应,结果表明酪氨酸酶在有机介质中能保持较高的活性,其活性主要受体系中的水活度控制.在适当控制酶分子上结合水的条件下,酶活性随温度升高而增大.无机盐的水合物可用于控制这种低水有机介质中的水活度.  相似文献   

7.

A novel aliphatic nitrilase, REH16, was found in Ralstonia eutropha H16 and overexpressed in Escherichia coli BL21(DE3), and its enzymatic properties were studied. The temperature and pH optima were 37 °C and 6.6, respectively, and the best thermostability of the nitrilase was observed at 25 °C, which preserved 95% of activity after 120 h of incubation. REH16 has a broad hydrolytic activity toward aliphatic and heterocyclic nitriles and showed high tolerance of 3-cyanopyridine; this enzyme could hydrolyze as high as 100 mM 3-cyanopyridine completely. To improve the 3-cyanopyridine conversion efficiency in an aqueous reaction system, water-miscible organic solvents were tested, and ethanol (10% v/v) was chosen as the optimal co-solvent. Finally, under optimized conditions, using the fed-batch reaction mode, total of 1050 mM 3-cyanopyridine was hydrolyzed completely in 20.8 h with eight substrate feedings, yielding 129.2 g/L production of nicotinic acid and thus showing a potential for industrial application.

  相似文献   

8.

Endoglucanases are important enzymes in plant biomass degradation. They have current and potential applications in various industrial sectors including human and animal food processing, textile, paper, and renewable biofuel production. It is assumed that the cold-active endoglucanases, with high catalytic rates in moderate and cold temperatures, can improve the cost-effectiveness of industrial processes by lowering the need for heating and, thus, energy consumption. In this study, the endoglucanase CelCM3 was procured from a camel rumen metagenome via gene cloning and expression in Escherichia coli BL21 (DE3). The maximum activity of the enzyme on carboxymethyl cellulose (CMC) was obtained at pH 5 and 30 °C with a Vmax and Km of 339 U/mg and 2.57 mg/ml, respectively. The enzyme with an estimated low melting temperature of 45 °C and about 50% activity at 4 °C was identified to be cold-adapted. A thermodynamic analysis corroborated that CelCM3 with an activation energy (Ea), enthalpy of activation (ΔH), and Gibb’s free energy (ΔG) of, respectively, 18.47 kJ mol−1, 16.12 kJ mol−1, and 56.09 kJ mol−1 is a cold-active endoglucanase. In addition, CelCM3 was tolerant of metal ions, non-ionic detergents, urea, and organic solvents. Given these interesting characteristics, CelCM3 shows promise to meet the requirements of industrial applications.

  相似文献   

9.
Most enzymes provide their optimum performance at a given water activity (aw), which is generally solvent independent. For a given organic liquid solvent at a specific temperature or for a supercritical solvent at a specific temperature and pressure this corresponds to a water concentration in which water has the desired activity. We present here a methodology for predicting this water concentration thus reducing substantially the amount of experimental work needed to find the optimum solvent with respect to equilibrium conversion.

If the enzyme optimum water activity is known, the methodology predicts the required water content in the solvent to achieve this aw value. If, in addition, the enzyme water activity curve is available, this methodology provides the total water that must be added to the system (enzyme plus solvent) so that a specific water activity can be obtained.

The same methodology can also be applied to predict the effect of the total water content of the system (initial or initial plus produced) on the water activity values. It is shown that: (a) for esterification reactions taking place in hydrophobic organic solvents, the produced water can lead to a substantial change in water activity, but not for less hydrophobic solvents; (b) introduction of dry CO2 into a system, pre-equilibrated to a certain water activity at atmospheric pressure, can lead to a substantial decrease in the water activity especially at temperatures just above the critical one of the solvent and pressures larger than that.  相似文献   

10.
We have found that the hyperthermophilic archaeon Pyrobaculum calidifontis VA1 produced a thermostable esterase. We isolated and sequenced the esterase gene (estPc) from strain VA1. estPc consisted of 939 bp, corresponding to 313 amino acid residues with a molecular mass of 34,354 Da. As estPc showed significant identity (30%) to mammalian hormone-sensitive lipases (HSLs), esterase of P. calidifontis (Est) could be regarded as a new member of the HSL family. Activity levels of the enzyme were comparable or higher than those of previously reported enzymes not only at high temperature (6,410 U/mg at 90°C), but also at ambient temperature (1,050 U/mg at 30°C). The enzyme displayed extremely high thermostability and was also stable after incubation with various water-miscible organic solvents at a concentration of 80%. The enzyme also exhibited activity in the presence of organic solvents. Est of P. calidifontis showed higher hydrolytic activity towards esters with short to medium chains, with p-nitrophenyl caproate (C6) the best substrate among the p-nitrophenyl esters examined. As for the alcoholic moiety, the enzyme displayed esterase activity towards esters with both straight- and branched-chain alcohols. Most surprisingly, we found that this Est enzyme hydrolyzed the tertiary alcohol ester tert-butyl acetate, a feature very rare among previously reported lipolytic enzymes. The extreme stability against heat and organic solvents, along with its activity towards a tertiary alcohol ester, indicates a high potential for the Est of P. calidifontis in future applications.  相似文献   

11.
Myceliophthora thermophila syn. Sporotrichum thermophile is a ubiquitous thermophilic mould with a strong ability to degrade organic matter during optimal growth at 45?°C. Both genome analysis and experimental data have suggested that the mould is capable of hydrolyzing all major polysaccharides found in biomass. The mould is able to secrete a large number of hydrolytic enzymes (cellulases, laccases, xylanases, pectinases, lipases, phytases and some other miscellaneous enzymes) employed in various biotechnological applications. Characterization of the biomass-hydrolyzing activity of wild and recombinant enzymes suggests that this mould is highly efficient in biomass decomposition at both moderate and high temperatures. The native enzymes produced by the mould are more efficient in activity than their mesophilic counterparts beside their low enzyme titers. The mould is able to synthesize various biomolecules, which are used in multifarious applications. Genome sequence data of M. thermophila also supported the physiological data. This review describes the biotechnological potential of thermophilic mould, M. thermophila supported by genomic and experimental evidences.  相似文献   

12.
Till date, amidases from halophiles and halotolerant micro-organisms have not been much explored. In the present study, Brevibacterium sp. IIIMB2706 strain was isolated from salt fields of Gujarat, India, using propionitrile as a nitrogen source in the mineral base media and explored for its amidase activity. Amidase from Brevibacterium sp. IIIMB2706 exhibited substrate affinity towards isobutyramide, propionamide and butyramide. The optimum temperature and pH required for its maximum activity was 45?°C and 7.0, respectively. Effect of salt concentration on amidase activity was also studied and maximum activity was observed in presence of 50?g L?1 NaCl with significant activity up to 200?g L?1 NaCl which justifies its halotolerant nature. Various organic solvents compatibility profile showed that the enzyme was highly active in presence of 10% methyl alcohol. Henceforth, halotolerant enzymes may find application in industrial processes where substrate requires organic solvents for solubilization.  相似文献   

13.
14.
Salt-activation of nonhydrolase enzymes for use in organic solvents   总被引:1,自引:0,他引:1  
Enzymatic reactions are important for the synthesis of chiral molecules. One factor limiting synthetic applications of enzymes is the poor aqueous solubility of numerous substrates. To overcome this limitation, enzymes can be used directly in organic solvents; however, in nonaqueous media enzymes usually exhibit only a fraction of their aqueous-level activity. Salt-activation, a technique previously demonstrated to substantially increase the transesterification activity of hydrolytic enzymes in organic solvents, was applied to horse liver alcohol dehydrogenase, soybean peroxidase, galactose oxidase, and xanthine oxidase, which are oxidoreductase and oxygenase enzymes. Assays of the lyophilized enzyme preparations demonstrated that the presence of salt protected enzymes from irreversible inactivation. In organic solvents, there were significant increases in activity for the salt-activated enzymes compared to nonsalt-activated controls for every enzyme tested. The increased enzymatic activity in organic solvents was shown to result from a combination of protection against inactivation during the freeze-drying process and other as-yet undetermined factors.  相似文献   

15.
Crotonase superfamily enzymes catalyze a wide variety of reactions, including hydrolytic C–C bond cleavage in symmetrical β‐diketones by 6‐oxo camphor hydrolase (OCH) from Rhodococcus sp. The organic solvent tolerance and temperature stability of OCH and its structurally related ortholog Anabaena β‐diketone hydrolase have been investigated. Both enzymes showed excellent tolerance toward organic solvents; for instance, even in the presence of 80% (v/v) THF or dioxane, OCH was still active. In most solvent mixtures, except methanol, the stereospecificity was conserved (>99% e.e. of product), hence neither the type of solvent nor its concentration appeared to have an effect on the stereoselectivity of the enzyme. Attempts to correlate the observed activities with log P, functional solvent group or denaturing capacity (DC) of the solvent were only successful in the case of DC for water miscible solvents. This study represents the first investigation of organic solvent stability for members of the crotonase superfamily. Biotechnol. Bioeng. 2011;108: 2815–2822. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
Enzymes usually undergo rapid inactivation in the presence of organic media. In some cases, the mechanism is quite simple. For example, when an enzyme, fully dispersed and immobilized inside porous supports, is inactivated, at neutral pH and moderate temperature, in the presence of medium-high concentrations of water-miscible organic cosolvents, the unique cause of inactivation is the interaction of the enzyme with cosolvent molecules and the only inactivating effect is the promotion of conformational changes on enzyme structure.

On this basis, two distinct strategies for stabilization of enzymes against organic solvents are proposed:

a. reduction of the causes of inactivation: generation of hyper-hydrophilic micro-environments having a very open structure and fully surrounding every enzyme molecule;

b. reduction of the effects of inactivation: “rigidification of enzymes” via multipoint covalent immobilization.

By using penicillin G acylase (PGA) as a model enzyme, both strategies have been evaluated and compared. Both stabilizing strategies had significant effects. In this case, hydrophilization of the enzyme nano-environment was found to be more effective than rigidification of the enzyme via multipoint covalent attachment. The combined effect of both stabilizing strategies was also tested: multipoint covalently immobilized enzyme molecules were completely surrounded by hyper-hydrophilic microenvironments. In this way, native PGA that was unstable against organic cosolvents (completely inactivated in less than 3 min in 95% dioxane) was transformed into a very stable immobilized derivative (preserving more than 80% of activity after 40 days under the same conditions).  相似文献   

17.

Currently, much attention is paid to technologies which can be drivers of the circular economy across different sectors, in particular, to develop technologies for utilization or reusability of biocompatible materials from industrial waste. One of such is the milk whey, which is a cheap biobased raw material, the disposal of which is a major problem for the dairy industry. Our proposed and investigated technology is based on a continuous exploitation of the whey combining microbiology and biotechnology. Primarily, whey was used as a nutrition source for the cultivation of Kluyveromyces lactis with the aim to produce the targeted biocatalyst—lipase. During cultivation, the whey was transformed into the hydrolyzed form, which was further successfully applied as a protein feeder (external linker) for immobilization of lipase by cross-linked enzyme aggregate (CLEA) method. The first time use of whey as a co-feeder for immobilization of enzymes by CLEA method has shown promising results and increased the stability of lipases for temperature and organic solvents. Hydrolysis of rapeseed oil catalyzed with immobilized derivatives was obtained with 45–96% efficiency at non-optimized conditions. Additionally, the determined kinetic parameters indicated that the rate of p-nitrophenyl palmitate hydrolysis was not changed drastically after immobilization.

  相似文献   

18.

Background

Among extremophiles, halophiles are defined as microorganisms adapted to live and thrive in diverse extreme saline environments. These extremophilic microorganisms constitute the source of a number of hydrolases with great biotechnological applications. The interest to use extremozymes from halophiles in industrial applications is their resistance to organic solvents and extreme temperatures. Marinobacter lipolyticus SM19 is a moderately halophilic bacterium, isolated previously from a saline habitat in South Spain, showing lipolytic activity.

Methods and Findings

A lipolytic enzyme from the halophilic bacterium Marinobacter lipolyticus SM19 was isolated. This enzyme, designated LipBL, was expressed in Escherichia coli. LipBL is a protein of 404 amino acids with a molecular mass of 45.3 kDa and high identity to class C β-lactamases. LipBL was purified and biochemically characterized. The temperature for its maximal activity was 80°C and the pH optimum determined at 25°C was 7.0, showing optimal activity without sodium chloride, while maintaining 20% activity in a wide range of NaCl concentrations. This enzyme exhibited high activity against short-medium length acyl chain substrates, although it also hydrolyzes olive oil and fish oil. The fish oil hydrolysis using LipBL results in an enrichment of free eicosapentaenoic acid (EPA), but not docosahexaenoic acid (DHA), relative to its levels present in fish oil. For improving the stability and to be used in industrial processes LipBL was immobilized in different supports. The immobilized derivatives CNBr-activated Sepharose were highly selective towards the release of EPA versus DHA. The enzyme is also active towards different chiral and prochiral esters. Exposure of LipBL to buffer-solvent mixtures showed that the enzyme had remarkable activity and stability in all organic solvents tested.

Conclusions

In this study we isolated, purified, biochemically characterized and immobilized a lipolytic enzyme from a halophilic bacterium M. lipolyticus, which constitutes an enzyme with excellent properties to be used in the food industry, in the enrichment in omega-3 PUFAs.  相似文献   

19.
Out of some 800 strains of microorganisms, a potent fungus for milk clotting enzyme was isolated from soil during the course of screening tests and was identified as one of strains of Mucor pusillus Lindt. Satisfactory results were obtained in cheese making experiments with this enzyme which could be produced effectively by solid culture on wheat bran at 30°C for about 70 hrs.

The balance between milk clotting activity and proteolytic activity of this enzyme resembled very much to that of rennet.

Microbial rennet from Mucor pusillus F-27 was obtained with high productivity by solid culture followed by water extraction. The enzyme could be precipitated by salting out with ammonium sulfate and also by mixing with various water-miscible organic solvents such as ethanol, methanol or acetone.

This enzyme is one of acid proteases having its optimal pH for milk casein digestion around 3.5. The ratio of milk clotting activity to proteolytic activity of this enzyme resembled that of calf rennet than those of other proteases of fungal origin. This was more heat stable and more resistant against pH changes than animal rennet. Apparent activity of milk clotting was more affected by Ca ion concentration in milk than that of calf rennet.

The liberation of 12% TCA soluble nitrogen from casein fraction was a little less specific than that of calf rennet. The optimal temperature for milk clotting lay around 56°C.

Electrophoretic patterns of α-peak of casein treated with this enzyme showed the weak proteolysis which resembled that with rennet.  相似文献   

20.
As the third-generation biocatalyst for industrial production of acrylamide, the superiority of Rhodococcus rhodochrous J1 nitrile hydratase was demonstrated in comparison with other acrylamide-producing bacteria. R. rhodochrous J1 enzyme is much more heat stable and more tolerant to a high concentration of acrylonitrile than Pseudomonas chlororaphis B23 and Brevibacterium R312 enzymes. The J1 enzyme is peculiar in its extremely high tolerance to acrylamide. The hydration reaction of acrylonitrile catalysed by J1 cells proceeded even in the presence of 50% (w/v) acrylamide. The tolerance of J1 enzyme to various organic solvents such as n-propanol and isopropanol was prominent. Using R. rhodochrous J1 resting cells, the accumulation reaction was carried out by feeding acrylonitrile to maintain a level of 6%. After 10 h incubation, the accumulation of acrylamide was approximately 65.6% (w/v) at 10°C, 56.7% (w/v) at 15°C, and 56.0 (w/v) at 20°C. The high stability, high catalytic efficiency and other outstanding features of the J1 enzyme are analysed and discussed. Correspondence to: T. Nagasawa  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号